PB'09 competition: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark2
Best CPU time to get the best result obtained on this benchmark7.50186
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 2
Optimality of the best value was proved YES
Number of variables162
Total number of constraints19
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints19
Minimum length of a constraint6
Maximum length of a constraint48
Number of terms in the objective function 6
Biggest coefficient in the objective function 32
Number of bits for the biggest coefficient in the objective function 6
Sum of the numbers in the objective function 63
Number of bits of the sum of numbers in the objective function 6
Biggest number in a constraint 2048
Number of bits of the biggest number in a constraint 12
Biggest sum of numbers in a constraint 8064
Number of bits of the biggest sum of numbers13
Number of products (including duplicates)324
Sum of products size (including duplicates)648
Number of different products324
Sum of products size648

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjCPU timeWall clock time
SAT4J Pseudo Resolution 2.1.1 (complete)1857499OPT2 7.50186 6.73746
wbo 1.0 (complete)1875207OPT2 8.99063 8.9912
SCIPclp SCIP with CLP 1.8.2 (complete)1870097OPT2 9.91449 9.9185
pbclasp 2009-04-24 (complete)1859236OPT2 12.4741 12.4813
SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)1870096OPT2 17.4373 17.4418
bsolo 3.1 cl (complete)1878067OPT2 17.6683 17.6664
bsolo 3.1 pb (complete)1879497OPT2 46.6849 46.7195
SAT4J Pseudo CP 2.1.1 (complete)1857498SAT (TO)3 1800.37 1767.52
bsolo 3.1 (complete)1876637Wrong Opt.3 16.8554 16.8787

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

obj: 2
Solution found:
-x1 x2 -x3 -x4 -x5 -x6 x7 x8 x9 x10 x11 -x12 x13 x14 x15 x16 -x17 x18 x19 -x20 x21 -x22 -x23 -x24 x25 x26 x27 x28 x29 x30 x31 x32 -x33 x34
x35 -x36 x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 x49 -x50 -x51 -x52 -x53 x54 x55 x56 x57 x58 -x59 x60 -x61 x62 x63 x64 x65 x66 -x67
x68 -x69 -x70 -x71 x72 -x73 x74 -x75 x76 -x77 x78 -x79 x80 x81 -x82 x83 -x84 -x85 x86 -x87 -x88 x89 -x90 -x91 x92 x93 x94 -x95 x96 -x97 x98
-x99 -x100 x101 -x102 -x103 x104 -x105 -x106 x107 -x108 -x109 -x110 -x111 -x112 -x113 -x114 x115 -x116 x117 x118 -x119 x120 -x121 x122 -x123
-x124 -x125 -x126 x127 -x128 -x129 x130 -x131 x132 x133 -x134 -x135 x136 -x137 -x138 x139 -x140 -x141 -x142 x143 -x144 x145 -x146 x147 x148
-x149 x150 x151 -x152 -x153 x154 -x155 -x156 x157 -x158 x159 x160 -x161 -x162 -x163 x164 -x165 -x166 -x167 -x168 -x169 x170 -x171 -x172
-x173 -x174 -x175 x176 -x177 -x178 -x179 -x180 -x181 x182 -x183 -x184 -x185 -x186 -x187 x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196
-x197 -x198 -x199 x200 x201 x202 x203 x204 -x205 x206 x207 x208 x209 x210 -x211 x212 x213 x214 x215 x216 -x217 x218 x219 x220 x221 x222
-x223 -x224 -x225 -x226 -x227 -x228 -x229 x230 x231 x232 x233 x234 -x235 x236 -x237 -x238 -x239 x240 -x241 -x242 -x243 -x244 -x245 -x246
-x247 x248 -x249 -x250 -x251 x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269
-x270 -x271 x272 -x273 x274 -x275 x276 -x277 x278 -x279 x280 -x281 x282 -x283 x284 -x285 x286 -x287 x288 -x289 x290 -x291 x292 -x293 x294
-x295 x296 -x297 x298 -x299 x300 -x301 x302 -x303 x304 -x305 x306 -x307 x308 x309 -x310 x311 -x312 -x313 x314 x315 -x316 x317 -x318 -x319
-x320 -x321 -x322 -x323 -x324 -x325 x326 x327 -x328 x329 -x330 -x331 x332 x333 -x334 x335 -x336 -x337 -x338 -x339 -x340 -x341 -x342 -x343
x344 -x345 -x346 x347 -x348 -x349 x350 -x351 -x352 x353 -x354 -x355 x356 -x357 -x358 x359 -x360 -x361 x362 -x363 -x364 x365 -x366 -x367 x368
-x369 -x370 x371 -x372 -x373 x374 -x375 -x376 x377 -x378 -x379 x380 x381 x382 -x383 x384 -x385 x386 x387 x388 -x389 x390 -x391 x392 x393
x394 -x395 x396 -x397 x398 x399 x400 -x401 x402 -x403 x404 x405 x406 -x407 x408 -x409 x410 x411 x412 -x413 x414 -x415 x416 -x417 -x418 x419
-x420 -x421 -x422 -x423 -x424 -x425 -x426 -x427 -x428 -x429 -x430 -x431 -x432 -x433 -x434 -x435 -x436 -x437 -x438 -x439 -x440 -x441 -x442
-x443 -x444 -x445 x446 -x447 -x448 x449 -x450 -x451 x452 -x453 -x454 x455 -x456 -x457 x458 -x459 -x460 x461 -x462 -x463 x464 -x465 -x466
x467 -x468 -x469 x470 -x471 -x472 x473 -x474 -x475 -x476 -x477 -x478 -x479 -x480 -x481 x482 -x483 -x484 x485 -x486