PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark4517
Best CPU time to get the best result obtained on this benchmark0.174972
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 4517
Optimality of the best value was proved YES
Number of variables651
Total number of constraints1658
Number of constraints which are clauses1656
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints2
Minimum length of a constraint1
Maximum length of a constraint42
Number of terms in the objective function 651
Biggest coefficient in the objective function 61
Number of bits for the biggest coefficient in the objective function 6
Sum of the numbers in the objective function 28138
Number of bits of the sum of numbers in the objective function 15
Biggest number in a constraint 61
Number of bits of the biggest number in a constraint 6
Biggest sum of numbers in a constraint 28138
Number of bits of the biggest sum of numbers15
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
PB10: pb_cplex 2010-06-29 (complete)3731994OPT4517 0.174972 0.17522
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3731995OPT4517 1.3218 1.32354
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692023OPT4517 1.42178 1.42273
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693189OPT4517 1.44678 1.44874
SCIP spx SCIP with SoPlex fixed (complete)3690857OPT4517 1.50477 1.50648
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3731991OPT4517 1.9407 1.94149
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3731997OPT4517 2.68459 2.6866
PB07: bsolo 3.0.17 (complete)3731988OPT4517 75.8535 75.8643
PB09: bsolo 3.1 (complete)3731990SAT4738 1798 1798.31
bsolo 3.2 (complete)3707859SAT4742 1798 1798.3
PB12: minisatp 1.0-2-g022594c (complete)3723470SAT (TO)4978 1800.1 1800.62
pwbo 2.02 (complete)3725847SAT (TO)5048 1800.1 900.322
PB07: minisat+ 1.14 (complete)3721201SAT (TO)5105 1800.1 1800.51
clasp 2.0.6-R5325 (opt) (complete)3709025SAT (TO)5118 1800.02 1800.31
pwbo 2.0 (complete)3703546SAT (TO)5147 1800.09 900.325
PB07: Pueblo 1.4 (incomplete)3720031SAT5274 1783 1783.28
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3731993SAT (TO)5301 1800.01 1028.34
PB11: Sat4j Res//CP 2.3.0 (complete)3731996SAT (TO)5352 1800.59 1032.14
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687676SAT (TO)5616 1800.56 964.329
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687677SAT (TO)5987 1800.85 1789.95
SAT4J PB specific settings 2.3.2 snapshot (complete)3710621SAT (TO)6200 1800.04 1789.95
PB07: PB-clasp 2007-04-10 (complete)3731987SAT (TO)7054 1802.06 1802.62
wbo 1.72 (complete)3727368? 1799.59 1800.01
wbo 1.7 (complete)3705067? 1799.9 1800.01
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3731989? (exit code) 261.16 256.17
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3731992? (exit code) 711.8 707.325
toysat 2012-05-17 (complete)3706693? (TO) 1800.02 1800.31
pb2satCp2 2012-05-19 (complete)3694785? (TO) 1800.03 1800.41
npSolver inc (fixed) (complete)3748730? (TO) 1800.06 1800.41
npSolver inc-topDown (fixed) (complete)3747134? (TO) 1800.07 1800.51
npSolver 1.0 (fixed) (complete)3750326? (TO) 1800.07 1800.41
npSolver inc (complete)3699573? (TO) 1800.07 1800.41
pb2sat 2012-05-19 (complete)3696381? (TO) 1800.07 1800.51
npSolver inc-topDown (complete)3697977? (TO) 1800.07 1800.41
npSolver 1.0 (complete)3701169? (TO) 1800.08 1800.51
toysat 2012-06-01 (complete)3725066? (TO) 1800.09 1800.51
npSolver inc-topdown-quickBound (fixed) (complete)3751922? (TO) 1800.11 1800.41
npSolver inc-topdown-quickBound (complete)3702765? (TO) 1800.12 1800.41

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 4517
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 x7 x8 -x9 x10 -x11 -x12 -x13 -x14 x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 x23 -x24 -x25 x26 -x27 -x28 -x29 -x30 x31
x32 x33 -x34 x35 -x36 x37 -x38 x39 -x40 -x41 x42 -x43 -x44 -x45 -x46 -x47 -x48 x49 -x50 -x51 -x52 x53 -x54 -x55 -x56 -x57 -x58 -x59 -x60
-x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86 -x87 -x88
-x89 -x90 -x91 -x92 x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 x111 x112 -x113 -x114
-x115 -x116 -x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134 x135 -x136 -x137
-x138 -x139 x140 x141 x142 -x143 -x144 -x145 -x146 x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157 -x158 x159 -x160 -x161
-x162 -x163 x164 -x165 x166 x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 x175 -x176 -x177 x178 x179 -x180 x181 -x182 x183 x184 x185 x186
x187 x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203 -x204 -x205 x206 -x207 -x208 -x209 -x210
-x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226 -x227 x228 -x229 -x230 -x231 -x232 -x233
-x234 x235 -x236 -x237 -x238 -x239 x240 x241 -x242 -x243 -x244 -x245 -x246 x247 x248 -x249 -x250 x251 x252 x253 -x254 -x255 x256 -x257 -x258
-x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 x267 -x268 -x269 -x270 -x271 x272 x273 -x274 -x275 -x276 -x277 -x278 -x279 x280 -x281 -x282
-x283 x284 x285 x286 x287 -x288 -x289 x290 -x291 -x292 -x293 -x294 -x295 x296 x297 x298 x299 -x300 x301 -x302 x303 -x304 -x305 -x306 -x307
-x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318 -x319 x320 -x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330
-x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349 x350 -x351 -x352 -x353
-x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364 x365 -x366 -x367 x368 -x369 x370 -x371 -x372 -x373 x374 -x375 x376 x377
x378 x379 -x380 -x381 -x382 -x383 -x384 -x385 -x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400
-x401 -x402 x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410 -x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 x422 -x423
-x424 -x425 -x426 -x427 -x428 -x429 x430 -x431 x432 -x433 -x434 -x435 -x436 x437 -x438 -x439 -x440 -x441 x442 -x443 -x444 -x445 -x446 -x447
-x448 -x449 -x450 -x451 x452 -x453 -x454 -x455 -x456 x457 x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466 -x467 x468 -x469 -x470 -x471
-x472 -x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 -x482 -x483 x484 -x485 x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 -x494 x495
x496 -x497 x498 -x499 -x500 -x501 -x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 x515 -x516 -x517 -x518 -x519
-x520 -x521 -x522 -x523 -x524 -x525 -x526 -x527 -x528 -x529 -x530 -x531 -x532 -x533 -x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542
-x543 -x544 -x545 -x546 -x547 -x548 -x549 -x550 -x551 x552 -x553 -x554 -x555 -x556 -x557 -x558 x559 -x560 -x561 -x562 -x563 -x564 -x565
-x566 -x567 -x568 -x569 -x570 -x571 -x572 -x573 -x574 -x575 x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583 -x584 -x585 -x586 -x587 -x588
x589 -x590 -x591 -x592 -x593 -x594 -x595 -x596 -x597 -x598 x599 -x600 -x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611
-x612 -x613 -x614 -x615 -x616 -x617 x618 -x619 x620 -x621 -x622 -x623 -x624 -x625 -x626 x627 -x628 -x629 -x630 x631 x632 x633 -x634 -x635
x636 x637 -x638 -x639 -x640 -x641 -x642 -x643 -x644 x645 x646 x647 -x648 -x649 x650 -x651