PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark3
Best CPU time to get the best result obtained on this benchmark0.080987
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 3
Optimality of the best value was proved YES
Number of variables189
Total number of constraints19
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints19
Minimum length of a constraint7
Maximum length of a constraint63
Number of terms in the objective function 7
Biggest coefficient in the objective function 64
Number of bits for the biggest coefficient in the objective function 7
Sum of the numbers in the objective function 127
Number of bits of the sum of numbers in the objective function 7
Biggest number in a constraint 8192
Number of bits of the biggest number in a constraint 14
Biggest sum of numbers in a constraint 32512
Number of bits of the biggest sum of numbers15
Number of products (including duplicates)441
Sum of products size (including duplicates)882
Number of different products441
Sum of products size882

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB07: minisat+ 1.14 (complete)3721637OPT3 0.080987 0.0808999
SCIP spx SCIP with SoPlex fixed (complete)3691508OPT3 0.098984 0.100364
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3736438OPT3 0.180972 0.182251
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693840OPT3 0.195969 0.19753
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692674OPT3 0.217966 0.219396
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3736436OPT3 0.266958 0.267342
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3736432OPT3 4.49631 4.49901
clasp 2.0.6-R5325 (opt) (complete)3709676OPT3 10.6074 10.6111
pwbo 2.02 (complete)3726853OPT3 10.6834 5.35523
wbo 1.72 (complete)3728049OPT3 10.9043 10.9126
wbo 1.7 (complete)3705748OPT3 10.9653 10.9579
npSolver inc-topDown (fixed) (complete)3747785OPT3 11.0603 11.0647
pwbo 2.0 (complete)3704552OPT3 11.9432 5.97367
npSolver inc (fixed) (complete)3749381OPT3 15.3897 15.3939
npSolver 1.0 (fixed) (complete)3750977OPT3 15.3987 15.4055
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688549OPT3 18.1512 16.9147
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3736430OPT3 19.554 18.7606
PB11: Sat4j Res//CP 2.3.0 (complete)3736437OPT3 32.2401 16.4541
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3736434OPT3 32.3291 17.3453
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688548OPT3 43.1484 21.0106
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3736433OPT3 43.9773 42.8372
PB07: bsolo 3.0.17 (complete)3736429OPT3 46.5289 46.541
bsolo 3.2 (complete)3708510OPT3 72.8959 72.9153
PB07: Pueblo 1.4 (incomplete)3720388OPT3 86.4879 86.5053
PB07: PB-clasp 2007-04-10 (complete)3736428OPT3 561.075 561.26
toysat 2012-05-17 (complete)3707344OPT3 1388.01 1388.24
pb2satCp2 2012-05-19 (complete)3695436OPT3 1596.5 1596.98
pb2sat 2012-05-19 (complete)3697032OPT3 1667.81 1668.15
SAT4J PB specific settings 2.3.2 snapshot (complete)3711272SAT3 12.2721 11.4044
PB12: minisatp 1.0-2-g022594c (complete)3724121? 0.004998 0.0071981
npSolver inc-topdown-quickBound (complete)3703416? (problem) 43.11 60.477
npSolver inc (complete)3700224? (problem) 43.23 59.2505
npSolver 1.0 (complete)3701820? (problem) 44.0643 64.0863
npSolver inc-topDown (complete)3698628? (problem) 44.08 59.2233
toysat 2012-06-01 (complete)3725717? (TO) 1800.02 1800.31
PB10: pb_cplex 2010-06-29 (complete)3736435? (TO) 1800.07 539.116
npSolver inc-topdown-quickBound (fixed) (complete)3752573? (TO) 1800.1 1802.91
PB09: bsolo 3.1 (complete)3736431Wrong Opt.65 12.0142 12.0208

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 3
Solution found:
x1 x2 -x3 -x4 -x5 -x6 -x7 x8 x9 -x10 x11 -x12 -x13 -x14 x15 x16 -x17 -x18 -x19 -x20 -x21 x22 x23 -x24 -x25 -x26 -x27 -x28 x29 x30 -x31 -x32
-x33 -x34 -x35 x36 x37 -x38 -x39 -x40 -x41 -x42 x43 x44 -x45 -x46 -x47 -x48 -x49 x50 x51 -x52 -x53 -x54 -x55 -x56 x57 x58 -x59 -x60 -x61
-x62 -x63 x64 x65 -x66 -x67 -x68 -x69 -x70 x190 x191 -x192 -x193 -x194 -x195 -x196 x197 x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 -x206
-x207 -x208 -x209 -x210 x211 x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229
-x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 x71 -x72 -x73 -x74 -x75 x76 -x77 -x127 -x128 -x129 -x130 -x131 -x132 -x133 x239 -x240
-x241 -x242 -x243 x244 -x245 x246 -x247 -x248 -x249 -x250 x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264
-x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287
x78 x79 -x80 -x81 -x82 x83 x84 -x134 -x135 -x136 -x137 -x138 -x139 -x140 x288 x289 -x290 -x291 -x292 x293 x294 x295 x296 -x297 -x298 -x299
x300 x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322
-x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 x85 -x86 -x87 x88 -x89 x90 -x91 -x141 x142 -x143 -x144
-x145 -x146 -x147 x337 -x338 -x339 x340 -x341 x342 -x343 x344 -x345 -x346 x347 -x348 x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357
-x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380
-x381 -x382 -x383 -x384 -x385 x92 x93 -x94 x95 x96 x97 x98 -x148 -x149 -x150 -x151 -x152 -x153 -x154 x386 x387 -x388 x389 x390 x391 x392
x393 x394 -x395 x396 x397 x398 x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416
-x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434 x99 -x100 -x101 -x102 x103 x104
x105 -x155 x156 -x157 -x158 -x159 -x160 -x161 x435 -x436 -x437 -x438 x439 x440 x441 x442 -x443 -x444 -x445 x446 x447 x448 -x449 -x450 -x451
-x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474
-x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 x106 x107 -x108 -x109 x110 -x111 x112 -x162 x163 -x164 -x165 -x166 -x167 -x168 x484
x485 -x486 -x487 x488 -x489 x490 x491 x492 -x493 -x494 x495 -x496 x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508
-x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526 -x527 -x528 -x529 -x530 -x531
-x532 x113 -x114 -x115 x116 x117 x118 x119 x169 -x170 -x171 -x172 -x173 -x174 -x175 x533 -x534 -x535 x536 x537 x538 x539 x540 -x541 -x542
x543 x544 x545 x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566
-x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 x120 x121 -x122 x123 -x124 x125 x126 -x176 x177
-x178 -x179 -x180 -x181 -x182 x582 x583 -x584 x585 -x586 x587 x588 x589 x590 -x591 x592 -x593 x594 x595 -x596 -x597 -x598 -x599 -x600 -x601
-x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624
-x625 -x626 -x627 -x628 -x629 -x630 -x183 x184 -x185 -x186 -x187 -x188 -x189