PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark23954
Best CPU time to get the best result obtained on this benchmark1800.02
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 24674
Optimality of the best value was proved NO
Number of variables540
Total number of constraints4476
Number of constraints which are clauses2532
Number of constraints which are cardinality constraints (but not clauses)264
Number of constraints which are nor clauses,nor cardinality constraints1680
Minimum length of a constraint2
Maximum length of a constraint20
Number of terms in the objective function 180
Biggest coefficient in the objective function 1380
Number of bits for the biggest coefficient in the objective function 11
Sum of the numbers in the objective function 116904
Number of bits of the sum of numbers in the objective function 17
Biggest number in a constraint 1380
Number of bits of the biggest number in a constraint 11
Biggest sum of numbers in a constraint 116904
Number of bits of the biggest sum of numbers17
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
clasp 2.0.6-R5325 (opt) (complete)3709041SAT (TO)23954 1800.02 1800.31
pwbo 2.0 (complete)3703562SAT (TO)24310 1800.54 900.321
SAT4J PB specific settings 2.3.2 snapshot (complete)3710637SAT (TO)24415 1800.03 1795.16
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3731916SAT (TO)24491 1800.01 925.338
PB07: Pueblo 1.4 (incomplete)3720024SAT24674 1783.01 1783.29
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687662SAT (TO)24720 1800.05 926.259
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687663SAT (TO)24892 1800.08 1796.15
bsolo 3.2 (complete)3707875SAT24973 1798 1798.38
PB07: PB-clasp 2007-04-10 (complete)3731910SAT (TO)25011 1800.1 1800.63
PB11: Sat4j Res//CP 2.3.0 (complete)3731919SAT (TO)25049 1800.18 939.846
pwbo 2.02 (complete)3725863SAT (TO)25084 1800.04 900.236
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3731915SAT (TO)25174 1800.03 1793.88
PB07: bsolo 3.0.17 (complete)3731911SAT (TO)25177 1800.04 1800.41
PB12: minisatp 1.0-2-g022594c (complete)3723486SAT (TO)25338 1800.08 1800.41
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3731912SAT (TO)25341 1800.38 1793.62
PB07: minisat+ 1.14 (complete)3721194SAT (TO)25361 1800.08 1800.41
PB09: bsolo 3.1 (complete)3731913SAT25836 1798.02 1798.39
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3731920SAT25981 1796.77 1797.07
SCIP spx standard SCIP with SoPlex standard fixed (complete)3693205SAT26108 1796.75 1797.05
SCIP spx E SCIP Exp with SoPlex fixed (complete)3692039SAT26263 1796.76 1797.05
SCIP spx SCIP with SoPlex fixed (complete)3690873SAT26854 1796.75 1797.05
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3731914SAT26962 1798.19 1798.48
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3731918SAT27108 1789.77 1790.05
wbo 1.7 (complete)3705083? 1799.57 1800.01
wbo 1.72 (complete)3727384? 1799.84 1800
npSolver inc-topdown-quickBound (fixed) (complete)3751938? (TO) 1800.06 1800.41
npSolver inc-topDown (fixed) (complete)3747150? (TO) 1800.06 1800.41
npSolver inc-topDown (complete)3697993? (TO) 1800.07 1801.32
PB10: pb_cplex 2010-06-29 (complete)3731917? (TO) 1800.08 510.117
npSolver inc (complete)3699589? (TO) 1800.09 1800.41
toysat 2012-05-17 (complete)3706709? (TO) 1800.1 1800.41
toysat 2012-06-01 (complete)3725082? (TO) 1800.1 1800.41
pb2sat 2012-05-19 (complete)3696397? (TO) 1800.11 1800.51
npSolver 1.0 (complete)3701185? (TO) 1800.11 1800.41
npSolver inc-topdown-quickBound (complete)3702781? (TO) 1800.12 1800.51
npSolver inc (fixed) (complete)3748746? (TO) 1800.12 1800.41
npSolver 1.0 (fixed) (complete)3750342? (TO) 1800.12 1800.41
pb2satCp2 2012-05-19 (complete)3694801? (TO) 1800.13 1800.72

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 23954
Solution found:
x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 x12 -x13 -x14 -x15 x16 -x17 -x18 -x19 -x20 -x21 x22 -x23 -x24 x25 -x26 -x27 -x28 -x29 -x30 -x31
-x32 -x33 -x34 -x35 x36 x37 -x38 -x39 -x40 -x41 -x42 x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 x51 -x52 -x53 -x54 -x55 -x56 -x57 x58 -x59 -x60
-x61 -x62 x63 -x64 -x65 -x66 -x67 -x68 -x69 x70 -x71 -x72 x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 x83 -x84 -x85 -x86 x87 -x88 -x89
-x90 -x91 -x92 x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 x101 -x102 x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 x111 -x112 -x113 -x114
-x115 x116 -x117 -x118 -x119 -x120 -x121 -x122 x123 -x124 -x125 -x126 -x127 x128 -x129 -x130 -x131 -x132 -x133 -x134 -x135 -x136 x137 -x138
-x139 -x140 -x141 -x142 x143 -x144 -x145 -x146 -x147 x148 -x149 -x150 -x151 x152 -x153 -x154 -x155 -x156 -x157 -x158 -x159 -x160 -x161 x162
-x163 -x164 -x165 x166 -x167 -x168 -x169 x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 x180 -x181 -x182 -x183 -x184 -x185 x186
-x187 -x188 x189 -x190 -x191 -x192 -x193 -x194 x195 -x196 -x197 -x198 -x199 -x200 -x201 x202 -x203 -x204 -x205 -x206 -x207 x208 -x209 -x210
-x211 -x212 -x213 -x214 -x215 x216 x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 x226 -x227 -x228 x229 -x230 -x231 -x232 -x233 -x234
-x235 -x236 -x237 x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 x246 -x247 -x248 -x249 -x250 -x251 x252 x253 -x254 -x255 -x256 -x257 -x258
-x259 x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 x269 -x270 x271 -x272 -x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 x281 -x282
-x283 x284 -x285 -x286 -x287 -x288 -x289 x290 -x291 -x292 -x293 -x294 -x295 x296 -x297 -x298 -x299 -x300 -x301 -x302 x303 -x304 -x305 -x306
-x307 -x308 -x309 -x310 x311 -x312 -x313 -x314 -x315 -x316 x317 -x318 -x319 -x320 x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 x329 -x330
-x331 x332 -x333 -x334 -x335 -x336 -x337 x338 -x339 -x340 -x341 -x342 -x343 -x344 -x345 -x346 -x347 x348 -x349 -x350 -x351 -x352 x353 -x354
-x355 -x356 -x357 -x358 -x359 x360 x361 x362 -x363 -x364 -x365 -x366 -x367 -x368 x369 -x370 -x371 -x372 x373 -x374 -x375 -x376 -x377 -x378
-x379 x380 x381 -x382 -x383 -x384 -x385 x386 -x387 -x388 -x389 -x390 -x391 -x392 -x393 x394 -x395 -x396 x397 -x398 -x399 x400 -x401 -x402
x403 -x404 -x405 -x406 x407 -x408 -x409 -x410 -x411 x412 -x413 -x414 -x415 x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 x424 -x425 -x426
x427 -x428 -x429 -x430 x431 x432 x433 -x434 x435 -x436 -x437 x438 -x439 -x440 -x441 -x442 x443 -x444 -x445 -x446 -x447 x448 -x449 -x450
-x451 -x452 -x453 x454 -x455 -x456 -x457 x458 -x459 -x460 -x461 x462 -x463 -x464 -x465 x466 -x467 x468 -x469 -x470 -x471 -x472 -x473 -x474
x475 -x476 -x477 -x478 x479 -x480 -x481 x482 -x483 -x484 -x485 -x486 -x487 x488 -x489 -x490 -x491 -x492 -x493 x494 -x495 -x496 -x497 -x498
-x499 x500 x501 x502 -x503 -x504 -x505 -x506 -x507 -x508 -x509 x510 -x511 -x512 -x513 x514 -x515 -x516 x517 -x518 -x519 -x520 -x521 -x522
-x523 -x524 x525 x526 -x527 -x528 -x529 -x530 -x531 -x532 -x533 -x534 x535 -x536 x537 -x538 x539 -x540