PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark64
Best CPU time to get the best result obtained on this benchmark0.065989
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 64
Optimality of the best value was proved YES
Number of variables648
Total number of constraints1952
Number of constraints which are clauses1928
Number of constraints which are cardinality constraints (but not clauses)24
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint27
Number of terms in the objective function 648
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 648
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 3
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 648
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
wbo 1.72 (complete)3727360OPT64 0.065989 0.062538
wbo 1.7 (complete)3705059OPT64 0.066989 0.0630601
PB10: pb_cplex 2010-06-29 (complete)3732071OPT64 0.12598 0.126756
pwbo 2.02 (complete)3725839OPT64 0.126979 0.0637121
pwbo 2.0 (complete)3703538OPT64 0.127979 0.0640369
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3732068OPT64 0.335948 0.33745
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693181OPT64 0.466928 0.469438
SCIP spx SCIP with SoPlex fixed (complete)3690849OPT64 0.534918 0.536081
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692015OPT64 0.635903 0.63727
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3732074OPT64 0.691894 0.692702
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3732072OPT64 1.07684 1.07756
npSolver inc-topDown (fixed) (complete)3747126OPT64 5.06723 5.07765
npSolver inc-topdown-quickBound (fixed) (complete)3751914OPT64 5.20321 5.21292
npSolver inc-topdown-quickBound (complete)3702757OPT64 6.51001 6.51235
npSolver inc (complete)3699565OPT64 6.62699 6.63153
npSolver 1.0 (complete)3701161OPT64 6.77597 6.77601
npSolver inc-topDown (complete)3697969OPT64 6.82696 6.8373
npSolver inc (fixed) (complete)3748722OPT64 6.93994 6.954
npSolver 1.0 (fixed) (complete)3750318OPT64 7.07492 7.08149
pb2sat 2012-05-19 (complete)3696373OPT64 9.15861 9.16197
pb2satCp2 2012-05-19 (complete)3694777OPT64 11.8672 11.8812
PB12: minisatp 1.0-2-g022594c (complete)3723462OPT64 16.2185 16.2288
PB07: Pueblo 1.4 (incomplete)3720038OPT64 26.8599 26.8686
clasp 2.0.6-R5325 (opt) (complete)3709017OPT64 27.0909 27.0956
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687691OPT64 43.4564 42.4721
SAT4J PB specific settings 2.3.2 snapshot (complete)3710613OPT64 63.4434 62.0612
PB07: minisat+ 1.14 (complete)3721208OPT64 63.8783 63.8979
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687690OPT64 133.895 73.7588
bsolo 3.2 (complete)3707851OPT64 136.795 136.817
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3732070OPT64 155.382 84.4792
PB09: bsolo 3.1 (complete)3732067OPT64 156.172 156.199
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3732069OPT64 158.21 157.606
PB11: Sat4j Res//CP 2.3.0 (complete)3732073OPT64 171.539 93.4603
PB07: bsolo 3.0.17 (complete)3732065OPT64 271.14 271.187
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3732066OPT64 338.45 337.69
PB07: PB-clasp 2007-04-10 (complete)3732064OPT64 387.758 387.849
toysat 2012-05-17 (complete)3706685OPT64 677.882 678
toysat 2012-06-01 (complete)3725058OPT64 682.207 682.328

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 64
Solution found:
x1 x2 x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 x13 -x14 -x15 -x16 x17 -x18 -x19 -x20 x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30 x31
-x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 x55 -x56 -x57 -x58 x59
-x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 x70 -x71 -x72 -x73 -x74 -x75 x76 -x77 -x78 -x79 x80 -x81 -x82 -x83 -x84 x85 -x86 -x87 -x88
-x89 x90 -x91 -x92 -x93 -x94 x95 -x96 -x97 -x98 -x99 x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111 -x112 x113 -x114
-x115 -x116 x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136 -x137
-x138 -x139 -x140 -x141 -x142 x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 x155 x156 -x157 -x158 -x159 -x160 -x161
-x162 -x163 -x164 -x165 -x166 -x167 x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 x180 -x181 -x182 -x183 x184 -x185
-x186 -x187 x188 -x189 -x190 -x191 x192 -x193 x194 x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 x206 -x207 -x208 -x209
x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 x228 -x229 -x230 -x231 -x232
-x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 x247 x248 -x249 -x250 -x251 -x252 -x253 -x254 -x255
-x256 -x257 -x258 x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 x272 x273 -x274 -x275 -x276 -x277 -x278 -x279
-x280 -x281 -x282 -x283 x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295 -x296 -x297 -x298 -x299 -x300 -x301 -x302
-x303 -x304 -x305 x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 -x325
-x326 -x327 -x328 -x329 -x330 x331 -x332 -x333 -x334 x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 x347 -x348 -x349
-x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 x358 -x359 -x360 x361 x362 -x363 -x364 -x365 x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373
-x374 x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 x388 x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397
-x398 -x399 -x400 -x401 -x402 x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420
-x421 -x422 -x423 x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434 x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443
-x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456 -x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466
-x467 -x468 x469 -x470 -x471 -x472 x473 -x474 -x475 -x476 x477 -x478 -x479 -x480 x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490
-x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 x513
-x514 -x515 -x516 -x517 -x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525 -x526 -x527 x528 -x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536
x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 x548 -x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 x557 -x558 -x559 -x560
-x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583
-x584 -x585 x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603 -x604 x605 -x606
-x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627 -x628 -x629
-x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 x640 -x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648