PB'09 competition: solvers results per benchmarks

Result page for benchmark

Jump to solvers results

General information on the benchmark

Bench CategoryOPT-SMALLINT (optimisation, small integers)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark310
Best CPU time to get the best result obtained on this benchmark35.2776
Has Objective FunctionYES
(Un)Satisfiability was provedYES
Best value of the objective function 310
Optimality of the best value was proved YES
Number of variables660
Total number of constraints5350
Number of constraints which are clauses5350
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints0
Minimum length of a constraint2
Maximum length of a constraint32
Number of terms in the objective function 660
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 660
Number of bits of the sum of numbers in the objective function 10
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 660
Number of bits of the biggest sum of numbers10
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjCPU timeWall clock time
pbclasp 2009-04-24 (complete)1858720OPT310 35.2776 35.2852
SAT4J Pseudo Resolution 2.1.1 (complete)1855741OPT310 85.0931 83.7762
bsolo 3.1 (complete)1877648OPT310 86.3769 86.4152
bsolo 3.1 pb (complete)1880508OPT310 364.054 364.159
SCIPspx SCIP with SoPLEX 1.4.1(24.4.2009) (complete)1869064OPT310 410.386 410.502
SCIPclp SCIP with CLP 1.8.2 (complete)1869065OPT310 443.733 443.851
bsolo 3.1 cl (complete)1879078OPT310 540.787 540.917
SAT4J Pseudo CP 2.1.1 (complete)1855740OPT310 1025.69 1015.73
wbo 1.0 (complete)1876218? (TO) 1800.18 1800.64

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

obj: 310
Solution found:
x1 -x2 -x3 -x4 -x5 -x6 x7 -x8 x9 -x10 x11 -x12 x13 -x14 -x15 -x16 x17 -x18 x19 -x20 -x21 -x22 x23 -x24 x25 -x26 -x27 -x28 x29 -x30 -x31 -x32
x33 -x34 -x35 -x36 x37 -x38 -x39 -x40 x41 -x42 x43 -x44 -x45 -x46 x47 -x48 x49 -x50 -x51 -x52 x53 -x54 -x55 -x56 -x57 -x58 x59 -x60 -x61
-x62 x63 -x64 -x65 -x66 x67 -x68 x69 -x70 x71 -x72 -x73 -x74 x75 -x76 x77 -x78 x79 -x80 x81 -x82 -x83 x84 x85 -x86 x87 -x88 x89 -x90 x91
-x92 -x93 x94 x95 -x96 x97 -x98 x99 -x100 x101 -x102 -x103 x104 x105 -x106 x107 -x108 x109 -x110 x111 -x112 x113 -x114 x115 -x116 x117 -x118
-x119 x120 -x121 x122 x123 -x124 x125 -x126 -x127 -x128 x129 -x130 x131 -x132 x133 -x134 x135 -x136 x137 -x138 x139 -x140 x141 -x142 x143
-x144 x145 -x146 x147 -x148 x149 -x150 x151 -x152 x153 -x154 x155 -x156 x157 -x158 x159 -x160 -x161 x162 x163 -x164 -x165 x166 x167 -x168
x169 -x170 x171 -x172 x173 -x174 x175 -x176 x177 -x178 x179 -x180 x181 -x182 x183 -x184 x185 -x186 x187 -x188 x189 -x190 x191 -x192 x193
-x194 x195 -x196 x197 -x198 x199 -x200 x201 -x202 x203 -x204 x205 -x206 x207 -x208 x209 -x210 x211 -x212 x213 -x214 x215 -x216 -x217 x218
x219 -x220 x221 -x222 x223 -x224 x225 -x226 x227 -x228 x229 -x230 x231 -x232 x233 -x234 x235 -x236 x237 -x238 x239 -x240 x241 -x242 x243
-x244 x245 -x246 x247 -x248 x249 -x250 x251 -x252 x253 -x254 x255 -x256 x257 -x258 x259 -x260 -x261 x262 x263 -x264 x265 -x266 x267 -x268
x269 -x270 x271 -x272 x273 -x274 x275 -x276 x277 -x278 x279 -x280 x281 -x282 x283 -x284 x285 -x286 x287 -x288 x289 -x290 x291 -x292 x293
-x294 x295 -x296 x297 -x298 x299 -x300 x301 -x302 x303 -x304 x305 -x306 x307 -x308 x309 -x310 x311 -x312 x313 -x314 x315 -x316 x317 -x318
x319 -x320 x321 -x322 x323 -x324 x325 -x326 x327 -x328 x329 -x330 x331 -x332 x333 -x334 x335 -x336 x337 -x338 x339 -x340 x341 -x342 x343
-x344 x345 -x346 x347 -x348 x349 -x350 x351 -x352 x353 -x354 x355 -x356 x357 -x358 x359 -x360 x361 -x362 x363 -x364 x365 -x366 x367 -x368
-x369 x370 x371 -x372 x373 -x374 x375 -x376 x377 -x378 -x379 x380 x381 -x382 x383 -x384 -x385 x386 -x387 x388 x389 -x390 -x391 x392 -x393
x394 x395 -x396 -x397 x398 x399 -x400 -x401 x402 -x403 x404 -x405 x406 x407 -x408 -x409 x410 -x411 -x412 x413 -x414 -x415 x416 -x417 x418
x419 -x420 -x421 x422 -x423 x424 x425 -x426 -x427 x428 -x429 x430 x431 -x432 -x433 x434 -x435 x436 x437 -x438 -x439 x440 -x441 x442 x443
-x444 -x445 x446 x447 -x448 -x449 x450 -x451 x452 -x453 x454 x455 -x456 -x457 x458 x459 -x460 -x461 x462 -x463 x464 x465 -x466 -x467 x468
-x469 x470 x471 -x472 -x473 x474 -x475 x476 x477 -x478 -x479 x480 -x481 x482 x483 -x484 -x485 x486 -x487 x488 x489 -x490 -x491 x492 -x493
x494 -x495 x496 x497 -x498 -x499 x500 x501 -x502 -x503 x504 -x505 x506 -x507 -x508 x509 -x510 -x511 x512 -x513 x514 x515 -x516 -x517 x518
-x519 x520 x521 -x522 -x523 x524 -x525 x526 x527 -x528 -x529 x530 x531 -x532 -x533 x534 -x535 x536 x537 -x538 -x539 x540 -x541 x542 -x543
x544 x545 -x546 -x547 x548 -x549 x550 x551 -x552 -x553 x554 x555 -x556 -x557 x558 x559 -x560 -x561 x562 -x563 x564 -x565 x566 x567 -x568
-x569 x570 -x571 x572 x573 -x574 -x575 x576 x577 -x578 -x579 x580 -x581 x582 -x583 x584 x585 -x586 -x587 x588 -x589 x590 x591 -x592 -x593
x594 -x595 x596 x597 -x598 -x599 x600 -x601 x602 -x603 x604 x605 -x606 -x607 x608 -x609 x610 x611 -x612 -x613 x614 -x615 -x616 x617 -x618
-x619 x620 -x621 x622 x623 -x624 -x625 x626 -x627 x628 x629 -x630 -x631 x632 -x633 -x634 x635 -x636 -x637 x638 -x639 x640 x641 -x642 -x643
x644 -x645 x646 x647 -x648 -x649 x650 -x651 x652 x653 -x654 -x655 x656 -x657 x658 x659 -x660