PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark15
Best CPU time to get the best result obtained on this benchmark1796.85
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 17
Optimality of the best value was proved NO
Number of variables500
Total number of constraints500
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints500
Minimum length of a constraint61
Maximum length of a constraint111
Number of terms in the objective function 500
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 500
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 500
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)37460
Sum of products size (including duplicates)74920
Number of different products37460
Sum of products size74920

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692623SAT15 1796.85 1797.14
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3736790SAT15 1796.86 1797.15
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693789SAT17 1796.91 1797.27
SCIP spx SCIP with SoPlex fixed (complete)3691457SAT17 1797.07 1797.37
SAT4J PB specific settings 2.3.2 snapshot (complete)3711221SAT (TO)18 1800.02 1797.25
pwbo 2.02 (complete)3726802SAT (TO)18 1800.06 900.555
clasp 2.0.6-R5325 (opt) (complete)3709625SAT (TO)18 1800.08 1800.41
pwbo 2.0 (complete)3704501SAT (TO)18 1800.42 900.566
PB07: minisat+ 1.14 (complete)3721669SAT (TO)19 1800.06 1800.73
PB11: Sat4j Res//CP 2.3.0 (complete)3736789SAT (TO)19 1800.11 915.733
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688612SAT (TO)19 1800.5 910.04
PB07: bsolo 3.0.17 (complete)3736781SAT (TO)20 1800.07 1800.75
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3736786SAT (TO)20 1800.17 931.741
PB09: bsolo 3.1 (complete)3736783SAT21 1798.03 1798.72
PB07: PB-clasp 2007-04-10 (complete)3736780SAT (TO)21 1802.14 1802.63
PB07: Pueblo 1.4 (incomplete)3720420SAT22 1783.02 1783.48
bsolo 3.2 (complete)3708459SAT22 1798.05 1798.73
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3736782SAT (TO)22 1800.56 1769.45
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3736784SAT23 1795.01 1795.31
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688613SAT (TO)23 1800 1797.74
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3736785SAT (TO)23 1800.06 1760.57
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3736788SAT24 1790.03 1790.33
PB12: minisatp 1.0-2-g022594c (complete)3724070? 0.004998 0.00705193
wbo 1.72 (complete)3727998? 1799.81 1800.03
wbo 1.7 (complete)3705697? 1799.92 1800.01
npSolver 1.0 (fixed) (complete)3750926? (TO) 1800.01 1800.41
toysat 2012-05-17 (complete)3707293? (TO) 1800.03 1800.31
npSolver inc (fixed) (complete)3749330? (TO) 1800.04 1800.41
npSolver inc-topDown (fixed) (complete)3747734? (TO) 1800.04 1800.41
npSolver inc-topdown-quickBound (fixed) (complete)3752522? (TO) 1800.04 1800.41
pb2satCp2 2012-05-19 (complete)3695385? (TO) 1800.07 1800.72
PB10: pb_cplex 2010-06-29 (complete)3736787? (TO) 1800.08 1756.21
npSolver inc-topdown-quickBound (complete)3703365? (TO) 1800.1 1800.41
pb2sat 2012-05-19 (complete)3696981? (TO) 1800.1 1800.41
toysat 2012-06-01 (complete)3725666? (TO) 1800.11 1800.41
npSolver 1.0 (complete)3701769? (TO) 1800.12 1800.41
npSolver inc-topDown (complete)3698577? (TO) 1800.12 1800.41
npSolver inc (complete)3700173? (TO) 1800.13 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 15
Solution found:
-x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487 -x486 -x485 -x484 -x483 -x482 -x481 -x480 -x479 -x478
-x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467 -x466 -x465 -x464 -x463 -x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455
-x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 -x442 -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432
-x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409
-x408 -x407 -x406 -x405 -x404 -x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388 -x387 -x386
-x385 -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363
-x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 -x352 -x351 -x350 -x349 -x348 x347 -x346 -x345 -x344 -x343 -x342 -x341 -x340
-x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324 -x323 -x322 -x321 -x320 -x319 -x318 -x317
-x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 -x303 -x302 -x301 -x300 -x299 -x298 -x297 -x296 -x295 -x294
-x293 -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 -x281 -x280 -x279 -x278 -x277 -x276 -x275 -x274 -x273 -x272 -x271
-x270 -x269 -x268 -x267 -x266 -x265 -x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251 -x250 -x249 -x248
-x247 -x246 -x245 -x244 -x243 -x242 -x241 -x240 -x239 -x238 -x237 -x236 -x235 -x234 -x233 -x232 -x231 -x230 -x229 -x228 -x227 -x226 -x225
-x224 -x223 -x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202
-x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179
-x178 -x177 x176 -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158 -x157 -x156
-x155 -x154 -x153 -x152 -x151 -x150 -x149 x148 -x147 -x146 -x145 -x144 -x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134 -x133
-x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124 x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116 -x115 -x114 -x113 -x112 -x111 -x110
-x109 x108 -x107 -x106 -x105 -x104 -x103 -x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 -x93 -x92 -x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84
-x83 -x82 -x81 -x80 -x79 -x78 -x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66 -x65 -x64 -x63 -x62 -x61 x60 -x59 -x58 -x57 -x56
-x55 x54 -x53 -x52 -x51 -x50 -x49 -x48 -x47 -x46 x45 -x44 -x43 -x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x30 -x29 x28
-x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 -x17 -x16 x15 -x14 -x13 x12 x11 -x10 -x9 x8 -x7 -x6 -x5 -x4 -x3 x2 x1