PB'12 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryDEC-SMALLINT (no optimisation, small integers)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark0
Best CPU time to get the best result obtained on this benchmark0.025995
Has Objective FunctionNO
(Un)Satisfiability was provedYES
Best value of the objective function
Optimality of the best value was proved NO
Number of variables784
Total number of constraints256
Number of constraints which are clauses112
Number of constraints which are cardinality constraints (but not clauses)144
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint28
Maximum length of a constraint49
Number of terms in the objective function 0
Biggest coefficient in the objective function 0
Number of bits for the biggest coefficient in the objective function 0
Sum of the numbers in the objective function 0
Number of bits of the sum of numbers in the objective function 0
Biggest number in a constraint 2
Number of bits of the biggest number in a constraint 2
Biggest sum of numbers in a constraint 51
Number of bits of the biggest sum of numbers6
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerCPU timeWall clock time
clasp 2.0.6-R5325 (dec) (complete)3708655SAT 0.025995 0.02718
wbo 1.7 (complete)3704727SAT 0.035994 0.034815
pwbo 2.0 (complete)3704218SAT 0.035994 0.030553
wbo 1.72 (complete)3727028SAT 0.036994 0.0288351
pwbo 2.02 (complete)3726519SAT 0.036994 0.0311231
toysat 2012-06-01 (complete)3724280SAT 0.045993 0.0476299
toysat 2012-05-17 (complete)3705907SAT 0.047992 0.0547651
PB07: Pueblo 1.4 (incomplete)3719782SAT 0.058991 0.0861071
PB07: bsolo 3.0.17 (complete)3728899SAT 0.066989 0.0697171
PB07: PB-clasp 2007-04-10 (complete)3728898SAT 0.073988 0.0675339
PB09: bsolo 3.1 (complete)3728901SAT 0.129979 0.129891
PB12: minisatp 1.0-2-g022594c (complete)3722684SAT 0.136978 0.140677
PB11: SCIP spx E_2 2011-06-10 (fixed) (complete)3728910SAT 0.144977 0.144582
bsolo 3.2 (complete)3707489SAT 0.158975 0.160986
PB07: minisat+ 1.14 (complete)3720948SAT 0.277957 0.278446
PB10: pb_cplex 2010-06-29 (complete)3728906SAT 0.32395 0.358766
Sat 4j PB Resolution 2.3.2 Snapshot (complete)3687171SAT 0.697893 0.768926
SAT4J PB specific settings 2.3.2 snapshot (complete)3709835SAT 0.697893 0.703513
PB09: SAT4J Pseudo Resolution 2.1.1 (complete)3728903SAT 0.781881 0.402859
PB07: SAT4JPseudoResolution 2007-03-23 (complete)3728900SAT 0.787879 3.67916
PB10: borg-pb 10.05.30 (complete)3728904SAT 0.931857 6.52686
SAT 4j PB RES // CP 2.3.2 Snapshot (complete)3687170SAT 1.02984 2.68263
PB11: borg pb-dec-11.04.03 (complete)3728908SAT 1.66475 11.4401
PB11: Sat4j Res//CP 2.3.0 (complete)3728909SAT 1.81772 0.88662
PB10: SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)3728905SAT 1.91571 1.28375
SCIP spx SCIP with SoPlex fixed (complete)3690487SAT 2.01869 2.01895
SCIP spx E SCIP Exp with SoPlex fixed (complete)3691653SAT 2.11568 2.12169
PB10: SCIPspx SCIP with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)3728907SAT 5.54416 5.54919
SCIP spx standard SCIP with SoPlex standard fixed (complete)3692819SAT 7.77182 7.77422
npSolver inc-topDown (fixed) (complete)3746348SAT 12.887 12.8891
npSolver inc-topdown-quickBound (fixed) (complete)3751136SAT 12.983 12.9876
npSolver 1.0 (fixed) (complete)3749540SAT 13.01 13.0138
npSolver inc (fixed) (complete)3747944SAT 13.015 13.0177
PB09: SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)3728902SAT 17.9963 18.0009
PBPASSolver-CARD.SN 2012-05-28 (complete)3718980SAT 94.2257 94.7059
PBPASSolver-CARD.DP 2012-05-28 (complete)3718611SAT 202.193 202.511
npSolver inc-topDown (complete)3697191? (problem) 0.017996 0.14091
npSolver inc (complete)3698787? (problem) 0.018997 0.330732
npSolver 1.0 (complete)3700383? (problem) 0.019996 0.167392
pb2satCp2 2012-05-19 (complete)3693999? (problem) 0.021996 0.235799
pb2sat 2012-05-19 (complete)3695595? (problem) 0.021996 0.152115
npSolver inc-topdown-quickBound (complete)3701979? (problem) 0.022996 0.152771

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 0
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111
x112 -x113 -x114 -x115 -x116 x117 -x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134
-x135 -x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157
x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 -x176 -x177 -x178 -x179 x180
-x181 -x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203
-x204 -x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226
-x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249
-x250 -x251 -x252 -x253 -x254 x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272
-x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295
-x296 -x297 -x298 -x299 -x300 -x301 -x302 x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318
-x319 -x320 x321 -x322 -x323 -x324 -x325 -x326 -x327 -x328 -x329 -x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338 -x339 -x340 -x341
x342 -x343 -x344 -x345 -x346 -x347 -x348 -x349 -x350 -x351 -x352 -x353 -x354 -x355 -x356 -x357 -x358 -x359 -x360 -x361 -x362 -x363 -x364
-x365 -x366 -x367 -x368 -x369 -x370 -x371 -x372 -x373 -x374 -x375 -x376 -x377 -x378 -x379 -x380 -x381 -x382 -x383 -x384 -x385 x386 -x387
-x388 -x389 -x390 -x391 -x392 -x393 -x394 -x395 -x396 -x397 -x398 -x399 -x400 -x401 x402 -x403 -x404 -x405 -x406 -x407 -x408 -x409 -x410
-x411 -x412 -x413 -x414 -x415 -x416 -x417 -x418 -x419 -x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433
-x434 -x435 x436 -x437 -x438 -x439 -x440 -x441 -x442 -x443 -x444 -x445 -x446 -x447 -x448 -x449 -x450 -x451 -x452 -x453 -x454 -x455 -x456
-x457 -x458 -x459 -x460 -x461 -x462 -x463 -x464 -x465 -x466 -x467 -x468 -x469 -x470 -x471 -x472 -x473 -x474 x475 -x476 -x477 -x478 -x479
-x480 -x481 -x482 -x483 -x484 -x485 -x486 -x487 -x488 -x489 -x490 -x491 -x492 -x493 -x494 -x495 -x496 -x497 -x498 -x499 x500 -x501 -x502
-x503 -x504 -x505 -x506 -x507 -x508 -x509 -x510 -x511 -x512 -x513 -x514 -x515 -x516 -x517 x518 -x519 -x520 -x521 -x522 -x523 -x524 -x525
-x526 -x527 -x528 -x529 -x530 -x531 -x532 x533 -x534 -x535 -x536 -x537 -x538 -x539 -x540 -x541 -x542 -x543 -x544 -x545 -x546 -x547 -x548
-x549 -x550 -x551 -x552 -x553 -x554 -x555 -x556 -x557 -x558 -x559 -x560 -x561 -x562 -x563 -x564 -x565 -x566 -x567 -x568 -x569 -x570 -x571
-x572 -x573 -x574 -x575 -x576 -x577 -x578 -x579 -x580 -x581 -x582 -x583 -x584 x585 -x586 -x587 -x588 -x589 -x590 -x591 -x592 -x593 -x594
-x595 -x596 -x597 -x598 x599 -x600 -x601 -x602 -x603 -x604 -x605 -x606 -x607 -x608 -x609 -x610 -x611 -x612 -x613 -x614 -x615 -x616 -x617
x618 -x619 -x620 -x621 -x622 -x623 -x624 -x625 -x626 -x627 -x628 -x629 -x630 -x631 -x632 -x633 -x634 -x635 -x636 -x637 -x638 -x639 -x640
-x641 -x642 -x643 -x644 -x645 -x646 -x647 -x648 -x649 -x650 -x651 -x652 -x653 -x654 -x655 -x656 -x657 -x658 -x659 -x660 -x661 -x662 -x663
-x664 x665 -x666 -x667 -x668 -x669 -x670 -x671 -x672 -x673 -x674 -x675 -x676 -x677 -x678 -x679 -x680 x681 -x682 -x683 -x684 -x685 -x686
-x687 -x688 -x689 -x690 -x691 -x692 -x693 -x694 -x695 -x696 -x697 -x698 -x699 -x700 -x701 -x702 -x703 -x704 -x705 -x706 -x707 -x708 -x709
-x710 -x711 -x712 -x713 -x714 -x715 -x716 -x717 -x718 -x719 -x720 -x721 -x722 -x723 -x724 -x725 x726 -x727 -x728 -x729 -x730 -x731 -x732
-x733 -x734 x735 -x736 -x737 -x738 -x739 -x740 -x741 -x742 -x743 -x744 -x745 -x746 -x747 -x748 -x749 -x750 -x751 -x752 -x753 -x754 -x755
-x756 -x757 -x758 -x759 -x760 -x761 -x762 -x763 -x764 -x765 -x766 -x767 -x768 -x769 -x770 x771 -x772 -x773 -x774 -x775 -x776 -x777 -x778
-x779 -x780 -x781 -x782 -x783 -x784