PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark-58
Best CPU time to get the best result obtained on this benchmark1796.84
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function -59
Optimality of the best value was proved NO
Number of variables400
Total number of constraints601
Number of constraints which are clauses200
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints401
Minimum length of a constraint2
Maximum length of a constraint400
Number of terms in the objective function 200
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 200
Number of bits of the sum of numbers in the objective function 8
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 400
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)5048
Sum of products size (including duplicates)10096
Number of different products2524
Sum of products size5048

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3737461SAT-58 1796.84 1797.15
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692582SAT-57 1796.83 1797.12
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693748SAT-52 1796.74 1797.03
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3737455SAT-52 1798.13 1798.42
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3737459SAT-51 1789.75 1790.03
SCIP spx SCIP with SoPlex fixed (complete)3691416SAT-51 1796.76 1797.04
PB07: minisat+ 1.14 (complete)3721730SAT (TO)-50 1800.06 1800.41
clasp 2.0.6-R5325 (opt) (complete)3709584SAT (TO)-49 1800.11 1800.41
PB07: Pueblo 1.4 (incomplete)3720481SAT-46 1783.02 1783.31
SAT4J PB specific settings 2.3.2 snapshot (complete)3711180SAT (TO)-46 1800.07 1789.55
PB09: bsolo 3.1 (complete)3737454SAT-43 1798 1798.57
bsolo 3.2 (complete)3708418SAT-43 1798 1798.63
PB11: Sat4j Res//CP 2.3.0 (complete)3737460SAT (TO)-43 1800.17 927.237
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688734SAT (TO)-42 1800.03 934.035
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3737457SAT (TO)-41 1800.55 934.028
pwbo 2.02 (complete)3726761SAT (TO)-39 1800.11 900.424
pwbo 2.0 (complete)3704460SAT (TO)-36 1800.4 900.334
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688735SAT (TO)-33 1800.51 1788.15
PB07: bsolo 3.0.17 (complete)3737452SAT (TO)-17 1800.09 1800.81
PB12: minisatp 1.0-2-g022594c (complete)3724029? 0.004998 0.00786696
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3737453? 0.903862 0.525596
wbo 1.72 (complete)3727957? 1799.69 1800
wbo 1.7 (complete)3705656? 1799.73 1800.01
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3737456? (exit code) 550.15 542.15
PB07: PB-clasp 2007-04-10 (complete)3737451? (TO) 1341 1970.98
toysat 2012-05-17 (complete)3707252? (TO) 1800.05 1800.41
npSolver inc-topdown-quickBound (complete)3703324? (TO) 1800.06 1800.41
npSolver inc-topdown-quickBound (fixed) (complete)3752481? (TO) 1800.06 1800.41
toysat 2012-06-01 (complete)3725625? (TO) 1800.09 1800.41
npSolver inc-topDown (fixed) (complete)3747693? (TO) 1800.09 1800.41
npSolver inc (fixed) (complete)3749289? (TO) 1800.09 1800.41
npSolver 1.0 (fixed) (complete)3750885? (TO) 1800.1 1800.41
pb2sat 2012-05-19 (complete)3696940? (TO) 1800.1 1800.51
npSolver 1.0 (complete)3701728? (TO) 1800.11 1800.41
PB10: pb_cplex 2010-06-29 (complete)3737458? (TO) 1800.12 616.418
npSolver inc (complete)3700132? (TO) 1800.13 1800.41
pb2satCp2 2012-05-19 (complete)3695344? (TO) 1800.13 1800.72
npSolver inc-topDown (complete)3698536? (TO) 1800.13 1800.72

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -58
Solution found:
-x337 -x254 -x326 -x298 x375 x353 x329 x311 -x351 -x391 -x235 -x400 -x393 -x398 -x312 x293 x336 -x331 -x259 x304 -x366 x349 x276 -x341 x281
-x396 -x359 -x228 -x399 -x346 -x255 -x244 -x322 -x358 x270 x219 -x314 -x266 -x347 x371 -x279 -x372 -x260 -x382 -x333 -x216 -x277 -x243 -x269
x324 -x320 -x267 -x237 -x352 -x387 -x310 -x335 x214 -x261 x356 -x263 -x274 -x385 -x381 x265 x316 -x213 -x253 x278 -x227 x357 -x290 x289
-x288 -x285 x251 -x313 -x379 -x294 -x210 -x272 -x241 -x378 -x249 -x209 x389 -x286 -x250 -x234 x224 x264 x306 -x361 -x268 x388 x334 -x383
x380 -x330 x271 -x247 -x301 -x239 -x291 -x362 -x354 -x258 -x256 -x230 -x211 -x308 x340 x392 -x232 -x394 x206 -x397 x363 x309 -x297 -x282
-x238 -x218 -x207 x296 x287 -x222 x368 -x348 x390 x370 -x292 -x246 x217 -x248 -x344 x273 -x299 -x343 x332 -x245 -x376 x377 x373 -x307 x295
-x240 x236 -x262 -x223 -x325 -x395 -x220 x300 -x203 -x367 -x257 -x233 -x208 -x305 -x221 -x321 -x283 -x323 -x319 -x374 -x369 -x202 -x360 x339
-x280 -x252 -x231 -x225 x212 -x205 -x318 -x350 -x342 -x303 -x215 -x204 x365 x315 x355 -x201 -x384 -x328 x317 -x242 -x345 -x386 x229 -x226
x338 x364 -x327 -x275 -x284 x302 -x200 x199 x198 -x197 -x196 x195 x194 x193 -x192 x191 -x190 -x189 -x188 -x187 x186 -x185 -x184 x183 -x182
x181 -x180 x179 -x178 -x177 x176 -x175 x174 -x173 -x172 -x171 -x170 x169 -x168 x167 x166 -x165 -x164 -x163 -x162 -x161 -x160 x159 x158 -x157
-x156 -x155 x154 -x153 x152 x151 x150 -x149 -x148 -x147 x146 x145 -x144 -x143 x142 x141 -x140 -x139 -x138 x137 -x136 -x135 -x134 -x133 -x132
-x131 -x130 -x129 x128 x127 -x126 -x125 -x124 x123 -x122 x121 -x120 -x119 x118 -x117 -x116 -x115 -x114 x113 x112 -x111 -x110 -x109 -x108
-x107 -x106 -x105 -x104 -x103 -x102 x101 -x100 x99 -x98 -x97 -x96 -x95 x94 -x93 x92 x91 -x90 -x89 -x88 -x87 -x86 -x85 x84 -x83 -x82 -x81
-x80 -x79 -x78 x77 -x76 -x75 x74 -x73 x72 -x71 -x70 -x69 -x68 x67 -x66 -x65 -x64 -x63 -x62 -x61 -x60 x59 -x58 x57 -x56 -x55 x54 -x53 x52
-x51 x50 x49 x48 -x47 x46 -x45 -x44 -x43 -x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 x33 -x32 -x31 x30 -x29 -x28 -x27 -x26 -x25 -x24 -x23
-x22 x21 x20 -x19 -x18 -x17 -x16 x15 -x14 -x13 -x12 -x11 x10 -x9 -x8 -x7 -x6 -x5 -x4 x3 -x2 -x1