PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark12
Best CPU time to get the best result obtained on this benchmark0.396939
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 12
Optimality of the best value was proved YES
Number of variables464
Total number of constraints845
Number of constraints which are clauses845
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint1
Maximum length of a constraint149
Number of terms in the objective function 464
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 464
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 464
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: pb_cplex 2010-06-29 (complete)3732313OPT12 0.396939 0.401545
PB07: bsolo 3.0.17 (complete)3732307OPT12 1.9927 1.9955
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693127OPT12 4.18736 4.18861
SCIP spx E SCIP Exp with SoPlex fixed (complete)3691961OPT12 4.82627 4.83226
SCIP spx SCIP with SoPlex fixed (complete)3690795OPT12 4.91325 4.91521
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3732316OPT12 10.8743 10.8767
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3732314OPT12 11.9052 11.9083
PB09: bsolo 3.1 (complete)3732309OPT12 13.7619 13.7657
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3732310OPT12 14.1858 14.198
bsolo 3.2 (complete)3707797OPT12 14.2568 14.2644
PB07: Pueblo 1.4 (incomplete)3720060OPT12 80.4038 80.4188
pb2sat 2012-05-19 (complete)3696319OPT12 155.218 155.27
npSolver 1.0 (fixed) (complete)3750264OPT12 187.655 187.698
pb2satCp2 2012-05-19 (complete)3694723OPT12 189.751 190.213
npSolver 1.0 (complete)3701107OPT12 217.442 217.492
npSolver inc (complete)3699511OPT12 246.079 246.323
npSolver inc (fixed) (complete)3748668OPT12 261.878 261.924
pwbo 2.02 (complete)3725785OPT12 297.85 149.028
npSolver inc-topdown-quickBound (complete)3702703OPT12 304.689 304.744
pwbo 2.0 (complete)3703484OPT12 307.593 153.854
npSolver inc-topDown (complete)3697915OPT12 309.829 309.882
PB12: minisatp 1.0-2-g022594c (complete)3723408OPT12 338.185 338.257
npSolver inc-topdown-quickBound (fixed) (complete)3751860OPT12 397.32 397.384
npSolver inc-topDown (fixed) (complete)3747072OPT12 434.177 434.255
PB07: minisat+ 1.14 (complete)3721230OPT12 564.193 564.293
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687734OPT12 1064.07 597.312
PB11: Sat4j Res//CP 2.3.0 (complete)3732315SAT (TO)12 1801.06 1085.06
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3732312SAT (TO)12 1801.39 1069.52
PB07: PB-clasp 2007-04-10 (complete)3732306SAT (TO)13 1802.08 1802.42
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687735SAT (TO)16 1800.01 1789.96
clasp 2.0.6-R5325 (opt) (complete)3708963SAT (TO)17 1800.02 1800.31
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3732308SAT (TO)17 1800.47 1795.62
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3732311SAT (TO)17 1800.86 1795.9
SAT4J PB specific settings 2.3.2 snapshot (complete)3710559SAT (TO)19 1800 1792.35
wbo 1.72 (complete)3727306? 1799.38 1800.02
wbo 1.7 (complete)3705005? 1799.46 1800.01
toysat 2012-05-17 (complete)3706631? (TO) 1800.01 1800.31
toysat 2012-06-01 (complete)3725004? (TO) 1800.11 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 12
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111
-x112 -x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 x131 x132 -x133 -x134
-x135 -x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157
-x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180
-x181 -x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203
-x204 -x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226
-x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249
-x250 -x251 -x252 -x253 x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 x266 -x267 -x268 -x269 -x270 -x271 -x272
-x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295
-x296 -x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318
-x319 x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341
-x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364
-x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387
-x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410
-x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433
-x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456
-x457 -x458 -x459 -x460 -x461 -x462 x463 -x464