PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark50
Best CPU time to get the best result obtained on this benchmark1.46878
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 50
Optimality of the best value was proved NO
Number of variables807
Total number of constraints1823
Number of constraints which are clauses1823
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint1
Maximum length of a constraint98
Number of terms in the objective function 807
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 807
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 807
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: pb_cplex 2010-06-29 (complete)3732379OPT50 1.46878 1.14271
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693129OPT50 5.59915 5.60498
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3732380OPT50 8.98763 8.99362
SCIP spx SCIP with SoPlex fixed (complete)3690797OPT50 12.3681 12.3715
SCIP spx E SCIP Exp with SoPlex fixed (complete)3691963OPT50 12.849 12.8574
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3732376OPT50 17.8793 17.8891
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3732382OPT50 24.5583 24.5678
PB07: bsolo 3.0.17 (complete)3732373SAT (TO)50 1800.03 1800.31
PB12: minisatp 1.0-2-g022594c (complete)3723410SAT (TO)50 1800.07 1800.41
bsolo 3.2 (complete)3707799SAT51 1798.03 1798.32
PB09: bsolo 3.1 (complete)3732375SAT51 1798.04 1798.33
PB07: minisat+ 1.14 (complete)3721236SAT (TO)51 1800.1 1800.41
pwbo 2.0 (complete)3703486SAT (TO)52 1800.05 900.327
pwbo 2.02 (complete)3725787SAT (TO)52 1800.45 900.329
PB07: Pueblo 1.4 (incomplete)3720066SAT54 1783.02 1783.37
PB11: Sat4j Res//CP 2.3.0 (complete)3732381SAT (TO)54 1800.66 1095.53
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3732378SAT (TO)55 1800.18 1096.13
clasp 2.0.6-R5325 (opt) (complete)3708965SAT (TO)56 1800.06 1800.41
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687746SAT (TO)56 1800.13 1010.74
PB07: PB-clasp 2007-04-10 (complete)3732372SAT (TO)57 1802.09 1802.52
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687747SAT (TO)60 1800.92 1789.05
SAT4J PB specific settings 2.3.2 snapshot (complete)3710561SAT (TO)68 1800.05 1793.26
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3732377SAT (TO)68 1800.3 1797.44
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3732374SAT (TO)68 1800.49 1794.92
wbo 1.7 (complete)3705007? 1799.39 1800.03
wbo 1.72 (complete)3727308? 1799.51 1800.03
pb2satCp2 2012-05-19 (complete)3694725? (TO) 1800.01 1800.51
toysat 2012-05-17 (complete)3706633? (TO) 1800.02 1800.31
npSolver inc-topdown-quickBound (fixed) (complete)3751862? (TO) 1800.02 1800.41
pb2sat 2012-05-19 (complete)3696321? (TO) 1800.04 1800.72
npSolver inc-topDown (fixed) (complete)3747074? (TO) 1800.04 1800.41
npSolver inc (fixed) (complete)3748670? (TO) 1800.09 1800.41
npSolver 1.0 (fixed) (complete)3750266? (TO) 1800.1 1800.41
npSolver inc (complete)3699513? (TO) 1800.11 1800.41
npSolver 1.0 (complete)3701109? (TO) 1800.12 1800.41
npSolver inc-topDown (complete)3697917? (TO) 1800.12 1800.62
toysat 2012-06-01 (complete)3725006? (TO) 1800.12 1800.41
npSolver inc-topdown-quickBound (complete)3702705? (TO) 1800.12 1800.51

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 50
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111 -x112
-x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135
-x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158
-x159 -x160 -x161 -x162 -x163 -x164 -x165 x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180 -x181
-x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204
-x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227
x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250
-x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273
-x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296
-x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319
-x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342
-x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365
-x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 x386 -x387 -x388
-x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 x405 -x406 -x407 -x408 -x409 -x410 -x411
-x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434
-x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 x457
-x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 x477 -x478 -x479 -x480
x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 x501 -x502 -x503
-x504 x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526
-x527 -x528 -x529 -x530 -x531 -x532 x533 -x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549
-x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572
-x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 x592 -x593 -x594 -x595
-x596 x597 -x598 -x599 -x600 -x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617 -x618
-x619 -x620 -x621 x622 -x623 x624 -x625 -x626 -x627 -x628 x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 x637 x638 -x639 -x640 -x641 -x642
-x643 -x644 x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652 -x653 x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 -x662 x663 -x664 -x665 -x666
-x667 -x668 -x669 -x670 -x671 -x672 -x673 -x674 x675 x676 -x677 -x678 -x679 -x680 -x681 -x682 -x683 -x684 -x685 -x686 -x687 -x688 -x689
-x690 -x691 -x692 -x693 -x694 -x695 -x696 -x697 -x698 -x699 -x700 x701 -x702 -x703 -x704 -x705 -x706 -x707 -x708 -x709 -x710 -x711 -x712
-x713 -x714 -x715 -x716 x717 -x718 -x719 x720 -x721 -x722 -x723 -x724 -x725 -x726 -x727 -x728 -x729 -x730 -x731 -x732 -x733 x734 -x735 x736
-x737 -x738 -x739 -x740 -x741 -x742 -x743 -x744 -x745 -x746 -x747 -x748 x749 -x750 x751 -x752 -x753 -x754 -x755 -x756 -x757 -x758 -x759
-x760 -x761 -x762 -x763 -x764 x765 x766 x767 x768 -x769 -x770 -x771 -x772 -x773 -x774 x775 -x776 -x777 -x778 -x779 -x780 -x781 -x782 -x783
-x784 x785 -x786 -x787 -x788 -x789 -x790 -x791 -x792 x793 -x794 x795 x796 -x797 -x798 -x799 -x800 -x801 -x802 x803 -x804 -x805 -x806 x807