PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark6
Best CPU time to get the best result obtained on this benchmark0.32295
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 6
Optimality of the best value was proved YES
Number of variables50
Total number of constraints50
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints50
Minimum length of a constraint11
Maximum length of a constraint17
Number of terms in the objective function 50
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 50
Number of bits of the sum of numbers in the objective function 6
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 50
Number of bits of the biggest sum of numbers6
Number of products (including duplicates)614
Sum of products size (including duplicates)1228
Number of different products614
Sum of products size1228

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
npSolver inc (fixed) (complete)3749332OPT6 0.32295 0.329779
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3736856OPT6 0.332948 0.333498
npSolver inc (complete)3700175OPT6 0.339947 0.339081
npSolver inc-topDown (complete)3698579OPT6 0.350946 0.355181
npSolver inc-topdown-quickBound (complete)3703367OPT6 0.351945 0.354221
pb2sat 2012-05-19 (complete)3696983OPT6 0.354945 0.357169
npSolver 1.0 (fixed) (complete)3750928OPT6 0.366943 0.369865
pb2satCp2 2012-05-19 (complete)3695387OPT6 0.367943 0.371383
npSolver 1.0 (complete)3701771OPT6 0.382941 0.388487
npSolver inc-topDown (fixed) (complete)3747736OPT6 0.424935 0.427814
npSolver inc-topdown-quickBound (fixed) (complete)3752524OPT6 0.433933 0.436168
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692625OPT6 0.470927 0.472285
PB07: minisat+ 1.14 (complete)3721675OPT6 1.24581 1.2459
clasp 2.0.6-R5325 (opt) (complete)3709627OPT6 1.82172 1.82421
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693791OPT6 2.22366 2.22904
SCIP spx SCIP with SoPlex fixed (complete)3691459OPT6 2.94055 2.9424
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3736850OPT6 5.40918 5.41267
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3736854OPT6 5.74413 5.74693
pwbo 2.0 (complete)3704503OPT6 7.50386 3.75332
pwbo 2.02 (complete)3726804OPT6 7.68383 3.85009
PB10: pb_cplex 2010-06-29 (complete)3736853OPT6 11.4443 5.19994
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688625OPT6 16.2715 15.2243
PB07: PB-clasp 2007-04-10 (complete)3736846OPT6 25.8341 25.8532
bsolo 3.2 (complete)3708461OPT6 27.6238 27.6295
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688624OPT6 30.8083 15.9593
SAT4J PB specific settings 2.3.2 snapshot (complete)3711223OPT6 32.83 32.1961
PB07: Pueblo 1.4 (incomplete)3720426OPT6 42.9975 43.007
toysat 2012-06-01 (complete)3725668OPT6 43.8503 43.8592
toysat 2012-05-17 (complete)3707295OPT6 44.6552 44.6668
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3736848OPT6 52.36 51.5566
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3736851OPT6 60.7358 59.7861
PB11: Sat4j Res//CP 2.3.0 (complete)3736855OPT6 82.7504 42.7159
PB07: bsolo 3.0.17 (complete)3736847OPT6 88.5435 88.5607
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3736852OPT6 160.631 82.8193
PB09: bsolo 3.1 (complete)3736849OPT6 321.632 321.703
wbo 1.72 (complete)3728000OPT6 1005.04 1005.41
wbo 1.7 (complete)3705699OPT6 1050.12 1050.17
PB12: minisatp 1.0-2-g022594c (complete)3724072? 0.006998 0.00664096

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 6
Solution found:
-x1 -x2 -x3 -x4 -x5 x6 -x7 x8 -x9 -x10 x11 -x12 -x13 -x14 -x15 x16 -x17 -x18 -x19 -x20 -x21 x22 -x23 -x24 x25 -x26 -x27 -x28 -x29 -x30 -x31
-x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58 -x59
-x60 x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86 -x87
-x88 -x89 -x90 -x91 x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111 -x112
-x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135
-x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 x154 -x155 -x156 -x157 -x158
-x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 x178 -x179 -x180 -x181
-x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204
-x205 -x206 -x207 x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227
-x228 -x229 -x230 -x231 -x232 -x233 -x234 x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 x248 -x249 -x250 x251
-x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 -x274
-x275 -x276 -x277 -x278 -x279 -x280 x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 x291 -x292 -x293 -x294 -x295 -x296 -x297
-x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320
-x321 x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343
-x344 x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366
-x367 -x368 x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389
-x390 -x391 -x392 -x393 -x394 x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 x410 -x411 -x412
-x413 -x414 -x415 x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 x433 -x434 -x435
-x436 -x437 -x438 -x439 -x440 x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458
-x459 -x460 -x461 -x462 -x463 -x464 -x465 x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 x478 -x479 -x480 -x481
-x482 -x483 -x484 x485 -x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504
-x505 -x506 -x507 x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 x521 -x522 -x523 -x524 -x525 -x526 -x527
-x528 -x529 x530 -x531 -x532 -x533 -x534 -x535 -x536 -x537 x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550
-x551 -x552 -x553 -x554 x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573
-x574 -x575 -x576 -x577 x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 x597
-x598 -x599 -x600 -x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 x611 -x612 -x613 -x614 -x615 x616 -x617 -x618 -x619 -x620
-x621 -x622 -x623 -x624 x625 -x626 -x627 -x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 x637 -x638 -x639 -x640 -x641 -x642 -x643
-x644 -x645 -x646 -x647 -x648 x649 -x650 -x651 -x652 -x653 -x654 -x655 -x656 -x657 x658 -x659 -x660 -x661 -x662 -x663 -x664