PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark68
Best CPU time to get the best result obtained on this benchmark0.149976
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 68
Optimality of the best value was proved YES
Number of variables840
Total number of constraints2526
Number of constraints which are clauses2502
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint35
Number of terms in the objective function 840
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 840
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 840
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: pb_cplex 2010-06-29 (complete)3732137OPT68 0.149976 0.151229
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693188OPT68 0.225965 0.226688
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3732140OPT68 0.263959 0.265259
pwbo 2.02 (complete)3725846OPT68 0.289955 0.14873
wbo 1.72 (complete)3727367OPT68 0.377942 0.380197
wbo 1.7 (complete)3705066OPT68 0.397939 0.398613
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692022OPT68 0.399938 0.399576
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3732138OPT68 0.420935 0.422222
SCIP spx SCIP with SoPlex fixed (complete)3690856OPT68 0.425934 0.427506
pwbo 2.0 (complete)3703545OPT68 0.579911 0.294541
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3732134OPT68 0.699892 0.700256
PB09: bsolo 3.1 (complete)3732133OPT68 1.61175 1.61335
bsolo 3.2 (complete)3707858OPT68 1.63075 1.6315
PB07: Pueblo 1.4 (incomplete)3720044OPT68 1.66974 1.66949
clasp 2.0.6-R5325 (opt) (complete)3709024OPT68 1.82772 1.83091
npSolver inc-topdown-quickBound (complete)3702764OPT68 2.39264 2.39479
npSolver inc-topDown (complete)3697976OPT68 2.42163 2.43295
npSolver inc-topdown-quickBound (fixed) (complete)3751921OPT68 3.90941 3.92554
npSolver inc-topDown (fixed) (complete)3747133OPT68 3.98539 4.11794
SAT4J PB specific settings 2.3.2 snapshot (complete)3710620OPT68 4.35334 3.69986
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687703OPT68 4.5733 3.48464
npSolver inc (fixed) (complete)3748729OPT68 5.13122 5.1443
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3732135OPT68 5.29219 4.63331
npSolver 1.0 (fixed) (complete)3750325OPT68 5.44717 5.5981
pb2satCp2 2012-05-19 (complete)3694784OPT68 6.69798 6.72679
npSolver inc (complete)3699572OPT68 7.32089 7.51236
npSolver 1.0 (complete)3701168OPT68 7.37188 7.51595
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3732132OPT68 7.54285 6.85034
PB11: Sat4j Res//CP 2.3.0 (complete)3732139OPT68 9.91349 5.37795
PB12: minisatp 1.0-2-g022594c (complete)3723469OPT68 10.4654 10.4666
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3732136OPT68 10.9963 7.41282
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687702OPT68 12.3521 6.16246
pb2sat 2012-05-19 (complete)3696380OPT68 13.321 13.5194
PB07: minisat+ 1.14 (complete)3721214OPT68 19.2571 19.2602
PB07: PB-clasp 2007-04-10 (complete)3732130OPT68 25.6441 25.6518
toysat 2012-05-17 (complete)3706692OPT68 67.8597 67.8811
toysat 2012-06-01 (complete)3725065OPT68 68.9505 68.9675
PB07: bsolo 3.0.17 (complete)3732131SAT (TO)68 1800.1 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 68
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 x23 x24 -x25 -x26 x27 -x28 -x29 -x30 x31
x32 -x33 -x34 -x35 -x36 -x37 -x38 x39 -x40 -x41 -x42 x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58 -x59
-x60 -x61 -x62 -x63 -x64 x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 x73 x74 x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86 -x87 -x88
-x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 x105 -x106 -x107 -x108 -x109 -x110 -x111 -x112 -x113
-x114 -x115 x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 x134 -x135 -x136
-x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 x152 x153 -x154 -x155 -x156 -x157 -x158 -x159
-x160 -x161 -x162 -x163 -x164 -x165 x166 -x167 -x168 -x169 -x170 -x171 x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180 x181 -x182 -x183
-x184 -x185 x186 -x187 -x188 -x189 x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 x202 -x203 -x204 x205 -x206 -x207
-x208 x209 -x210 -x211 -x212 x213 -x214 -x215 -x216 -x217 -x218 -x219 x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230 -x231
-x232 -x233 x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254
-x255 -x256 -x257 x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 -x274 -x275 -x276 -x277
-x278 -x279 -x280 -x281 -x282 x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 x292 x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301
-x302 -x303 -x304 x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 x324
-x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 x336 -x337 -x338 x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347
-x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370
-x371 -x372 -x373 -x374 x375 -x376 -x377 -x378 x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393
-x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 x405 -x406 -x407 -x408 -x409 x410 -x411 -x412 -x413 x414 -x415 -x416 -x417
-x418 -x419 x420 -x421 -x422 x423 -x424 -x425 -x426 -x427 x428 -x429 -x430 -x431 x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441
-x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464
x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 x476 -x477 -x478 -x479 -x480 x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488
-x489 -x490 -x491 -x492 x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 x511
-x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 x526 -x527 -x528 -x529 -x530 -x531 -x532 -x533 -x534
-x535 -x536 -x537 -x538 x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557
-x558 x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 x577 x578 -x579 -x580 -x581
-x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603 -x604
-x605 -x606 -x607 -x608 -x609 -x610 x611 -x612 -x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627
-x628 -x629 -x630 -x631 x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 -x645 -x646 x647 -x648 -x649 -x650
-x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 -x662 -x663 x664 -x665 -x666 -x667 -x668 -x669 -x670 -x671 -x672 -x673
-x674 -x675 -x676 -x677 -x678 -x679 -x680 -x681 x682 x683 -x684 -x685 -x686 -x687 -x688 -x689 -x690 -x691 -x692 -x693 -x694 -x695 -x696
-x697 -x698 -x699 -x700 -x701 -x702 -x703 -x704 -x705 -x706 -x707 -x708 -x709 -x710 -x711 -x712 -x713 -x714 -x715 -x716 -x717 -x718 x719
-x720 -x721 -x722 -x723 -x724 -x725 -x726 -x727 -x728 -x729 x730 -x731 -x732 -x733 -x734 -x735 -x736 -x737 -x738 -x739 -x740 -x741 -x742
-x743 -x744 -x745 -x746 -x747 -x748 -x749 -x750 -x751 -x752 -x753 -x754 -x755 -x756 -x757 -x758 -x759 x760 -x761 -x762 -x763 -x764 -x765
-x766 -x767 -x768 -x769 -x770 -x771 -x772 x773 -x774 -x775 -x776 -x777 -x778 -x779 -x780 -x781 -x782 -x783 -x784 -x785 -x786 -x787 -x788
-x789 -x790 -x791 -x792 -x793 -x794 -x795 -x796 -x797 -x798 -x799 -x800 -x801 -x802 -x803 -x804 -x805 -x806 -x807 x808 -x809 -x810 -x811
-x812 -x813 -x814 -x815 -x816 -x817 -x818 -x819 -x820 x821 -x822 -x823 -x824 -x825 -x826 -x827 -x828 -x829 -x830 -x831 -x832 -x833 -x834
-x835 -x836 -x837 -x838 -x839 -x840