PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark2
Best CPU time to get the best result obtained on this benchmark0.048992
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 2
Optimality of the best value was proved YES
Number of variables144
Total number of constraints17
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints17
Minimum length of a constraint6
Maximum length of a constraint48
Number of terms in the objective function 6
Biggest coefficient in the objective function 32
Number of bits for the biggest coefficient in the objective function 6
Sum of the numbers in the objective function 63
Number of bits of the sum of numbers in the objective function 6
Biggest number in a constraint 2048
Number of bits of the biggest number in a constraint 12
Biggest sum of numbers in a constraint 8064
Number of bits of the biggest sum of numbers13
Number of products (including duplicates)288
Sum of products size (including duplicates)576
Number of different products288
Sum of products size576

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: pb_cplex 2010-06-29 (complete)3736633OPT2 0.043992 0.0455939
PB07: minisat+ 1.14 (complete)3721655OPT2 0.048992 0.0500801
wbo 1.7 (complete)3705739OPT2 0.053991 0.0459721
wbo 1.72 (complete)3728040OPT2 0.054991 0.0456281
pwbo 2.0 (complete)3704543OPT2 0.103983 0.0495179
clasp 2.0.6-R5325 (opt) (complete)3709667OPT2 0.272957 0.274434
npSolver inc-topDown (fixed) (complete)3747776OPT2 0.369942 0.373108
npSolver inc (fixed) (complete)3749372OPT2 0.466928 0.469978
pwbo 2.02 (complete)3726844OPT2 0.522919 0.261401
npSolver 1.0 (fixed) (complete)3750968OPT2 0.535917 0.539665
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688585OPT2 0.575911 0.28952
PB09: bsolo 3.1 (complete)3736629OPT2 0.853869 0.854796
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692665OPT2 1.43878 1.44055
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688584OPT2 2.02369 1.70741
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3736631OPT2 2.16367 1.72612
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3736628OPT2 2.17267 1.82028
PB07: bsolo 3.0.17 (complete)3736627OPT2 2.82157 2.82616
toysat 2012-06-01 (complete)3725708OPT2 3.03954 3.04603
toysat 2012-05-17 (complete)3707335OPT2 3.04354 3.04546
PB07: Pueblo 1.4 (incomplete)3720406OPT2 3.20151 3.20623
PB11: Sat4j Res//CP 2.3.0 (complete)3736635OPT2 3.23251 1.70283
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3736630OPT2 3.68344 3.68541
pb2sat 2012-05-19 (complete)3697023OPT2 5.48117 5.76419
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3736632OPT2 5.85111 5.22173
pb2satCp2 2012-05-19 (complete)3695427OPT2 8.46171 9.20416
bsolo 3.2 (complete)3708501OPT2 11.4703 11.4746
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3736634OPT2 12.0972 12.1017
SCIP spx SCIP with SoPlex fixed (complete)3691499OPT2 26.7099 26.715
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693831OPT2 30.7413 30.7463
PB07: PB-clasp 2007-04-10 (complete)3736626OPT2 31.8492 31.8844
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3736636OPT2 72.408 72.425
npSolver inc-topdown-quickBound (complete)3703407OPT2 262.19 262.525
npSolver 1.0 (complete)3701811OPT2 266.148 266.221
npSolver inc (complete)3700215OPT2 308.833 308.997
npSolver inc-topDown (complete)3698619OPT2 324.753 324.809
SAT4J PB specific settings 2.3.2 snapshot (complete)3711263SAT2 1.16282 0.755426
PB12: minisatp 1.0-2-g022594c (complete)3724112? 0.006998 0.00693897
npSolver inc-topdown-quickBound (fixed) (complete)3752564? (TO) 1800.08 1812.01

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 2
Solution found:
-x1 x2 -x3 -x4 -x5 -x6 x7 x8 -x9 -x10 -x11 x12 x13 x14 -x15 -x16 -x17 x18 -x19 x20 -x21 -x22 x23 -x24 x25 -x26 -x27 -x28 x29 -x30 x31 x32
-x33 -x34 -x35 x36 x37 x38 -x39 -x40 -x41 -x42 x43 x44 -x45 -x46 -x47 -x48 x49 x50 -x51 -x52 -x53 -x54 -x145 x146 -x147 -x148 -x149 -x150
-x151 x152 -x153 -x154 -x155 -x156 -x157 -x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173
-x174 -x175 x176 -x177 -x178 -x179 -x180 -x55 x56 x57 -x58 -x59 -x60 x97 -x98 -x99 -x100 -x101 -x102 -x181 x182 x183 -x184 -x185 -x186 -x187
x188 x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 -x206 -x207 -x208 -x209 -x210
-x211 x212 x213 -x214 -x215 -x216 -x61 x62 -x63 -x64 x65 -x66 x103 x104 -x105 -x106 -x107 -x108 -x217 -x218 -x219 -x220 -x221 -x222 -x223
x224 -x225 -x226 x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 x242 -x243 -x244 x245 -x246 -x247
-x248 -x249 -x250 -x251 -x252 -x67 -x68 x69 -x70 -x71 -x72 x109 -x110 x111 -x112 -x113 -x114 -x253 -x254 x255 -x256 -x257 -x258 -x259 -x260
-x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 -x274 -x275 -x276 -x277 -x278 x279 -x280 -x281 -x282 -x283
-x284 -x285 -x286 -x287 -x288 -x73 -x74 x75 -x76 -x77 -x78 x115 -x116 -x117 -x118 -x119 -x120 -x289 -x290 x291 -x292 -x293 -x294 -x295 -x296
x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319
-x320 x321 -x322 -x323 -x324 -x79 -x80 x81 x82 -x83 -x84 -x121 x122 -x123 -x124 -x125 -x126 -x325 -x326 x327 x328 -x329 -x330 -x331 -x332
x333 x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355
-x356 -x357 -x358 -x359 -x360 -x85 -x86 x87 -x88 -x89 x90 -x127 -x128 -x129 -x130 -x131 -x132 -x361 -x362 x363 -x364 -x365 x366 -x367 -x368
x369 -x370 -x371 x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391
-x392 -x393 -x394 -x395 -x396 -x91 -x92 x93 x94 -x95 x96 x133 -x134 -x135 -x136 -x137 -x138 -x397 -x398 x399 x400 -x401 x402 -x403 -x404
x405 x406 -x407 x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428
-x429 -x430 -x431 -x432 -x139 x140 -x141 -x142 -x143 -x144