PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark-40
Best CPU time to get the best result obtained on this benchmark269.661
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function -40
Optimality of the best value was proved NO
Number of variables760
Total number of constraints41605
Number of constraints which are clauses41605
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint2
Number of terms in the objective function 760
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 760
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 760
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB12: minisatp 1.0-2-g022594c (complete)3723549OPT-40 269.661 269.732
npSolver 1.0 (fixed) (complete)3750405OPT-40 314.252 314.497
npSolver 1.0 (complete)3701248OPT-40 315.324 315.781
npSolver inc (fixed) (complete)3748809OPT-40 318.775 318.871
npSolver inc-topDown (complete)3698056OPT-40 321.642 321.698
npSolver inc (complete)3699652OPT-40 321.643 321.748
npSolver inc-topDown (fixed) (complete)3747213OPT-40 323.913 324.063
pb2sat 2012-05-19 (complete)3696460OPT-40 325.274 325.361
npSolver inc-topdown-quickBound (fixed) (complete)3752001OPT-40 329.041 329.134
npSolver inc-topdown-quickBound (complete)3702844OPT-40 330.65 330.799
pb2satCp2 2012-05-19 (complete)3694864OPT-40 348.642 348.75
PB07: minisat+ 1.14 (complete)3721300SAT (TO)-39 1800.1 1800.41
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3733084SAT-37 1789.89 1790.19
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3733080SAT-37 1794.93 1795.22
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3733086SAT-37 1796.93 1797.24
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693268SAT-37 1796.94 1797.24
SCIP spx SCIP with SoPlex fixed (complete)3690936SAT-37 1796.95 1797.25
pwbo 2.0 (complete)3703625SAT (TO)-37 1800.13 900.437
pwbo 2.02 (complete)3725926SAT (TO)-37 1800.61 900.443
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692102SAT-36 1796.99 1797.29
clasp 2.0.6-R5325 (opt) (complete)3709104SAT (TO)-34 1800.08 1800.51
PB09: bsolo 3.1 (complete)3733079SAT-33 1798.01 1798.47
SAT4J PB specific settings 2.3.2 snapshot (complete)3710700SAT (TO)-33 1800.48 1784.35
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3733082SAT (TO)-33 1800.6 907.661
PB11: Sat4j Res//CP 2.3.0 (complete)3733085SAT (TO)-33 1800.61 921.164
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3733081SAT (TO)-33 1800.75 1797.56
bsolo 3.2 (complete)3707938SAT-32 1798.02 1798.51
PB07: bsolo 3.0.17 (complete)3733077SAT (TO)-32 1800.03 1800.51
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3733078SAT (TO)-32 1800.26 1796.23
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687874SAT (TO)-32 1800.72 955.441
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687875SAT (TO)-28 1800.25 1781.76
PB07: Pueblo 1.4 (incomplete)3720130SAT-12 1783.01 1783.34
wbo 1.72 (complete)3727447? 1799.53 1800.01
wbo 1.7 (complete)3705146? 1799.59 1800
PB07: PB-clasp 2007-04-10 (complete)3733076? (TO) 1471.98 1900.02
toysat 2012-05-17 (complete)3706772? (TO) 1800.01 1800.51
toysat 2012-06-01 (complete)3725145? (TO) 1800.08 1800.62
PB10: pb_cplex 2010-06-29 (complete)3733083? (TO) 1800.33 617.518

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: -40
Solution found:
-x760 -x759 -x758 -x757 -x756 -x755 -x754 -x753 -x752 -x751 -x750 -x749 x748 -x747 -x746 -x745 -x744 -x743 -x742 -x741 -x740 -x739 -x738
-x737 x736 -x735 -x734 -x733 -x732 -x731 -x730 -x729 -x728 -x727 -x726 -x725 -x724 -x723 -x722 -x721 -x720 -x719 -x718 -x717 -x716 -x715
-x714 -x713 -x712 -x711 -x710 x709 -x708 -x707 -x706 -x705 -x704 -x703 -x702 -x701 -x700 -x699 -x698 x697 -x696 -x695 -x694 -x693 -x692
-x691 -x690 -x689 -x688 -x687 -x686 -x685 -x684 -x683 -x682 -x681 -x680 x679 -x678 -x677 -x676 -x675 -x674 -x673 -x672 -x671 -x670 -x669
-x668 -x667 -x666 -x665 -x664 -x663 -x662 -x661 -x660 -x659 -x658 -x657 x656 -x655 -x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646
-x645 -x644 -x643 -x642 -x641 -x640 -x639 -x638 x637 -x636 -x635 -x634 -x633 -x632 -x631 -x630 -x629 -x628 -x627 -x626 -x625 -x624 -x623
-x622 x621 -x620 -x619 -x618 -x617 -x616 -x615 -x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604 -x603 -x602 -x601 -x600
-x599 -x598 -x597 -x596 x595 -x594 -x593 -x592 -x591 -x590 -x589 -x588 -x587 -x586 -x585 -x584 -x583 -x582 -x581 -x580 x579 -x578 -x577
-x576 -x575 -x574 -x573 -x572 -x571 -x570 -x569 -x568 -x567 -x566 -x565 -x564 -x563 -x562 -x561 -x560 -x559 -x558 -x557 -x556 -x555 -x554
-x553 x552 -x551 -x550 -x549 -x548 -x547 -x546 x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532 -x531
-x530 -x529 -x528 -x527 -x526 -x525 -x524 -x523 -x522 -x521 -x520 -x519 -x518 -x517 x516 -x515 -x514 -x513 -x512 -x511 -x510 -x509 -x508
x507 -x506 -x505 -x504 -x503 -x502 -x501 -x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487 -x486 -x485
-x484 -x483 x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467 -x466 -x465 x464 -x463 -x462
-x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 x443 -x442 -x441 -x440 -x439
-x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 -x429 -x428 x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417 x416
-x415 -x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 -x406 -x405 -x404 -x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393
-x392 -x391 -x390 -x389 x388 -x387 -x386 -x385 -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 x372 -x371 -x370
-x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 x352 -x351 -x350 -x349 -x348 -x347
-x346 -x345 -x344 -x343 -x342 -x341 -x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 x325 -x324
-x323 -x322 -x321 -x320 -x319 -x318 -x317 -x316 -x315 -x314 x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 -x303 x302 -x301
-x300 -x299 -x298 -x297 -x296 -x295 -x294 -x293 -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 -x281 x280 -x279 -x278
-x277 -x276 -x275 -x274 -x273 -x272 -x271 -x270 -x269 -x268 -x267 x266 -x265 -x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x255
-x254 -x253 -x252 -x251 -x250 -x249 -x248 -x247 -x246 -x245 -x244 -x243 -x242 -x241 -x240 -x239 -x238 x237 -x236 -x235 -x234 -x233 -x232
-x231 -x230 -x229 -x228 -x227 -x226 -x225 -x224 -x223 -x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 x210 -x209
-x208 -x207 -x206 -x205 -x204 -x203 -x202 x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 x188 -x187 -x186
-x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163
-x162 -x161 -x160 -x159 -x158 -x157 x156 -x155 -x154 -x153 -x152 -x151 -x150 -x149 -x148 -x147 -x146 x145 -x144 -x143 -x142 -x141 -x140
-x139 -x138 -x137 -x136 -x135 -x134 -x133 -x132 -x131 x130 -x129 -x128 -x127 -x126 -x125 -x124 -x123 -x122 -x121 -x120 -x119 -x118 -x117
-x116 -x115 x114 -x113 -x112 -x111 -x110 -x109 -x108 -x107 -x106 -x105 -x104 -x103 -x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 x93 -x92
-x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84 -x83 -x82 -x81 -x80 -x79 -x78 -x77 -x76 x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66 -x65 -x64
-x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 -x53 -x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44 -x43 x42 -x41 -x40 -x39 x38 -x37 -x36
-x35 -x34 -x33 -x32 -x31 -x30 -x29 -x28 -x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 x17 -x16 -x15 -x14 -x13 -x12 -x11 -x10 -x9 -x8 -x7
-x6 -x5 -x4 -x3 -x2 -x1