PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark60
Best CPU time to get the best result obtained on this benchmark0.066989
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 60
Optimality of the best value was proved YES
Number of variables720
Total number of constraints2168
Number of constraints which are clauses2144
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint30
Number of terms in the objective function 720
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 720
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 720
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.72 (complete)3727363OPT60 0.066989 0.065561
wbo 1.7 (complete)3705062OPT60 0.067989 0.064567
PB10: pb_cplex 2010-06-29 (complete)3732093OPT60 0.107983 0.107626
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693184OPT60 0.12698 0.127989
pwbo 2.0 (complete)3703541OPT60 0.127979 0.0656709
pwbo 2.02 (complete)3725842OPT60 0.127979 0.065166
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3732090OPT60 0.160975 0.161842
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3732096OPT60 0.203968 0.204923
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692018OPT60 0.220965 0.221922
SCIP spx SCIP with SoPlex fixed (complete)3690852OPT60 0.223965 0.225077
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3732094OPT60 0.261959 0.263583
PB07: bsolo 3.0.17 (complete)3732087OPT60 1.25781 1.26656
pb2sat 2012-05-19 (complete)3696376OPT60 2.11468 2.15902
npSolver inc (complete)3699568OPT60 2.6056 2.61394
npSolver 1.0 (complete)3701164OPT60 2.67659 2.67494
npSolver inc (fixed) (complete)3748725OPT60 4.83027 4.83241
npSolver 1.0 (fixed) (complete)3750321OPT60 4.96824 5.14644
npSolver inc-topDown (complete)3697972OPT60 5.41318 5.42358
pb2satCp2 2012-05-19 (complete)3694780OPT60 5.43017 5.45446
npSolver inc-topdown-quickBound (complete)3702760OPT60 5.44217 5.44666
npSolver inc-topdown-quickBound (fixed) (complete)3751917OPT60 6.48701 6.59722
npSolver inc-topDown (fixed) (complete)3747129OPT60 6.68798 6.69985
bsolo 3.2 (complete)3707854OPT60 12.0542 12.0572
PB12: minisatp 1.0-2-g022594c (complete)3723465OPT60 13.8209 13.8236
PB07: minisat+ 1.14 (complete)3721210OPT60 16.2475 16.2506
PB07: Pueblo 1.4 (incomplete)3720040OPT60 30.9963 31.0025
PB09: bsolo 3.1 (complete)3732089OPT60 39.531 39.5376
clasp 2.0.6-R5325 (opt) (complete)3709020OPT60 43.1204 43.1285
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687695OPT60 50.1954 48.9477
SAT4J PB specific settings 2.3.2 snapshot (complete)3710616OPT60 85.0611 83.4415
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3732091OPT60 157.41 156.736
PB11: Sat4j Res//CP 2.3.0 (complete)3732095OPT60 208.763 115
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687694OPT60 251.928 143.982
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3732092OPT60 256.335 140.358
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3732088OPT60 293.128 292.385
PB07: PB-clasp 2007-04-10 (complete)3732086OPT60 1067.78 1068.1
toysat 2012-05-17 (complete)3706688? (TO) 1800.1 1800.41
toysat 2012-06-01 (complete)3725061? (TO) 1800.11 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 60
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 x36 -x37 -x38 -x39 x40 -x41 -x42 -x43 x44 -x45 -x46 -x47 x48 x49 x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58 -x59
-x60 -x61 -x62 x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 x73 x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86 -x87
-x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 x107 x108 -x109 -x110 -x111 -x112
-x113 -x114 -x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 x127 x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135
-x136 -x137 -x138 -x139 -x140 x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 x149 x150 x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158 -x159
-x160 -x161 x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180 -x181 -x182
-x183 -x184 -x185 x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 x201 -x202 -x203 -x204 -x205
-x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228
-x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 x238 -x239 -x240 x241 -x242 -x243 -x244 x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252
-x253 x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 x268 -x269 -x270 -x271 -x272 -x273 -x274 -x275
-x276 -x277 -x278 -x279 -x280 x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298
-x299 x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321
-x322 -x323 -x324 -x325 x326 -x327 -x328 -x329 x330 -x331 -x332 -x333 x334 -x335 -x336 -x337 -x338 -x339 x340 x341 -x342 -x343 -x344 -x345
-x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 x355 -x356 -x357 -x358 x359 -x360 -x361 -x362 -x363 -x364 -x365 x366 -x367 -x368 -x369
-x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392
-x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415
-x416 -x417 -x418 x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438
-x439 -x440 -x441 -x442 x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461
-x462 x463 x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484
-x485 -x486 -x487 x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 x502 -x503 -x504 -x505 -x506 -x507
-x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 x523 -x524 -x525 -x526 x527 -x528 -x529 -x530
-x531 -x532 -x533 x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 x544 -x545 -x546 x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554
-x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577
x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600
-x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623
-x624 -x625 -x626 -x627 -x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 x640 -x641 -x642 -x643 x644 -x645 -x646
-x647 -x648 -x649 -x650 -x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669
-x670 -x671 -x672 -x673 -x674 x675 -x676 -x677 -x678 -x679 -x680 -x681 -x682 -x683 -x684 -x685 -x686 -x687 -x688 -x689 -x690 -x691 -x692
-x693 -x694 -x695 -x696 -x697 -x698 -x699 -x700 -x701 -x702 -x703 -x704 -x705 x706 -x707 -x708 -x709 -x710 -x711 -x712 -x713 -x714 -x715
-x716 -x717 -x718 -x719 -x720