PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark62
Best CPU time to get the best result obtained on this benchmark0.067989
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 62
Optimality of the best value was proved YES
Number of variables672
Total number of constraints2028
Number of constraints which are clauses2004
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint28
Number of terms in the objective function 672
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 672
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 672
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.7 (complete)3705058OPT62 0.066989 0.0627891
wbo 1.72 (complete)3727359OPT62 0.067989 0.0625409
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3732127OPT62 0.102983 0.104165
PB10: pb_cplex 2010-06-29 (complete)3732126OPT62 0.107983 0.108863
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3732129OPT62 0.107983 0.109048
pwbo 2.02 (complete)3725838OPT62 0.12698 0.0643071
pwbo 2.0 (complete)3703537OPT62 0.127979 0.0636201
PB09: bsolo 3.1 (complete)3732122OPT62 0.144977 0.145575
bsolo 3.2 (complete)3707850OPT62 0.152975 0.153252
PB07: bsolo 3.0.17 (complete)3732120OPT62 0.236963 0.241079
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3732123OPT62 0.381941 0.382954
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693180OPT62 0.896863 0.898839
SCIP spx SCIP with SoPlex fixed (complete)3690848OPT62 0.988849 0.989916
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692014OPT62 1.05884 1.06009
npSolver inc-topdown-quickBound (complete)3702756OPT62 3.03354 3.03502
npSolver inc-topDown (complete)3697968OPT62 3.06153 3.06861
pb2satCp2 2012-05-19 (complete)3694776OPT62 4.21536 4.21785
npSolver inc-topDown (fixed) (complete)3747125OPT62 4.32534 4.33008
npSolver inc-topdown-quickBound (fixed) (complete)3751913OPT62 4.5783 4.69911
npSolver inc (fixed) (complete)3748721OPT62 6.98994 6.99544
npSolver 1.0 (fixed) (complete)3750317OPT62 7.05193 7.05974
npSolver 1.0 (complete)3701160OPT62 8.91864 8.91819
npSolver inc (complete)3699564OPT62 9.42857 9.7856
pb2sat 2012-05-19 (complete)3696372OPT62 10.1395 10.1545
PB07: Pueblo 1.4 (incomplete)3720043OPT62 10.4034 10.4056
PB12: minisatp 1.0-2-g022594c (complete)3723461OPT62 10.9543 10.9578
PB07: minisat+ 1.14 (complete)3721213OPT62 24.1673 24.1709
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687701OPT62 197.725 196.11
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3732121OPT62 225.733 223.27
SAT4J PB specific settings 2.3.2 snapshot (complete)3710612OPT62 233.528 231.747
clasp 2.0.6-R5325 (opt) (complete)3709016OPT62 324.629 324.682
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687700OPT62 632.552 351.445
PB11: Sat4j Res//CP 2.3.0 (complete)3732128OPT62 892.736 515.606
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3732124OPT62 1024.88 1021.82
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3732125OPT62 1096.49 641.281
PB07: PB-clasp 2007-04-10 (complete)3732119SAT (TO)62 1802.1 1802.42
toysat 2012-06-01 (complete)3725057? (TO) 1800.09 1800.41
toysat 2012-05-17 (complete)3706684? (TO) 1800.1 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 62
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 x10 x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 x34 x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 x43 -x44 -x45 -x46 x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 x55 -x56 -x57 -x58 -x59
-x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 x79 x80 x81 -x82 -x83 -x84 -x85 -x86 -x87
-x88 x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 x100 x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 x111 -x112 x113
-x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136
-x137 -x138 x139 -x140 -x141 x142 -x143 -x144 -x145 -x146 -x147 x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158 -x159 -x160
-x161 x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 x176 -x177 -x178 -x179 -x180 -x181 -x182 -x183
-x184 -x185 -x186 -x187 -x188 -x189 x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 x204 -x205 -x206 x207
-x208 -x209 -x210 x211 -x212 -x213 -x214 x215 -x216 -x217 -x218 -x219 -x220 x221 x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230 -x231
-x232 -x233 x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254
-x255 -x256 -x257 -x258 -x259 x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 x274 x275 -x276 -x277 -x278
-x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 x287 -x288 -x289 x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301
-x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324
-x325 x326 -x327 -x328 -x329 x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347
-x348 x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 x362 x363 x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371
-x372 -x373 x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 x391 -x392 -x393 -x394
-x395 -x396 x397 -x398 -x399 -x400 x401 -x402 -x403 -x404 -x405 x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 x414 -x415 -x416 -x417 -x418
-x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 x428 -x429 -x430 -x431 x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441
-x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464
-x465 -x466 -x467 x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487
-x488 x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510
-x511 -x512 x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526 -x527 -x528 x529 -x530 -x531 -x532 -x533
-x534 -x535 -x536 -x537 -x538 -x539 -x540 x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556
-x557 -x558 -x559 -x560 -x561 -x562 -x563 x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 x577 -x578 -x579
-x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602
-x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625
-x626 x627 -x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648
-x649 -x650 x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 -x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669 -x670 -x671