PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark63
Best CPU time to get the best result obtained on this benchmark0.272958
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 63
Optimality of the best value was proved YES
Number of variables756
Total number of constraints1853
Number of constraints which are clauses1853
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint1
Maximum length of a constraint80
Number of terms in the objective function 756
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 756
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 756
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: pb_cplex 2010-06-29 (complete)3734623OPT63 0.272958 0.274201
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3734624OPT63 1.82872 1.83014
SCIP spx SCIP with SoPlex fixed (complete)3691017OPT63 1.85272 1.85918
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692183OPT63 1.90271 1.90405
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3734620OPT63 2.69459 2.69672
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693349OPT63 3.54246 3.54554
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3734626OPT63 6.11707 6.11935
wbo 1.72 (complete)3727528OPT63 162.326 162.506
wbo 1.7 (complete)3705227OPT63 167.73 167.832
PB07: bsolo 3.0.17 (complete)3734617OPT63 543.414 543.499
pwbo 2.0 (complete)3703706OPT63 943.65 472.105
PB07: minisat+ 1.14 (complete)3721455SAT (TO)64 1800.08 1800.41
PB12: minisatp 1.0-2-g022594c (complete)3723630SAT (TO)65 1800.03 1800.31
bsolo 3.2 (complete)3708019SAT66 1798 1798.29
PB09: bsolo 3.1 (complete)3734619SAT66 1798.02 1798.3
pwbo 2.02 (complete)3726007SAT (TO)67 1800.16 900.327
PB07: Pueblo 1.4 (incomplete)3720244SAT74 1783.01 1783.29
clasp 2.0.6-R5325 (opt) (complete)3709185SAT (TO)74 1800.03 1800.31
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3734622SAT (TO)74 1800.08 1104.94
PB11: Sat4j Res//CP 2.3.0 (complete)3734625SAT (TO)74 1800.2 1085.03
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688184SAT (TO)78 1800.04 982.046
PB07: PB-clasp 2007-04-10 (complete)3734616SAT (TO)78 1802.09 1802.42
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688185SAT (TO)85 1800.08 1791.36
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3734621SAT (TO)86 1800.07 1797.89
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3734618SAT (TO)86 1800.1 1795.42
SAT4J PB specific settings 2.3.2 snapshot (complete)3710781SAT (TO)89 1800.07 1789.86
toysat 2012-05-17 (complete)3706853? (TO) 1800.01 1800.31
toysat 2012-06-01 (complete)3725226? (TO) 1800.02 1800.31
npSolver inc-topDown (complete)3698137? (TO) 1800.06 1800.41
npSolver inc-topdown-quickBound (fixed) (complete)3752082? (TO) 1800.09 1800.41
pb2sat 2012-05-19 (complete)3696541? (TO) 1800.09 1800.51
npSolver inc (fixed) (complete)3748890? (TO) 1800.1 1800.41
npSolver inc-topDown (fixed) (complete)3747294? (TO) 1800.1 1800.41
npSolver 1.0 (fixed) (complete)3750486? (TO) 1800.12 1800.41
npSolver inc-topdown-quickBound (complete)3702925? (TO) 1800.12 1800.41
npSolver 1.0 (complete)3701329? (TO) 1800.12 1800.41
npSolver inc (complete)3699733? (TO) 1800.13 1800.41
pb2satCp2 2012-05-19 (complete)3694945? (TO) 1800.15 1800.51

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 63
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 x7 -x8 -x9 -x10 -x11 x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111
-x112 x113 -x114 -x115 -x116 -x117 -x118 -x119 x120 -x121 -x122 -x123 x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 x135
-x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 x147 x148 -x149 x150 -x151 -x152 x153 -x154 -x155 -x156 -x157 -x158 -x159
-x160 x161 -x162 -x163 x164 -x165 -x166 -x167 -x168 -x169 -x170 x171 -x172 -x173 -x174 x175 -x176 -x177 -x178 -x179 -x180 -x181 -x182 -x183
-x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 x206
-x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229
-x230 -x231 -x232 -x233 -x234 -x235 x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250 x251 -x252 x253
-x254 -x255 -x256 -x257 -x258 -x259 -x260 x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 x270 -x271 -x272 -x273 -x274 -x275 -x276
-x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299
-x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322
-x323 -x324 -x325 -x326 -x327 -x328 x329 -x330 -x331 -x332 -x333 x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345
-x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368
-x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 x391
-x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414
-x415 -x416 -x417 x418 -x419 -x420 x421 -x422 x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438
-x439 -x440 -x441 -x442 -x443 -x444 x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 x461
-x462 x463 -x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484
-x485 -x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507
-x508 -x509 -x510 -x511 -x512 -x513 -x514 x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 x523 -x524 -x525 -x526 -x527 -x528 -x529 x530 x531
-x532 -x533 -x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554
-x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 x577
x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600
-x601 -x602 -x603 -x604 -x605 -x606 x607 -x608 -x609 -x610 -x611 -x612 -x613 x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 x624
-x625 -x626 -x627 x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 -x643 x644 -x645 -x646 -x647
-x648 -x649 -x650 -x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 x662 -x663 -x664 x665 -x666 -x667 -x668 -x669 -x670
-x671 -x672 -x673 -x674 x675 -x676 -x677 -x678 -x679 -x680 -x681 -x682 -x683 -x684 x685 -x686 -x687 -x688 -x689 -x690 -x691 -x692 -x693
-x694 -x695 -x696 x697 -x698 x699 -x700 -x701 -x702 x703 -x704 -x705 -x706 -x707 -x708 x709 -x710 -x711 -x712 -x713 -x714 -x715 x716 -x717
-x718 -x719 -x720 -x721 x722 -x723 -x724 -x725 -x726 -x727 -x728 -x729 x730 -x731 -x732 x733 -x734 -x735 -x736 -x737 x738 -x739 -x740 -x741
-x742 -x743 x744 -x745 -x746 -x747 -x748 -x749 x750 -x751 x752 -x753 -x754 -x755 -x756