PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryDEC-SMALLINT-NLC (no optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark0
Best CPU time to get the best result obtained on this benchmark0.004998
Has Objective FunctionNO
(Un)Satisfiability was provedYES
Best value of the objective function
Optimality of the best value was proved NO
Number of variables100
Total number of constraints152
Number of constraints which are clauses50
Number of constraints which are cardinality constraints (but not clauses)1
Number of constraints which are nor clauses,nor cardinality constraints101
Minimum length of a constraint2
Maximum length of a constraint100
Number of terms in the objective function 0
Biggest coefficient in the objective function 0
Number of bits for the biggest coefficient in the objective function 0
Sum of the numbers in the objective function 0
Number of bits of the sum of numbers in the objective function 0
Biggest number in a constraint 5
Number of bits of the biggest number in a constraint 3
Biggest sum of numbers in a constraint 100
Number of bits of the biggest sum of numbers7
Number of products (including duplicates)1236
Sum of products size (including duplicates)2472
Number of different products618
Sum of products size1236

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerCPU timeWall clock time
pwbo 2.02 (complete)3726897SAT 0.004998 0.0139661
clasp 2.0.6-R5325 (dec) (complete)3708909SAT 0.004998 0.00589411
wbo 1.72 (complete)3727939SAT 0.005998 0.012437
wbo 1.7 (complete)3705638SAT 0.005998 0.013064
pwbo 2.0 (complete)3704596SAT 0.006998 0.0142909
PB07: Pueblo 1.4 (incomplete)3720504SAT 0.014997 0.01925
toysat 2012-05-17 (complete)3706161SAT 0.019996 0.0212951
toysat 2012-06-01 (complete)3724534SAT 0.021996 0.0213751
PB10: pb_cplex 2010-06-29 (complete)3737716SAT 0.032994 0.034766
PB09: bsolo 3.1 (complete)3737711SAT 0.064989 0.0651901
PB07: minisat+ 1.14 (complete)3721753SAT 0.067989 0.0682451
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3737720SAT 0.076987 0.0775961
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693073SAT 0.081986 0.0837669
PB07: PB-clasp 2007-04-10 (complete)3737708SAT 0.088985 0.082213
SCIP spx E SCIP Exp with SoPlex fixed (complete)3691907SAT 0.093985 0.0944361
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3737712SAT 0.113981 0.114687
npSolver inc (fixed) (complete)3748198SAT 0.151976 0.153672
npSolver inc-topdown-quickBound (fixed) (complete)3751390SAT 0.152976 0.155232
npSolver inc-topDown (fixed) (complete)3746602SAT 0.153976 0.153372
npSolver 1.0 (fixed) (complete)3749794SAT 0.161975 0.163392
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3737717SAT 0.19197 0.192812
bsolo 3.2 (complete)3707743SAT 0.240962 0.242681
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688780SAT 0.532918 0.762143
PB11: Sat4j Res//CP 2.3.0 (complete)3737719SAT 0.533917 0.766803
PB11: borg pb-dec-11.04.03 (complete)3737718SAT 0.534918 1.39152
SCIP spx SCIP with SoPlex fixed (complete)3690741SAT 0.550915 0.552008
SAT4J PB specific settings 2.3.2 snapshot (complete)3710089SAT 0.58491 0.342998
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3737715SAT 0.58491 1.2608
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3737713SAT 0.71489 0.389693
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688781SAT 0.793878 0.497947
PB07: bsolo 3.0.17 (complete)3737709SAT 48.7516 48.7783
PB12: minisatp 1.0-2-g022594c (complete)3722938? 0.004998 0.00799398
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3737710? 0.344947 0.24754
npSolver 1.0 (complete)3700637? (problem) 0.005999 0.0875019
npSolver inc-topDown (complete)3697445? (problem) 0.006998 0.117123
npSolver inc (complete)3699041? (problem) 0.007998 0.108671
pb2satCp2 2012-05-19 (complete)3694253? (problem) 0.008997 0.0992599
pb2sat 2012-05-19 (complete)3695849? (problem) 0.008998 0.0876799
npSolver inc-topdown-quickBound (complete)3702233? (problem) 0.008998 0.1056
PB10: borg-pb 10.05.30 (complete)3737714No Cert. 0.924858 1.563

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 0
Solution found:
x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 x22 x23 x24 x25 -x26 -x27 -x28 -x29 -x30 -x31
-x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x101 -x102 -x103 -x104 -x105 -x106 -x107
-x108 x109 -x110 -x111 -x112 -x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130
-x131 -x132 -x133 -x134 -x135 -x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153
-x154 -x155 -x156 -x157 -x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 x171 -x172 -x173 -x174 -x175 -x176
-x177 -x178 -x179 -x180 -x181 -x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199
x200 -x201 -x202 -x203 -x204 -x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222
-x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245
-x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268
-x269 -x270 -x271 -x272 -x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291
-x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314
-x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337
-x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360
-x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383
-x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406
-x407 -x408 -x409 x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429
-x430 -x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452
-x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475
-x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498
-x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521
-x522 -x523 -x524 -x525 -x526 -x527 -x528 -x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544
-x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557 -x558 x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567
-x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590
-x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613
-x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627 -x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636
-x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659
-x660 -x661 -x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669 -x670 -x671 -x672 -x673 -x674 -x675 -x676 -x677 -x678 -x679 -x680 -x681 -x682
-x683 -x684 -x685 -x686 -x687 -x688 -x689 -x690 -x691 -x692 -x693 -x694 -x695 -x696 -x697 -x698 -x699 -x700 -x701 -x702 -x703 -x704 -x705
-x706 -x707 -x708 -x709 -x710 -x711 -x712 -x713 -x714 -x715 -x716 -x717 -x718 -x51 -x52 x53 x54 -x55 -x56 -x57 -x58 -x59 -x60 -x61 -x62 x63
-x64 x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86 -x87 -x88 -x89 -x90 -x91
-x92 -x93 -x94 -x95 -x96 -x97 -x98 x99 -x100