PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark4822
Best CPU time to get the best result obtained on this benchmark0.235963
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 4822
Optimality of the best value was proved YES
Number of variables771
Total number of constraints1951
Number of constraints which are clauses1949
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints2
Minimum length of a constraint1
Maximum length of a constraint42
Number of terms in the objective function 771
Biggest coefficient in the objective function 61
Number of bits for the biggest coefficient in the objective function 6
Sum of the numbers in the objective function 33355
Number of bits of the sum of numbers in the objective function 16
Biggest number in a constraint 61
Number of bits of the biggest number in a constraint 6
Biggest sum of numbers in a constraint 33355
Number of bits of the biggest sum of numbers16
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: pb_cplex 2010-06-29 (complete)3732005OPT4822 0.235963 0.241157
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3732008OPT4822 1.46278 1.46647
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3732002OPT4822 1.82772 1.82893
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3732006OPT4822 2.57361 2.5761
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693191OPT4822 3.23351 3.23573
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692025OPT4822 3.64145 3.64883
SCIP spx SCIP with SoPlex fixed (complete)3690859OPT4822 3.77243 3.7739
PB07: bsolo 3.0.17 (complete)3731999OPT4822 57.6952 57.7101
bsolo 3.2 (complete)3707861SAT5427 1798.01 1798.3
PB09: bsolo 3.1 (complete)3732001SAT5435 1798 1798.3
PB07: Pueblo 1.4 (incomplete)3720032SAT5610 1783 1783.28
clasp 2.0.6-R5325 (opt) (complete)3709027SAT (TO)5669 1800.02 1800.31
pwbo 2.02 (complete)3725849SAT (TO)5762 1800.13 900.32
pwbo 2.0 (complete)3703548SAT (TO)5819 1800.11 900.316
PB11: Sat4j Res//CP 2.3.0 (complete)3732007SAT (TO)5929 1800.99 1096.75
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3732004SAT (TO)6096 1800.17 1072.59
PB07: minisat+ 1.14 (complete)3721202SAT (TO)6251 1800.06 1800.53
PB12: minisatp 1.0-2-g022594c (complete)3723472SAT (TO)6287 1800.05 1800.62
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687678SAT (TO)6744 1800.46 1020.74
SAT4J PB specific settings 2.3.2 snapshot (complete)3710623SAT (TO)6912 1659.74 1900.05
PB07: PB-clasp 2007-04-10 (complete)3731998SAT (TO)6921 1800.16 1800.65
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3732003SAT6956 848.546 843.096
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687679SAT (TO)6956 1800.05 1787.96
wbo 1.72 (complete)3727370? 1799.6 1800
wbo 1.7 (complete)3705069? 1799.93 1800.01
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3732000? (exit code) 539.9 533.046
pb2satCp2 2012-05-19 (complete)3694787? (TO) 1800.01 1800.41
npSolver 1.0 (complete)3701171? (TO) 1800.03 1800.41
npSolver inc (complete)3699575? (TO) 1800.03 1800.41
npSolver 1.0 (fixed) (complete)3750328? (TO) 1800.06 1800.41
npSolver inc-topDown (fixed) (complete)3747136? (TO) 1800.06 1800.41
npSolver inc (fixed) (complete)3748732? (TO) 1800.06 1800.41
toysat 2012-06-01 (complete)3725068? (TO) 1800.07 1800.41
toysat 2012-05-17 (complete)3706695? (TO) 1800.08 1800.41
npSolver inc-topdown-quickBound (complete)3702767? (TO) 1800.09 1800.41
npSolver inc-topDown (complete)3697979? (TO) 1800.09 1800.41
npSolver inc-topdown-quickBound (fixed) (complete)3751924? (TO) 1800.12 1800.41
pb2sat 2012-05-19 (complete)3696383? (TO) 1800.13 1800.51

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 4822
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 x7 x8 x9 x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 x43 x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 x55 x56 x57 x58 -x59
-x60 -x61 x62 -x63 -x64 -x65 x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86 x87 -x88
-x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 x101 -x102 x103 -x104 x105 -x106 -x107 -x108 -x109 -x110 -x111 -x112 -x113
-x114 -x115 -x116 x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 x132 -x133 -x134 -x135 -x136
-x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158 -x159
-x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 -x180 -x181 -x182
-x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205
-x206 -x207 -x208 -x209 -x210 -x211 -x212 x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 x222 x223 -x224 x225 x226 x227 x228 -x229
-x230 -x231 x232 -x233 -x234 x235 -x236 x237 -x238 x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249 -x250 -x251 -x252 -x253
-x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272 -x273 -x274 -x275 -x276
-x277 -x278 -x279 -x280 -x281 -x282 -x283 x284 x285 x286 x287 x288 x289 x290 x291 x292 x293 x294 x295 x296 -x297 -x298 -x299 x300 x301 -x302
x303 x304 -x305 x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 -x320 -x321 -x322 -x323 -x324 -x325 -x326
-x327 -x328 -x329 -x330 -x331 -x332 -x333 x334 -x335 -x336 x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349
-x350 x351 -x352 -x353 x354 -x355 -x356 -x357 -x358 -x359 -x360 x361 -x362 -x363 -x364 -x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373
-x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 x383 x384 x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397
-x398 -x399 -x400 -x401 -x402 x403 -x404 -x405 -x406 -x407 -x408 -x409 x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420
-x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 x441 -x442 -x443
-x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 x456 -x457 -x458 -x459 x460 -x461 -x462 -x463 x464 x465 -x466 -x467
-x468 -x469 x470 x471 -x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490
-x491 -x492 -x493 -x494 -x495 -x496 -x497 x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513
-x514 -x515 -x516 -x517 -x518 x519 x520 -x521 x522 x523 x524 x525 -x526 -x527 -x528 -x529 -x530 -x531 x532 -x533 -x534 -x535 x536 x537 -x538
-x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548 -x549 x550 x551 x552 -x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562
-x563 -x564 -x565 -x566 -x567 -x568 x569 -x570 -x571 -x572 -x573 -x574 -x575 -x576 -x577 x578 -x579 -x580 -x581 -x582 -x583 -x584 x585 -x586
-x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 -x599 -x600 -x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609
-x610 x611 -x612 -x613 -x614 x615 -x616 -x617 -x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627 x628 -x629 -x630 -x631 -x632 -x633
x634 -x635 -x636 -x637 -x638 -x639 -x640 -x641 -x642 x643 -x644 x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652 -x653 -x654 -x655 x656 x657
-x658 -x659 -x660 -x661 x662 -x663 -x664 -x665 -x666 -x667 -x668 -x669 -x670 -x671 -x672 -x673 -x674 -x675 -x676 x677 -x678 -x679 x680 -x681
-x682 -x683 -x684 -x685 -x686 -x687 -x688 -x689 -x690 x691 -x692 -x693 -x694 -x695 x696 -x697 -x698 -x699 -x700 -x701 -x702 -x703 -x704
-x705 -x706 -x707 -x708 -x709 -x710 -x711 -x712 x713 -x714 -x715 -x716 -x717 -x718 -x719 -x720 -x721 -x722 -x723 -x724 x725 -x726 -x727
-x728 -x729 -x730 -x731 -x732 -x733 -x734 -x735 -x736 -x737 -x738 -x739 -x740 -x741 -x742 -x743 -x744 -x745 -x746 -x747 -x748 -x749 x750
x751 -x752 x753 x754 x755 x756 x757 -x758 -x759 x760 x761 -x762 -x763 -x764 -x765 -x766 -x767 -x768 -x769 x770 -x771