
Pseudo-Boolean Reasoning and Compilation
PhD Defense

Romain Wallon
December 14th, 2020



Boolean Satisfiability

The satisfiability problem (SAT) is the first problem proven to be
NP-complete [Cook, 1971]

Given a CNF formula Σ, this problem is determining whether there exists
an assignment of the (Boolean) variables of Σ such that this formula
evaluates to true

(a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ c)

In the early 2000s, a revolution in the architecture of SAT solvers
happened, with the wide adoption of the CDCL approach (GRASP) and
the use of efficient heuristics and data structures (Chaff, MiniSat)

Modern SAT solvers can now deal with problems containing
millions of variables and clauses
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SAT Solver Limitations

Despite their practical efficiency, some instances remain completely out of
reach for modern SAT solvers, due to the weakness of the resolution
proof system

This is particularly for instances requiring the ability to count, such as
pigeonhole-principle formulae, stating that “n pigeons do not fit in n − 1
holes”

On such instances, pseudo-Boolean reasoning and cutting planes based
inference can offer better performance
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Pseudo-Boolean Reasoning



Pseudo-Boolean (PB) Constraints

PB solvers are generalizations of SAT solvers that allow to consider

• normalized PB constraints
∑n

i=1 αiℓi ≥ δ

• cardinality constraints
∑n

i=1 ℓi ≥ δ

• clauses
∑n

i=1 ℓi ≥ 1

in which

• the coefficients αi are non-negative integers
• ℓi are literals, i.e., a variable v or its negation v̄ = 1 − v
• the degree δ is a non-negative integer

a + b + c̄ ≥ 2

We use the cutting-planes proof system to reason
with such constraints
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Cutting Planes and Generalized Resolution

PB solvers often use a subset of cutting planes rules known as
Generalized Resolution [Hooker, 1988], which uses the following rules

αℓ+
∑n

i=1 αiℓi ≥ δ1 βℓ̄+
∑n

i=1 βiℓi ≥ δ2 (cancellation)∑n
i=1(βαi + αβi)ℓi ≥ βδ1 + αδ2−αβ

∑n
i=1 αiℓi ≥ δ

(saturation)∑n
i=1 min(αi, δ)ℓi ≥ δ

As with the resolution rule in classical SAT solvers, these two rules can
be used to learn new constraints during conflict analysis
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The Division Rule

Another useful rule is that of the division∑n
i=1 αiℓi ≥ δ ρ ∈ N∗

(division)∑n
i=1 ⌈

αi
ρ ⌉ℓi ≥ ⌈ δ

ρ⌉

This rule may allow to strengthen a constraint over the reals and can be
used to replace the saturation rule
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Proof System Strength (on PB Inputs) [Vinyals et al., 2018]

Resolution

Saturation &
Cancellation

Division &
Cancellation

Saturation &
General Addition

Division &
General Addition

†

pbChaff
Galena
Pueblo

Sat4j-CP

RoundingSat

Pen & PaperPen & Paper

PBS
SATIRE

Sat4j-Res

A −→ B if A is strictly stronger than B († on polynomial size coefficients)
A 99K B if any proof of B can be translated in polynomial time into a proof of A

We consider PB solvers that handle PB constraints natively to benefit
from the strength of the cutting-planes proof system
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A Gap Between Theory and Practice

Theory
The rules of the proof system are applied based on the structure and
semantics of the constraints

Practice
The solver has no information about the semantics of the constraints, the
global structure of the problem: it reasons locally

The application of the cancellation rule in PB solvers is guided by the
propagations that lead to a conflict
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Properties of PB Constraints



Motivation

PB formulae can be grouped into different languages, depending on the
kind of constraints they contain:

• CNF formulae are conjunctions of clauses
• CARD formulae are conjunctions of cardinality constraints
• PBC formulae are conjunctions of any normalized PB constraints

It is often convenient to use clauses to represent pieces of knowledge,
even though a PB constraint is more expressive than a clause

Let us study the pros and cons of using PB constraints from a
knowledge representation perspective
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Queries [IJCAI’18]

CO VA CE IM EQ SE CT ME

CNF ◦ X ◦ X ◦ ◦ ◦ ◦

CARD ◦ X ◦ X ◦ ◦ ◦ ◦

PBC ◦ X ◦ X ◦ ◦ ◦ ◦

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

X polynomial-time ◦ NP-hard

CO (COnsistency) Is a formula consistent?
VA (VAlidity) Is a formula valid?
CE (Clausal Entailment) Is a given clause implied by a formula?
IM (IMplication) Is a formula implied by a given cube/term?
EQ (EQuivalence) Are two formulas equivalent?
SE (Sentential Entailment) Is a formula entailed by an other one?
CT (CounTing) How many models does a formula have?
ME (Model Enumeration) What are all the models of a formula?
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Transformations [IJCAI’18] (with more recent results)

CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

CNF X • X X X • X •
CARD X • • X X • • •
PBC X • • X X • • •
NNF X ◦ X X X X X X

X polynomial-time ◦ NP-hard • exponential-size

CD (ConDitioning) Compute ϕ|τ where τ is a consistent cube/term
SFO (Singleton FOrgetting) Compute ∃xϕ ≡ (ϕ|x) ∨ (ϕ|x)
FO (FOrgetting) Compute ∃Xϕ where X is a set of variables
∧C (Closure under ∧) Compute

∧n
i=1 ϕi

∧BC (Bounded Closure under ∧) Compute
∧n

i=1 ϕi, where n ≤ N
∨C (Closure under ∨) Compute

∨n
i=1 ϕi

∨BC (Bounded Closure under ∨) Compute
∨n

i=1 ϕi, where n ≤ N
¬C (Closure under ¬) Compute ¬ϕ

10/34



Succinctness [IJCAI’18]

Succinctness captures the ability of a language to represent information
using little space

NNF

PBC

CARD

CNF

DNF

IP

DNNF

FBDD

OBDD

OBDD<

MODS

The main advantage of PB constraints is their succinctness w.r.t. clauses,
and the reasoning power brought by the cutting planes proof system
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An Achilles Heel in the Cutting
Planes Proof System



Irrelevant Literals [IJCAI’20]

Cutting planes rules may introduce irrelevant literals

3d + a + b + c ≥ 3 3d̄ + 2a + 2b ≥ 3
3a + 3b + c ≥ 3

A literal is said to be irrelevant in a PB constraint when its truth value
does not impact the truth value of the constraint:

irrelevant literals can thus be removed
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Production of Irrelevant Literals
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Artificially Relevant Literals [IJCAI’20]

Irrelevant literals may become artificially relevant, in which case they may
impact the strength of the derived constraints

3a + 3b + c ≥ 3 3ā + 3d + 2c ≥ 3
3b + 3c + 3d ≥ 3

b + c + d ≥ 1

Detecting irrelevant literals is NP-hard, we thus introduce an incomplete
algorithm for removing them
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Detecting Irrelevant Literals [IJCAI’20] (1)

Irrelevant literals can be detected thanks to this reduction to subset-sum

ℓ is irrelevant in αℓ+
n∑

i=1
αiℓi ≥ δ

⇔
n∑

i=1
αiℓi = δ − k has no solution for k ∈ {1, . . . , α}

For instance, c is irrelevant in 3a + 3b + 2c ≥ 3 because there is no
solution for neither of the equalities

3a + 3b = 1 and 3a + 3b = 2

A dynamic programming algorithm can decide whether any of the
equalities has a solution in pseudo-polynomial time with a single run
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Detecting Irrelevant Literals [IJCAI’20] (2)

As coefficients and degrees may be very big in the derived PB
constraints, solving subset-sum on the corresponding instances would be
very inefficient

We thus consider an incomplete approach for solving these instances

In our case, we want our algorithm to be exact when it detects that the
instance has no solution, since the literal is irrelevant in this case (said
differently, we accept to miss irrelevant literals, but not the contrary)

Our algorithm solves subset-sum modulo a fixed number, or even several
numbers
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Removing Irrelevant Literals [IJCAI’20]

We can remove any irrelevant literal while preserving equivalence, by
taking advantage that their truth value does not affect the constraint

3a + 3b + 2c ≥ 3

First, we can locally assign the literal to 0, and simply remove it:

3a + 3b ≥ 3

Or, we can locally assign it to 1, and simplify the constraint accordingly:

3a + 3b ≥ 3 − 2 = 1

In practice, we use a heuristic based on the slack to decide which strategy
to apply, as none of them is better than the other
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Impact of the Removal of Irrelevant Literals on the Proof
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Focus on the Vertex-Cover Family: Experimental Results
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Focus on the Vertex-Cover Family: Sat4j’s Behavior

When given an instance of this family, the first constraint learned by
Sat4j has the form

nx + x1 + . . .+ xn−1 ≥ n

All the literals x1, . . . , xn−1 are irrelevant, and this constraint is actually
equivalent to the unit clause x

No other irrelevant literals are detected in the other constraints derived
by Sat4j

Even few irrelevant literals can lead to the production of
an exponentially larger proof
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Impact of the Removal of Irrelevant Literals on the Runtime
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Leveraging Weakening

The weakening rules are defined as follows:

αℓ+
∑n

i=1 αiℓi ≥ δ
(weakening)∑n

i=1 αiℓi ≥ δ−α

αℓ+
∑n

i=1 αiℓi ≥ d k ∈ N 0 < k ≤ α
(partial weakening)

(α− k)ℓ+
∑n

i=1 αiℓi ≥ δ−k

5a + 3b + 3c ≥ 8

These rules are already used by PB solvers to maintain invariants during
conflict analysis
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Weakening Ineffective Literals

During conflict analysis, some literals may not play a role in the conflict
being analyzed: it is thus possible to weaken them away while preserving
invariants

3ā + 3b̄ + c + d + e ≥ 6
3b̄ + c ≥ 6 − 3 − 1 − 1 = 1

b̄ + c ≥ 1

2a + b + c + f ≥ 2
2a + b + f ≥ 2 − 1 = 1

a + b + f ≥ 1

Ineffective literals can be seen as locally irrelevant, as opposed to the
(globally) irrelevant literals presented before

In the context of the current partial assignment, it is easy to detect
ineffective literals, but they can only be weakened away

(as ineffective literals may be relevant)
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3ā + 3b̄ + c + d + e ≥ 6
3b̄ + c ≥ 6 − 3 − 1 − 1 = 1

b̄ + c ≥ 1

2a + b + c + f ≥ 2
2a + b + f ≥ 2 − 1 = 1

a + b + f ≥ 1

Ineffective literals can be seen as locally irrelevant, as opposed to the
(globally) irrelevant literals presented before

In the context of the current partial assignment, it is easy to detect
ineffective literals, but they can only be weakened away

(as ineffective literals may be relevant)

23/34



Weakening Ineffective Literals

During conflict analysis, some literals may not play a role in the conflict
being analyzed: it is thus possible to weaken them away while preserving
invariants
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3ā + 3b̄ + c + d + e ≥ 6
3b̄ + c ≥ 6 − 3 − 1 − 1 = 1

b̄ + c ≥ 1

2a + b + c + f ≥ 2
2a + b + f ≥ 2 − 1 = 1

a + b + f ≥ 1

Ineffective literals can be seen as locally irrelevant, as opposed to the
(globally) irrelevant literals presented before

In the context of the current partial assignment, it is easy to detect
ineffective literals, but they can only be weakened away

(as ineffective literals may be relevant)

23/34



Weakening Ineffective Literals

During conflict analysis, some literals may not play a role in the conflict
being analyzed: it is thus possible to weaken them away while preserving
invariants
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(as ineffective literals may be relevant)
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3ā + 3b̄ + c + d + e ≥ 6
3b̄ + c ≥ 6 − 3 − 1 − 1 = 1

b̄ + c ≥ 1

2a + b + c + f ≥ 2
2a + b + f ≥ 2 − 1 = 1

a + b + f ≥ 1

Ineffective literals can be seen as locally irrelevant, as opposed to the
(globally) irrelevant literals presented before

In the context of the current partial assignment, it is easy to detect
ineffective literals, but they can only be weakened away

(as ineffective literals may be relevant)

23/34



Weakening Ineffective Literals

During conflict analysis, some literals may not play a role in the conflict
being analyzed: it is thus possible to weaken them away while preserving
invariants
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Experimental Results
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Partial Weakening and Division [SAT’20]

Considering a similar idea to that of RoundingSat, we propose to use
partial weakening instead of weakening

8a + 7b + 7c + 2d + 2e + f ≥ 11
7a + 7b + 7c + 2d + 2e ≥ 9

a + b + c + d + e ≥ 2

Observe that the constraint obtained here is stronger than the clause
b + c + d + e ≥ 1 derived by RoundingSat

This operation may be applied on either one or both sides of the
cancellation
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Experiments
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Fine Tuning of PB Solvers



Motivation

It is well known that, in addition to conflict analysis, several features of
SAT solvers are crucial for solving problems efficiently, such as:

• branching heuristic
• learned constraint deletion strategy
• restart policy

These features are mostly reused as is by current PB solvers, without
taking into account the particular properties of PB constraints

Our main finding is that considering the size of the coefficients and the
current partial assignment allows to significantly improve the solver
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Runtime of Sat4j with Different Configurations
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Comparison of Sat4j with RoundingSat
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Conclusion and Perspectives



Conclusion

• The main advantage of using PB constraints from a knowledge
representation perspective is their succinctness

• Implementations of the cutting planes proof system in PB solvers are
not fully satisfactory, as its strength is not fully exploited

• Irrelevant literals may be produced during conflict analysis, and lead
to the inference of weaker constraints

• Applying the weakening rule on ineffective literals is a possible
(aggressive) counter-measure

• Applying partial weakening and division gives better performance

• Complementary heuristics implemented in CDCL PB solvers can be
adapted to take into account properties of PB constraints and to
improve the performance of Sat4j
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Perspectives

• Find other strategies for applying cutting planes rules so as to
exploit more power of this proof system

• Design such strategies so as to prevent the production of irrelevant
literals instead of removing them

• Combine the weakening strategies to exploit their complementarity
• Identify possible interactions between the new heuristics

• Implement the new strategies in other solvers
• Consider their impact on the resolution of optimization problems

• Improve the detection of the optimal backjump level during conflict
analysis

• Improve the detection of conflicts to deal with the conflictual
reasons encountered during conflict analysis
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Scientific Production: International Papers

D. Le Berre, P. Marquis, S. Mengel and R. Wallon. Pseudo-Boolean
Constraints from a Knowledge Representation Perspective. Published at
IJCAI’18.

S. Mengel and R. Wallon. Revisiting Graph Width Measures for
CNF-Encodings. Published at SAT’19.

S. Mengel and R. Wallon. Graph Width Measures for CNF-Encodings
with Auxiliary Variables. Published in JAIR (vol. 67, 2020).

D. Le Berre, P. Marquis and R. Wallon. On Weakening Strategies for PB
Solvers. Published at SAT’20.

D. Le Berre, P. Marquis, S. Mengel and R. Wallon. On Irrelevant Literals
in Pseudo-Boolean Constraint Learning. Published at IJCAI’20.
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Scientific Production: Software

I am a committer of Sat4j1 in which I implemented several features:

• Detection and removal of irrelevant literals
• Different weakening strategies (including RoundingSat’s)
• New heuristics dedicated to the resolution of PB problems

All these implementations have also been rigorously experimented and
evaluated, before being presented in different venues

I also contributed to the development of Metrics2, a Python library and
app for analyzing experimental results

1https://gitlab.ow2.org/sat4j/sat4j
2https://github.com/crillab/metrics
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Thanks for your attention! Questions?
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