PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark62
Best CPU time to get the best result obtained on this benchmark0.065989
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 62
Optimality of the best value was proved YES
Number of variables648
Total number of constraints1954
Number of constraints which are clauses1930
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint27
Number of terms in the objective function 648
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 648
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 648
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.72 (complete)3727361OPT62 0.065989 0.0637679
wbo 1.7 (complete)3705060OPT62 0.065989 0.0621961
PB10: pb_cplex 2010-06-29 (complete)3732082OPT62 0.106982 0.111545
pwbo 2.0 (complete)3703539OPT62 0.12698 0.0892381
pwbo 2.02 (complete)3725840OPT62 0.127979 0.0652921
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693182OPT62 0.161974 0.162958
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3732083OPT62 0.212967 0.215498
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3732079OPT62 0.216966 0.218346
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692016OPT62 0.261959 0.267638
SCIP spx SCIP with SoPlex fixed (complete)3690850OPT62 0.262959 0.263869
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3732085OPT62 0.270958 0.273518
npSolver inc (fixed) (complete)3748723OPT62 7.67083 7.68271
npSolver 1.0 (fixed) (complete)3750319OPT62 7.77682 7.77744
npSolver inc-topDown (fixed) (complete)3747127OPT62 9.2196 9.42335
npSolver inc-topdown-quickBound (fixed) (complete)3751915OPT62 9.35858 9.37261
PB07: Pueblo 1.4 (incomplete)3720039OPT62 12.991 12.9965
npSolver inc-topdown-quickBound (complete)3702758OPT62 14.4918 14.4975
npSolver inc-topDown (complete)3697970OPT62 15.1237 15.1436
pb2sat 2012-05-19 (complete)3696374OPT62 22.3786 22.3937
clasp 2.0.6-R5325 (opt) (complete)3709018OPT62 23.8944 23.8994
npSolver inc (complete)3699566OPT62 24.8512 25.0183
npSolver 1.0 (complete)3701162OPT62 24.9652 24.9596
pb2satCp2 2012-05-19 (complete)3694778OPT62 25.2502 25.5465
PB12: minisatp 1.0-2-g022594c (complete)3723463OPT62 42.5745 42.5879
SAT4J PB specific settings 2.3.2 snapshot (complete)3710614OPT62 51.8161 50.6283
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687693OPT62 60.0839 58.34
PB07: minisat+ 1.14 (complete)3721209OPT62 66.8588 66.8698
bsolo 3.2 (complete)3707852OPT62 86.4749 86.4886
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3732080OPT62 126.13 125.504
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687692OPT62 158.08 87.929
PB11: Sat4j Res//CP 2.3.0 (complete)3732084OPT62 172.818 94.9661
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3732081OPT62 257.884 144.824
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3732077OPT62 272.99 272.32
PB07: bsolo 3.0.17 (complete)3732076OPT62 594.328 594.439
PB07: PB-clasp 2007-04-10 (complete)3732075OPT62 692.284 692.454
PB09: bsolo 3.1 (complete)3732078OPT62 957.988 958.137
toysat 2012-05-17 (complete)3706686OPT62 1215.32 1215.53
toysat 2012-06-01 (complete)3725059OPT62 1226.94 1227.19

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 62
Solution found:
-x1 -x2 -x3 -x4 -x5 x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 x34 x35 -x36 -x37 -x38 x39 -x40 -x41 -x42 x43 -x44 -x45 -x46 x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58 -x59
-x60 -x61 -x62 x63 -x64 -x65 -x66 x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 x84 -x85 -x86 -x87
-x88 -x89 -x90 -x91 x92 -x93 -x94 -x95 x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 x104 -x105 -x106 -x107 -x108 -x109 x110 -x111 -x112 -x113
x114 -x115 -x116 -x117 -x118 x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 x127 x128 -x129 -x130 -x131 -x132 x133 -x134 -x135 -x136 x137
-x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 x154 -x155 -x156 -x157 -x158 -x159 -x160
-x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 x178 -x179 -x180 -x181 -x182 -x183
-x184 x185 -x186 -x187 -x188 x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 -x206 -x207
-x208 -x209 x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 -x228 -x229 -x230
-x231 -x232 -x233 x234 -x235 -x236 -x237 x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 x247 -x248 -x249 -x250 -x251 -x252 -x253 -x254
-x255 -x256 x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 -x274 -x275 -x276 -x277
-x278 -x279 -x280 -x281 -x282 -x283 -x284 x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 x295 -x296 -x297 -x298 -x299 -x300
-x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323
-x324 -x325 -x326 -x327 x328 -x329 -x330 -x331 x332 -x333 -x334 -x335 x336 x337 x338 x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347
-x348 -x349 -x350 -x351 x352 -x353 -x354 -x355 x356 -x357 -x358 -x359 x360 x361 x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371
-x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 x389 -x390 -x391 -x392 -x393 -x394
-x395 -x396 -x397 x398 -x399 -x400 -x401 -x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417
-x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 x430 -x431 -x432 -x433 -x434 -x435 x436 x437 x438 -x439 -x440 -x441
-x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 x457 x458 -x459 -x460 -x461 x462 -x463 -x464 -x465
-x466 -x467 -x468 -x469 -x470 x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 x488
-x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511
-x512 -x513 -x514 -x515 -x516 -x517 x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526 -x527 -x528 -x529 -x530 x531 -x532 -x533 -x534
-x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557
-x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 x573 -x574 -x575 -x576 -x577 -x578 x579 -x580
-x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603
-x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 x622 -x623 -x624 -x625 -x626
-x627 -x628 -x629 -x630 -x631 -x632 x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648