PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark5
Best CPU time to get the best result obtained on this benchmark5.70713
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 5
Optimality of the best value was proved YES
Number of variables1009
Total number of constraints3773
Number of constraints which are clauses3773
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint5
Maximum length of a constraint446
Number of terms in the objective function 1009
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 1009
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 1009
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB12: minisatp 1.0-2-g022594c (complete)3723654OPT5 5.70713 5.70965
npSolver inc (fixed) (complete)3748914OPT5 7.79381 7.80256
npSolver inc-topDown (fixed) (complete)3747318OPT5 10.2194 10.4352
npSolver inc-topdown-quickBound (fixed) (complete)3752106OPT5 10.7144 10.7212
PB07: minisat+ 1.14 (complete)3721432OPT5 11.2063 11.2078
npSolver 1.0 (fixed) (complete)3750510OPT5 11.6382 11.6423
PB07: bsolo 3.0.17 (complete)3734364OPT5 21.5657 21.5696
PB10: pb_cplex 2010-06-29 (complete)3734370OPT5 26.207 13.4619
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3734367OPT5 32.577 32.5832
PB07: Pueblo 1.4 (incomplete)3720221OPT5 36.0335 36.0464
pwbo 2.0 (complete)3703730OPT5 38.3622 19.2642
pwbo 2.02 (complete)3726031OPT5 38.5641 19.3621
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3734373OPT5 39.659 39.6662
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692207OPT5 43.2284 43.2362
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693373OPT5 43.9673 43.9773
SCIP spx SCIP with SoPlex fixed (complete)3691041OPT5 44.1833 44.2015
npSolver 1.0 (complete)3701353OPT5 52.807 52.8078
npSolver inc (complete)3699757OPT5 57.9312 57.9333
wbo 1.7 (complete)3705251OPT5 60.2188 60.2564
wbo 1.72 (complete)3727552OPT5 61.76 61.8288
npSolver inc-topdown-quickBound (complete)3702949OPT5 76.7213 76.7303
npSolver inc-topDown (complete)3698161OPT5 79.085 79.0589
pb2sat 2012-05-19 (complete)3696565OPT5 82.6184 82.6353
pb2satCp2 2012-05-19 (complete)3694969OPT5 96.7003 97.67
clasp 2.0.6-R5325 (opt) (complete)3709209OPT5 163.644 163.671
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3688138OPT5 200.413 106.255
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3688139OPT5 812.341 806.5
PB09: bsolo 3.1 (complete)3734366OPT5 1396.21 1396.45
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3734371OPT5 1408.83 1409.07
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3734369OPT5 1634.54 839.406
PB11: Sat4j Res//CP 2.3.0 (complete)3734372SAT (TO)5 1800.02 933.034
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3734365SAT (TO)6 1800.07 1795.53
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3734368SAT (TO)6 1800.48 1796.24
SAT4J PB specific settings 2.3.2 snapshot (complete)3710805SAT (TO)6 1800.49 1790.36
PB07: PB-clasp 2007-04-10 (complete)3734363SAT (TO)6 1802.12 1802.42
bsolo 3.2 (complete)3708043SAT7 1798.01 1798.31
toysat 2012-05-17 (complete)3706877? (TO) 1800.09 1800.41
toysat 2012-06-01 (complete)3725250? (TO) 1800.1 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 5
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111
-x112 -x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134
-x135 -x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 x152 -x153 -x154 -x155 -x156 -x157
-x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180
-x181 -x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203
-x204 -x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226
x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249
-x250 -x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272
-x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295
-x296 -x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318
-x319 -x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341
-x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364
-x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387
-x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410
-x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433
-x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456
-x457 -x458 -x459 -x460 -x461 -x462 -x463 x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479
-x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502
-x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525
-x526 -x527 -x528 -x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548
-x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571
-x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594
-x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617
-x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627 -x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640
-x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652 -x653 -x654 x655 -x656 -x657 -x658 -x659 -x660 -x661 -x662 -x663
-x664 -x665 -x666 -x667 -x668 -x669 -x670 -x671 -x672 -x673 -x674 -x675 -x676 -x677 -x678 -x679 -x680 -x681 -x682 -x683 -x684 -x685 -x686
-x687 -x688 -x689 -x690 -x691 -x692 -x693 -x694 -x695 -x696 -x697 -x698 -x699 -x700 -x701 -x702 -x703 -x704 -x705 -x706 -x707 -x708 -x709
-x710 -x711 -x712 -x713 -x714 -x715 -x716 -x717 -x718 -x719 -x720 -x721 -x722 -x723 -x724 -x725 -x726 -x727 -x728 -x729 -x730 -x731 -x732
-x733 -x734 -x735 -x736 -x737 -x738 -x739 -x740 -x741 -x742 -x743 -x744 -x745 -x746 -x747 -x748 -x749 -x750 -x751 -x752 -x753 -x754 -x755
-x756 -x757 -x758 -x759 -x760 -x761 -x762 -x763 -x764 -x765 -x766 -x767 -x768 -x769 -x770 -x771 -x772 -x773 -x774 -x775 -x776 -x777 -x778
-x779 -x780 -x781 -x782 -x783 -x784 -x785 -x786 -x787 -x788 -x789 -x790 -x791 -x792 -x793 -x794 -x795 -x796 -x797 -x798 -x799 -x800 -x801
-x802 -x803 -x804 -x805 -x806 -x807 -x808 -x809 -x810 -x811 -x812 -x813 -x814 -x815 -x816 -x817 -x818 -x819 -x820 -x821 -x822 -x823 -x824
-x825 -x826 -x827 -x828 -x829 -x830 -x831 -x832 -x833 -x834 -x835 -x836 -x837 -x838 -x839 -x840 -x841 -x842 -x843 -x844 -x845 -x846 -x847
-x848 -x849 -x850 -x851 -x852 -x853 -x854 -x855 -x856 -x857 -x858 -x859 -x860 -x861 -x862 -x863 -x864 -x865 -x866 -x867 -x868 -x869 -x870
-x871 -x872 -x873 -x874 -x875 -x876 -x877 -x878 -x879 -x880 -x881 -x882 -x883 -x884 -x885 -x886 -x887 -x888 -x889 -x890 -x891 -x892 -x893
-x894 -x895 -x896 -x897 -x898 -x899 -x900 -x901 -x902 -x903 -x904 -x905 -x906 -x907 -x908 -x909 -x910 -x911 -x912 -x913 -x914 -x915 -x916
-x917 -x918 -x919 -x920 -x921 -x922 -x923 -x924 -x925 -x926 -x927 -x928 -x929 -x930 -x931 -x932 -x933 -x934 -x935 -x936 -x937 -x938 -x939
-x940 -x941 -x942 -x943 -x944 -x945 -x946 -x947 -x948 -x949 -x950 -x951 -x952 -x953 -x954 -x955 -x956 -x957 -x958 -x959 -x960 -x961 -x962
-x963 -x964 -x965 -x966 -x967 -x968 -x969 -x970 -x971 -x972 -x973 -x974 -x975 -x976 -x977 -x978 -x979 -x980 -x981 -x982 -x983 -x984 -x985
-x986 -x987 -x988 -x989 -x990 -x991 -x992 -x993 -x994 -x995 -x996 -x997 -x998 -x999 -x1000 -x1001 -x1002 -x1003 -x1004 -x1005 -x1006 -x1007
-x1008 -x1009