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Résumé

La représentation d’informations de nature propositionnelle est une tâche importante en intelligence arti-
ficielle, et de nombreux langages ont été mis au point à cet égard. Ces langages correspondent à différents
compromis entre expressivité (c’est-à-dire, ce qu’il est possible de représenter avec ces langages) et ef-
ficacité du raisonnement sur l’information représentée. Parmi les langages existants, celui des formules
en forme normale conjonctive (ou CNF pour Conjunctive Normal Form) est largement utilisé, car il
fournit une manière à la fois simple et pratique de représenter des contraintes portant sur des variables
booléennes. Étant donnée une formule CNF, il est fréquent de se demander si cette formule possède une
solution ou non.

Ce problème est connu sous le nom de problème de cohérence propositionnelle, plus communé-
ment nommé problème SAT. Il s’agit du premier problème à avoir été démontré comme NP-complet
par Stephen Cook en 1971 [Coo71]. Ce problème possède de nombreuses applications en intelligence
artificielle et en informatique, par exemple dans le cadre de la vérification formelle et de la planifica-
tion [Bie09, Rin09, Kro09, Zha09]. Les dernières décennies ont vu le développement d’importantes
améliorations dans la résolution du problème SAT, de sorte que les solveurs SAT dits « modernes » sont
capables de résoudre efficacement de nombreuses instances qui étaient complètement hors d’atteinte
trente ans plus tôt [JLRS12]. Cette efficacité en pratique des solveurs SAT peut être expliquée par
le développement de l’architecture CDCL (Conflict-Driven Clause Learning, apprentissage de clauses
guidé par les conflits) [MS99] et par celui de structures de données efficaces et d’heuristiques perfor-
mantes [MMZ+01, ES04]. Cependant, certaines instances restent difficiles à résoudre pour les solveurs
SAT actuels, en particulier celles nécessitant de « savoir compter », comme par exemple les formules
dites du principe du pigeonnier, encodant le fait qu’il n’est pas possible de placer n pigeons dans n− 1
boulins [Hak85].1

Partant de ce constat, différentes solutions ont été étudiées. L’une d’entre-elles consiste à généraliser
le format CNF en autorisant l’utilisation de contraintes pseudo-booléennes, c’est-à-dire, des équations
ou inéquations linéaires en variables booléennes. Plus précisément, nous considérons le langage PBC
composé de conjonctions de contraintes de la forme

∑n
i=1 αiℓi ≥ δ, où les ℓi sont des littéraux, les αi

sont des coefficients et δ est le degré. Le degré et les coefficients sont tous des entiers naturels. Nous
considérons également le langage CARD des contraintes de cardinalité, ayant la forme

∑n
i=1 ℓi ≥ δ. Ce

sont des contraintes pseudo-booléennes dont tous les coefficients sont égaux à 1. Ces représentations
présentent plusieurs avantages par rapport au format CNF, qu’elles généralisent (nous noterons qu’une
clause est une contrainte de cardinalité de degré 1). Tout d’abord, il est bien connu que les contraintes
pseudo-booléennes sont plus concises que les clauses [DGP04] : une seule contrainte pseudo-booléenne
peut représenter un nombre exponentiel de clauses. Ces contraintes permettent également l’utilisation du
système de preuve des plans-coupes [Gom58], qui est en théorie plus puissant que celui de la résolution
traditionnellement utilisé pour raisonner avec des clauses. Formellement, le système de preuve des plans-
coupes p-simule la résolution [CCT87], c’est-à-dire que toute preuve par résolution peut être simulée

1Ce principe est plus communément appelé principe des tiroirs en français.
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Résumé

dans le système des plans-coupes par une preuve de taille polynomiale par rapport à celle de la preuve
originale. Ce résultat est à l’origine du développement des solveurs pseudo-booléens [RM09a], qui pour
la plupart utilisent un sous-ensemble des règles du système des plans-coupes pouvant être vu comme
une généralisation de la résolution [Hoo88]. Ce sous-ensemble se compose des deux règles données
ci-dessous.

∑n
i=1 αiℓi ≥ δ (saturation)∑n

i=1min(αi, δ)ℓi ≥ δ

αℓ+
∑n

i=1 αiℓi ≥ δ βℓ̄+
∑n′

i=1 βiℓ
′
i ≥ δ′ ρ, ρ′ ∈ N∗ ρα = ρ′β

(annulation)∑n
i=1 ραiℓi +

∑n′

i=1 ρ
′βiℓ

′
i ≥ ρδ + ρ′δ′ − ρα

Grâce à ces règles, il est possible d’étendre l’inférence clausale à l’inférence pseudo-booléenne,
en héritant des nombreuses techniques utilisées pour la résolution du problème SAT, notamment via
l’analyse de conflit implantée dans de nombreux solveurs pseudo-booléens [DG02, CK05, SS06, LP10,
EN18]. En particulier, dans ces solveurs, chaque fois qu’un conflit (c’est-à-dire, une contrainte falsifiée)
est rencontré, la règle d’annulation est appliquée successivement entre la contrainte conflictuelle et la
raison de la falsification de l’un de ses littéraux, ce qui conduit à inférer une nouvelle contrainte con-
flictuelle. Lorsque la contrainte produite est assertive (c’est-à-dire, qu’elle propage l’un de ses littéraux
à un certain niveau de décision), cette contrainte est apprise et un retour-arrière non-chronologique est
effectué au niveau de décision où le littéral est propagé, avant de reprendre la recherche.

Malheureusement, la plupart des solveurs pseudo-booléens actuels ne parviennent pas à capturer la
totalité de la puissance du système des plans-coupes [VEG+18]. Ceci est en partie dû à la difficulté
d’implanter efficacement les règles du système des plans-coupes, et à celle de choisir quelles règles il
convient d’appliquer. De plus, pour s’assurer que les contraintes produites pendant l’analyse de con-
flit restent falsifiées, il est nécessaire d’utiliser la règle d’affaiblissement donnée ci-dessous, et donc
d’affaiblir les contraintes utilisées lors du raisonnement.

αℓ+
∑n

i=1 αiℓi ≥ δ α ∈ N
(affaiblissement)∑n

i=1 αiℓi ≥ δ − α

En pratique, les solveurs fondés sur le système de preuve de la résolution sont donc souvent plus
efficaces, de sorte qu’il peut être préférable d’encoder les formules pseudo-booléennes données au
solveur sous la forme d’une formule CNF équisatisfiable. Cependant, lorsque des garanties de temps
de réponse sont attendues (par exemple, dans le cadre d’une application impliquant des interactions avec
l’utilisateur), cette approche est insuffisante pour garantir l’efficacité du raisonnement. Dans ce cas, il
peut être plus intéressant d’utiliser un autre langage qui permet de réaliser efficacement les opérations
souhaitées. Cette traduction dans un autre langage est connue sous le nom de compilation de connais-
sances [GKPS95, CD97].

Dans cette optique, nous considérons dans un premier temps les contraintes pseudo-booléennes
comme un langage de représentation [LMMW18]. En particulier, nous montrons que ce langage n’est pas
adapté à la compilation de connaissances, comme le test de cohérence d’une formule pseudo-booléenne
est NP-complet. Plus précisément, si l’on considère les critères de la carte de compilation [DM02], les
contraintes pseudo-booléennes n’offrent pas de requêtes supplémentaires comparé au langage CNF, tan-
dis que des transformations offertes par ce dernier langage ne sont plus traitables lorsque l’on considère
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CO VA CE IM EQ SE CT ME
CNF ◦ ✓ ◦ ✓ ◦ ◦ ◦ ◦
CARD ◦ ✓ ◦ ✓ ◦ ◦ ◦ ◦
PBC ◦ ✓ ◦ ✓ ◦ ◦ ◦ ◦

Table 1: Propriétés de CARD et PBC en termes de requêtes, comparées à celles de CNF. Un ✓ indique
que la requête peut être effectuée en temps polynomial, tandis qu’un ◦ signifie que ce n’est pas le cas,
sauf si P = NP.

CD FO SFO ∧C ∧BC ∨C ∨BC ¬C
CNF ✓ ◦ ✓ ✓ ✓ • ✓ •
CARD ✓ • • ✓ ✓ • • •
PBC ✓ • • ✓ ✓ • • •

Table 2: Propriétés de CARD et PBC en termes de transformations, comparées à celles de CNF. Un ✓
indique que la transformation peut être effectuée en temps polynomial, tandis qu’un ◦ signifie que ce n’est
pas le cas, sauf si P = NP et un • que la transformation ne peut pas êre calculée en temps polynomial,
de manière inconditionnelle.

des contraintes pseudo-booléennes en plus des clauses (c’est le cas, par exemple, de l’oubli d’une vari-
able ou de la clôture par disjonction bornée). Les Tableaux 1 et 2 résument l’ensemble de nos résultats
sur les langages CARD et PBC, où ils sont comparés au langage CNF.

Le principal avantage des contraintes pseudo-booléennes, du point de vue de la représentation des
connaissances, est donc leur concision: une seule contrainte pseudo-booléenne peut représenter un nom-
bre exponentiel de clauses. Le diagramme à la Figure 1 permet de comparer la concision (ou efficacité
spatiale) de divers langages propositionnels aux langages CARD et PBC.

NNF

PBC

CARD

CNF

DNF

IP

DNNF

FBDD

OBDD

OBDD<

MODS

Figure 1: Concision de différents langages propositionnels. Dans ce diagramme, une flèche L1 → L2
indique que L1 est strictement plus concis que L2. L’absence de flèche entre deux langages indique que
ceux-ci sont incomparables. La zone grise met en évidence nos contributions (y compris les résultats
d’incomparabilité).
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Comme le critère de concision ne considère que des formules équivalentes, il ne tient pas compte des
encodages autorisant l’ajout de variables auxiliaires. Il est bien connu que l’utilisation de telles variables
peut permettre de réduire fortement la taille des formules encodées. Pour étudier ces encodages, il est
fréquent d’associer des graphes aux formules CNF qu’ils produisent, notamment le graphe primal (dont
les nœuds correspondent aux variables et les arêtes représentent le fait que deux variables apparaissent
conjointement dans une même clause) ou le graphe d’incidence (dont les nœuds sont des variables ou
des clauses et les arêtes relient chaque variable aux clauses où elle apparaît). La largeur de ces graphes,
évaluée via différentes mesures telles que la largeur d’arbre ou la largeur de clique, donne souvent des
informations relatives à la difficulté du problème considéré : lorsque la largeur est petite, il existe des
algorithmes efficaces en pratique permettant de résoudre SAT, mais aussi des problèmes plus complexes
tels que #SAT, MAX-SAT ou même QBF [SS10a, FMR08, SS13, PSS16, STV15, Che04]. Dans ce con-
texte, nous étudions les formules pour lesquelles il existe des encodages de faible largeur. En particulier,
nous montrons que, si la largeur des encodages est bornée, alors l’expressivité de ces encodages devient
limitée, de sorte que ces encodages ne peuvent plus être utilisés que pour représenter des formules ayant
une faible complexité de communication [MW19, MW20].

D’un point de vue pratique, nous étudions différentes approches pour améliorer les performances
des solveurs pseudo-booléens. En particulier, nous étudions l’impact de la présence de littéraux dits non
pertinents dans les contraintes apprises par le solveur [LMMW20]. Ces littéraux se caractérisent par le
fait que leur valeur de vérité n’a pas d’impact sur celle de la contrainte dans laquelle ils apparaissent : ils
peuvent alors être supprimés de cette contrainte tout en préservant l’équivalence logique.

Dans la contrainte 10a + 5b + 5c + 2d + e + f ≥ 15, les trois littéraux d, e et f ne sont
pas pertinents. Cette contrainte est donc équivalente (entre autres) aux deux contraintes 10a+
5b+ 5c ≥ 15 et 10a+ 5b+ 5c ≥ 11.

Exemple 1

Nous montrons que de tels littéraux peuvent être introduits par l’application de règles du système
des plans-coupes. Lorsque ces littéraux deviennent artificiellement pertinents, ils peuvent conduire
à l’inférence de contraintes plus faibles que ce qu’elles pourraient être si les littéraux non pertinents
n’étaient pas présents, comme illustré dans l’exemple ci-dessous.

Soit la contrainte χ ≡ 6a + 6b + 4c + 3d + 3e + 2f ≥ 10. Si la règle d’affaiblissement est
appliquée sur cette contrainte pour éliminer c, nous obtenons la contrainte χ′ ≡ 6a + 6b +
3d+ 3e+ 2f ≥ 6, dans laquelle f n’est plus pertinent.
Supposons maintenant que la règle d’annulation soit appliquée entre χ′ et 4a + 4b + 3ē +
3g + 3h + 2i + 2j ≥ 16 pour éliminer la variable e. Nous obtenons alors la contrainte
10a+ 10b+ 3d+ 3g + 3h+ 2f + 2i+ 2j ≥ 19, dans laquelle f est devenu artificiellement
pertinent.
Maintenant, supposons que f ait été retiré de χ′ par affaiblissement, donnant après saturation
la contrainte χ′′ ≡ 4a+4b+3d+3e ≥ 4. Si cette contrainte est maintenant utilisée à la place
de χ′ dans l’opération d’annulation ci-dessus, nous obtenons la contrainte 8a+8b+3d+3g+
3h+ 2i+ 2j ≥ 17, qui est strictement plus forte que la contrainte obtenue précédemment.

Exemple 2
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Figure 2: Comparaison de la taille de la preuve produite par Sat4j sur des instances de la famille
vertexcover-completegraph avec et sans retrait des littéraux non pertinents (échelle logarith-
mique).

En conséquence, les contraintes apprises par le solveur en présence de littéraux non pertinents peu-
vent être plus faibles que lorsque ces littéraux ne sont pas supprimés. Comme nous le montrons em-
piriquement, cela peut conduire le solveur à produire une preuve d’incohérence exponentiellement plus
longue, comme illustré à la Figure 2.

Cependant, le traitement des littéraux non pertinents reste difficile en pratique : leur détection
est NP-difficile. Une solution possible pour supprimer efficacement ces littéraux est de tirer parti
de la règle d’affaiblissement, afin d’affaiblir les littéraux qui n’ont pas d’effet sur le conflit en cours
d’analyse, peu importe leur affectation courante (même si ces littéraux peuvent être pertinents). Nous
étudions différentes stratégies d’affaiblissement et montrons que, malgré le fait qu’aucune des stratégies
étudiées n’est meilleure que les autres sur l’ensemble des instances considérées, la manière d’appliquer
cette règle peut avoir un impact important sur les performances du solveur, comme le montre la Fi-
gure 3 [LMW20]. Il est toutefois intéressant d’observer que, alors que la plupart des implantations des
solveurs pseudo-booléens appliquent la règle d’affaiblissement sur la raison lors de l’analyse de conflit
(RoundingSat [EN18] est le premier solveur à l’appliquer à la fois sur la raison et le conflit), il peut en
fait être préférable de l’appliquer sur le conflit pour obtenir de meilleures performances.

Enfin, nous présentons différentes approches pour adapter à la résolution de problèmes pseudo-
booléens les divers composants de l’algorithme CDCL, de façon à en tirer le meilleur parti possi-
ble. En effet, il est bien connu que de nombreuses fonctionnalités implantées dans les solveurs SAT
utilisant la résolution sont nécessaires pour obtenir le meilleur de ces solveurs. Plus précisément,
concernant l’heuristique de choix de variables, les solveurs pseudo-booléens utilisent généralement
VSIDS [MMZ+01], et notamment sa variante EVSIDS [ES04]. Cependant, cette heuristique ne tient
pas compte de la forme particulière des contraintes pseudo-booléennes, avec leurs coefficients et leurs
propriétés. C’est également le cas des stratégies de suppression des contraintes apprises, qui permettent
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Figure 3: Cactus plot comparant les résultats des différentes stratégies d’affaiblissement implantées dans
Sat4j.

de limiter leur nombre pour éviter de ralentir la propagation unitaire, ainsi que des politiques de redé-
marrage, qui permettent au solveur de ne pas rester « bloqué » dans une partie de l’espace de recherche.
Dans ces deux derniers cas, il est fréquent de considérer la qualité des contraintes apprises. Pour évaluer
au mieux cette qualité, il semble également important de considérer les particularités des contraintes
pseudo-booléennes.

Nous proposons donc différentes variantes de ces stratégies, en prenant notamment en compte
l’affectation courante et la taille des coefficients apparaissant dans les contraintes. Toutes ces stratégies
ont été implantées dans le solveur pseudo-booléen Sat4j [LP10] et sont disponibles sur son dépôt.2

La Figure 4 permet d’observer les améliorations apportées par l’utilisation des différentes stratégies
sus-mentionnées. En particulier, il est intéressant de noter que leur utilisation permet aux différentes
variantes de Sat4j d’être compétitives par rapport à différents solveurs de l’état de l’art (y compris ceux
fondés sur la résolution).

En étudiant les sujets ci-dessus, de nombreuses perspectives ont été identifiées. Parmi celles-ci,
nous pouvons citer l’amélioration des différentes nouvelles approches proposées dans cette thèse, no-
tamment en exploitant leur complémentarité à l’aide, par exemple, d’algorithmes de configuration au-
tomatique permettant de déterminer dynamiquement la meilleure stratégie à adopter. D’autres pistes
d’amélioration restent également à explorer, comme la détermination du niveau du retour-arrière optimal
lors de l’analyse de conflit. En effet, contrairement à ce qui est observé dans les solveurs SAT classiques,
il s’avère qu’apprendre la première contrainte pseudo-booléenne assertive à l’issue de l’analyse de conflit
ne garantit pas de remonter au plus haut niveau possible dans l’arbre de décision. Une autre différence
importante entre les solveurs pseudo-booléens et les solveurs SAT classiques est que les raisons rencon-
trées par les premiers au cours de l’analyse de conflit peuvent être conflictuelles. Il serait intéressant
d’étudier plus en profondeur si la solution actuelle – qui ignore totalement ce constat – ne pourrait pas
être améliorée, par exemple en remplaçant la contrainte conflictuelle courante par la raison falsifiée ren-
contrée. Enfin, une dernière perspective est de tirer parti des améliorations des solveurs pseudo-booléens
proposées dans cette thèse pour réaliser des tâches plus complexes, telles que la résolution de problèmes
d’optimisation ou la compilation de formules pseudo-booléennes.

2https://gitlab.ow2.org/sat4j/sat4j
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General Introduction

Representing pieces of propositional information is an important task in artificial intelligence, and many
languages have been designed in this respect. Such languages correspond to various tradeoffs between
their expressivity (i.e., what you can represent with these languages) and the efficiency of the reason-
ing you can perform on pieces of information represented using them. Among the numerous existing
languages, the language of formulae in Conjunctive Normal Form (CNF) is widely used, as it provides
a convenient and simple way to represent constraints over Boolean variables. Given a CNF formula, a
common question is to check whether this formula admits a solution or not.

This problem is known as the satisfiability problem, often abbreviated as SAT. It is the first prob-
lem proven to be NP-complete by Stephen Cook in 1971 [Coo71]. This problem has a lot of appli-
cations in artificial intelligence and in computer science, for instance in formal verification and plan-
ning [Bie09, Rin09, Kro09, Zha09]. Last decades have seen many improvements in SAT solving, and
so-called “modern” SAT solvers are able to solve efficiently many instances that were completely out
of reach thirty years ago [JLRS12]. This practical efficiency of SAT solvers can be explained by the
development of the conflict-driven clause learning architecture (CDCL) [MS99] and of efficient data
structures and heuristics [MMZ+01, ES04]. However, some instances remain hard to solve for current
SAT solvers, especially the ones requiring “counting capabilities”, as for instance so-called pigeonhole
principle formulae, stating that it is not possible to put n pigeons in n− 1 holes [Hak85].

Starting from this observation, different solutions have been investigated. One of them consists in
using a generalization of the CNF format based on pseudo-Boolean constraints, i.e., linear equations or
inequations over Boolean variables. This representation has several benefits compared to CNF. First, it
is well-known that pseudo-Boolean constraints are more succinct than clauses: a single pseudo-Boolean
constraint can represent an exponential number of clauses [DGP04]. They also allow to use the cutting
planes proof system [Gom58], that is in theory stronger than the resolution proof system traditionally
used to reason with clauses. Formally, the cutting planes proof system p-simulates resolution [CCT87]:
any resolution proof can be simulated by a cutting planes proof of polynomial size with respect to the
size of the original proof. This has motivated the development of pseudo-Boolean solvers [RM09a], often
based on a subset of the cutting planes proof system which can be viewed as a generalization of reso-
lution [Hoo88]. This allows to extend clausal inference to pseudo-Boolean inference, inheriting many
of the techniques used in SAT solving [DG02, CK05]. In particular, the conflict-driven clause learning
architecture has been extended to pseudo-Boolean solving, and many solvers have been developed in this
direction [DG02, CK05, SS06, LP10, EN18].

Disappointingly, most current pseudo-Boolean solvers fail to capture the whole strength of the cutting
planes proof system [VEG+18]. In practice, solvers based on the resolution proof system are often more
efficient, so that it may be preferable to encode the pseudo-Boolean input as an equisatisfiable CNF
formula. However, when runtime guarantees must be provided (for instance, for an application involving
interactions with users), this approach is not enough to ensure the efficiency of the reasoning. In this
case, it may be more interesting to use another language that allows to perform the needed operations
efficiently. This translation to another language is known as knowledge compilation [GKPS95, CD97].
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General Introduction

In the first part of this thesis, we consider the compilation approach, which aims at performing the
“hard” operations once and for all in an offline process, so that operations to be performed online can
be executed efficiently. In a first contribution [LMMW18], we consider the criteria of the knowledge
compilation map [DM02] to locate the languages of pseudo-Boolean constraints in this map. We show
that the main gain offered by these languages is their succinctness compared to CNF, which can actually
be limited when considering CNF encodings instead of CNF representations. Indeed, it is well-known
that using auxiliary variables in such encodings allows to reduce the size of the produced formula [Tse68,
PG86]. Contrastingly, our second contribution [MW19, MW20] shows that, if we bound the width of
such encodings, we may significantly limit their expressivity. We also show that, in a sense, formulae of
bounded width can only encode simple functions.

In the second part, we consider the resolution of the satisfiability problem for pseudo-Boolean for-
mulae through the use of different subsets of the cutting planes proof system. As a first contribution in
this direction [LMMW20], we highlight an intriguing behavior of the rules forming the cutting planes
proof system: the production of irrelevant literals. Such literals have no impact on the truth value of
the constraints in which they appear. However, we show that they harm the solver deductive power by
leading to the production of weaker constraints when they appear than when they do not. In a second
contribution [LMW20], we show that one can efficiently get rid of irrelevant literals by the application
of the weakening rule, at the price of also weakening away relevant literals. Yet, we empirically demon-
strate that carefully choosing how to apply the weakening rule (which is required by pseudo-Boolean
solvers) may also improve their runtime. In our third contribution, we show that this runtime may also
be improved by the adaption of many of the strategies implemented in CDCL SAT solvers to the pseudo-
Boolean case, especially by taking into account the current assignment and the coefficients appearing in
the constraints.
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Introduction

Representing and reasoning from pieces of propositional information is of major importance in computer
science, and specifically in artificial intelligence (AI). Accordingly, many languages and data struc-
tures have been pointed out so far for this purpose. In this context, an important issue is to choose
which language to use, considering the information to be represented and which operations must be sup-
ported [GKPS95]. This is not a trivial issue since there exist many different languages for representing
propositional information, and none of them is the best one in an absolute way. Tradeoffs must be looked
for.

The choice of the language to be used actually depends on the operations that are expected in the
context of the application being considered. To help in making this choice, a knowledge compilation
map has been introduced in [DM02]. It suggests to make the decision on several criteria, based on both
the spatial and temporal efficiency of the languages.

A particularly interesting language for representing propositional information is that of formulae
in Conjunctive Normal Form (CNF). Indeed, one often needs to represent a set of laws or constraints
to be interpreted conjunctively, for which clauses are particularly adapted, while being simple objects.
This explains why so many benchmarks have been encoded as CNF formulae in different applications
of AI (often written using the DIMACS format [DIM93]). This also explains the development of a rich
ecosystem around these formulae [SAT99, BHvMW09].

However, the simplicity of clauses is also a drawback: they do not allow to represent efficiently some
important constraints. For instance, stating thatm propositional variables among nmust be set to true re-
quires an exponential number of clauses in general [DGP04], unless one adds new variables. Depending
on the application, adding new variables may be permitted, and one can rely on CNF encodings that take
advantage of so-called auxiliary variables to make the CNF formula smaller in practice than the CNF
representations that only uses the original variables. However, adding such variables may be undesirable
in some circumstances, especially as doing so does not preserve logical equivalence. In this case, one
needs to use a language that is better adapted to such constraints, as that of pseudo-Boolean constraints.

Pseudo-Boolean constraints are generalizations of clauses that allow to consider linear equations or
inequations over Boolean variables, and are strongly related to so-called threshold functions [CLH11,
Chapter 9]. Using pseudo-Boolean formulae in place of CNF formulae has several advantages. In-
deed, in addition to be more space efficient than clauses [DGP04], pseudo-Boolean constraints also
provide a more natural way to represent a wide variety of constraints (for instance, the subset-sum
or knapsack problems can basically be encoded using a single pseudo-Boolean constraint). As they
generalize clauses, it is also possible to efficiently represent any CNF formula as a pseudo-Boolean
formula. One can also adapt the tools developed for CNF formulae to deal with pseudo-Boolean con-
straints [MS97, WS01, CK05, SS06, Dix04, LP10, EN18].

In this first part of the document, we present some theoretic properties of pseudo-Boolean formulae
and their encodings. In Chapter 1, we introduce different frameworks for representing information,
based on propositional logic and pseudo-Boolean constraints. Based on complexity considerations, we
also study how to choose a representation language that fits one’s needs based on the criteria at work in
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the knowledge compilation map [DM02].
Chapter 2 studies pseudo-Boolean constraints from a knowledge representation perspective. We

first investigate some intrinsic properties of pseudo-Boolean constraints, and exhibit several important
differences between such constraints and clauses. We then consider pseudo-Boolean and cardinality
constraints as representation languages for propositional information, and compare these languages
to many well-known propositional languages, using the criteria of the knowledge compilation map.
This work has been published at the International Joint Conference in Artificial Intelligence (IJCAI)
in 2018 [LMMW18].

In Chapter 3, we consider bounded width CNF formulae where the width is measured by different
graph width measures associated with CNF formulae. We focus on the expressiveness of these formulae
in the model of CNF encodings with auxiliary variables. On the one hand, we show that bounding the
width leads to a dramatic loss of expressiveness, restricting the formulae to those of low communication
complexity. On the other hand, we show that there are two classes of width measures, one containing pri-
mal treewidth and the other incidence cliquewidth, such that in each class the width of optimal encodings
only differs by constant factors. Moreover, between the two classes the width differs at most by a factor
logarithmic in the number of variables. This work has been published at the International Conference
on Theory and Practice of Satisfiability Solving (SAT) in 2019 [MW19] and in the Journal of Artificial
Intelligence Research (JAIR) in 2020 [MW20].
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Chapter 1

Formal Preliminaries

Pseudo-Boolean constraints, and more generally propositional logic, are simple but powerful languages
that may be used to represent pieces of knowledge, and to perform some reasoning on them. However,
the simplicity of these frameworks has an important drawback: in practice, some tasks may be compu-
tationally hard to perform, and may thus require a lot of time to be completed. For many applications,
especially those involving interactions with users, this is not acceptable, as the operations must be exe-
cuted within a limited amount of time. In this case, compiling the representation, i.e., translating it into
a different language in which performing the wanted operations is easier, is particularly useful. In this
chapter, we introduce the notions used throughout the document regarding these different frameworks.

1.1 Definitions and Notations

Before getting to the heart of the matter, let us start by introducing some definitions and notations for the
different objects of the frameworks we study.

1.1.1 Propositional Logic

Let us first consider propositional logic, for which we give some notions to describe its syntax and its
semantics.

The set of propositional formulae PROPPS , written on the set PS of propositional variables
(or simply, variables), is recursively defined as the smallest set (for inclusion) satisfying the
following statements:

• for all v ∈ PS ∪ {⊥,⊤}, v ∈ PROPPS ,
• if φ,ψ ∈ PROPPS , then ¬φ, (φ ∧ ψ), (φ ∨ ψ) ∈ PROPPS .

Definition 1 (Propositional Formula)

For more readability, parentheses required in the second point of the definition above are often
left out when the formula is unambiguous without these parentheses.

Remark 1

7



Chapter 1. Formal Preliminaries

When considering a propositional formula, we generally focus on the variables appearing in this
formula, which are denoted as follows.

Given a propositional formula φ, the set of propositional variables appearing in φ is denoted
var(φ).

Notation 1

Let φ be a ∨ ¬(¬(b ∨ c) ∨ d). φ is a propositional formula, with var(φ) = {a, b, c, d}.

Example 1

We also often need to evaluate the space required to represent a formula. To this end, we define the
notion of size as follows.

The size of a formula φ, denoted |φ|, is the number of occurrences of the different symbols
(variables and connectives) used to write the formula.

Definition 2 (Size of a Propositional Formula)

As parentheses are only used to clarify the expression of the formula, they are not counted in
the size of the formula.

Remark 2

Let us consider the formula φ in Example 1 above. We have |φ| = 9.

Example 2

Having introduced the syntax of propositional logic, let us now introduce the semantics of this lan-
guage. Formulae as defined above are generally used to represent Boolean functions.

A Boolean function is a total function f : Bn → B mapping a set of propositional variables
x1, . . . , xn to a Boolean value from B = {0, 1}.
For a given X = (x1, . . . , xn), if f(X) = 0, we say that f rejects X while, if f(X) = 1, we
say that f accepts X .

Definition 3 (Boolean Function)

8



1.1. Definitions and Notations

The representation of such Boolean functions with propositional formulae is achieved thanks to the
notion of interpretation.

Let V ⊆ PS . An interpretation (or assignment) I over V is a total function mapping each
variable v ∈ V to a Boolean value in B = {0, 1}.
Given a propositional formula φ, an interpretation I is said to be partial with respect to φ
when V ⊂ var(φ), and complete when var(φ) ⊆ V .

Definition 4 (Interpretation)

Let φ be a propositional formula and I a partial interpretation of φ over a set of propositional
variables V ⊆ var(φ). An interpretation I ′ is an extension of I if and only if I ′ is defined over
a set V ′ such that V ⊆ V ′ and, for all v ∈ V , we have I ′(v) = I(v).

Definition 5 (Extension of a Partial Interpretation)

From now on, and unless otherwise specified, any interpretation is assumed to be complete.

Let φ,ψ ∈ PROPPS . The value of a propositional formula under an interpretation I is
recursively defined as:

• I(⊥) = 0 and I(⊤) = 1,
• if φ is a propositional variable v, then I(φ) = I(v),
• negation: I(¬φ) = 1− I(φ),
• conjunction: I(φ ∧ ψ) = min(I(φ), I(ψ)), and
• disjunction: I(φ ∨ ψ) = max(I(φ), I(ψ)).

Definition 6 (Semantics)

A model (resp. counter-model) of propositional formula φ is a complete interpretation I such
that I(φ) = 1 (resp. I(φ) = 0).

Definition 7 (Model, Counter-Model)

Let us consider again the formula φ given by a∨¬(¬(b∨c)∨d). The interpretation I given by
I(a) = 1 and I(b) = I(c) = I(d) = 0 is a model of φ. On the contrary, the interpretation I ′

with I ′(a) = I ′(b) = I ′(c) = 0 and I ′(d) = 1 is a counter-model of φ.

Example 3

9



Chapter 1. Formal Preliminaries

Let φ and ψ be two propositional formulae. We say that φ logically entails (or simply en-
tails) ψ, denoted φ |= ψ, if and only if every model of φ is a model of ψ.

Definition 8 (Logical Entailment)

With the definition of logical entailment above, we have φ |= ψ if and only if φ ∧ ¬ψ |= ⊥.

Remark 3

The relation |= is transitive: for any formulae φ, ψ and ξ, if φ |= ψ and ψ |= ξ, then φ |= ξ.

Remark 4

Let us consider again the formula φ given by a ∨ ¬(¬(b ∨ c) ∨ d). Let ψ be the formula
a ∨ b ∨ ¬d. We have that φ |= ψ as each time φ is true, ψ is also true:

a b c d (b ∨ c) ¬(b ∨ c) ¬(b ∨ c) ∨ d ¬(¬(b∨ c)∨ d) φ ψ

0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 1 0 1 0 0 1 1 1
0 0 1 1 1 0 1 0 0 0
0 1 0 0 1 0 0 1 1 1
0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 1
0 1 1 1 1 0 1 0 0 1
1 0 0 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1 1
1 0 1 0 1 0 0 1 1 1
1 0 1 1 1 0 1 0 1 1
1 1 0 0 1 0 0 1 1 1
1 1 0 1 1 0 1 0 1 1
1 1 1 0 1 0 0 1 1 1
1 1 1 1 1 0 1 0 1 1

Example 4

Two propositional formulae φ and ψ are logically equivalent (or simply equivalent), de-
noted φ ≡ ψ, if they have the same models.

Definition 9 (Logical Equivalence)

10



1.1. Definitions and Notations

Let φ, ψ and ξ be propositional formulae. Then, we have

• commutativity: φ ∨ ψ ≡ ψ ∨ φ and φ ∧ ψ ≡ ψ ∧ φ
• associativity: (φ ∨ ψ) ∨ ξ ≡ φ ∨ (ψ ∨ ξ) and (φ ∧ ψ) ∧ ξ ≡ φ ∧ (ψ ∧ ξ)
• idempotency: φ ∨ φ ≡ φ and φ ∧ φ ≡ φ
• distributivity: φ ∨ (ψ ∧ ξ) ≡ (φ ∨ ψ) ∧ (φ ∨ ξ) and φ ∧ (ψ ∨ ξ) ≡ (φ ∧ ψ) ∨ (φ ∧ ξ)
• involution: ¬¬φ ≡ φ
• De Morgan’s laws: ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ and ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ

Theorem 1 (Folklore)

Let us again consider the formula φ given by a ∨ ¬(¬(b ∨ c) ∨ d). We have:

φ ≡ a ∨ (¬¬(b ∨ c) ∧ ¬d)
≡ a ∨ ((b ∨ c) ∧ ¬d)
≡ (a ∨ b ∨ c) ∧ (a ∨ ¬d)

Example 5

With the notion of logical equivalence above, we can now introduce normal forms. Such normal
forms allow to represent any propositional formula under a specific form that is equivalent to the original
formula. This is for example the case of the Conjunctive Normal Form.

A literal ℓ is a propositional variable v or its negation ¬v.

The negation of a literal ℓ, denoted ¬ℓ is the opposite literal of ℓ. If v is a propositional variable
and ℓ = v, then ℓ = ¬v. If ℓ = ¬v, then ¬ℓ = ¬¬v. As ¬ is an involutive connective (see
Theorem 1), we simply write ¬ℓ = v for the purposes of notation.

Definition 10 (Literal)

Given a literal ℓ, we denote by var(ℓ) the variable v such that either ℓ = v or ℓ = ¬v.

Notation 2

For more readability, we also use the notation v̄ to represent the negation of variable v
(i.e., ¬v). Similarly, the notation ℓ̄ is used to represent the complementary of the literal ℓ
(i.e., ¬ℓ).

Notation 3

11



Chapter 1. Formal Preliminaries

A clause is a formula having the form of a disjunction of literals, or ⊥.

Definition 11 (Clause)

The disjunctions a ∨ b ∨ c and a ∨ ¬d are clauses.

Example 6

Given a clause γ, we denote by lit(γ) the set of the literals appearing in γ.

Notation 4

A propositional formula is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses,
or ⊤.

Definition 12 (Conjunctive Normal Form)

The formula ψ = (a ∨ b ∨ c) ∧ (a ∨ ¬d) is a CNF formula that is equivalent to the formula
φ = a ∨ ¬(¬(b ∨ c) ∨ d) (see Example 5).

Example 7

Given a CNF formula φ, we denote by lit(φ) the set of the literals appearing in φ or ⊤.

Notation 5

It is often convenient to represent a clause as a set of literals, and a CNF formula as a set of
clauses. In particular, given a literal ℓ, a clause γ and a CNF formula φ, ℓ ∈ γ denotes that ℓ
is a literal of γ (i.e., ℓ ∈ lit(γ)), and γ ∈ φ denotes that γ is a clause of φ. This makes sense
given that ∧ and ∨ are commutative, associative and idempotent connectives (see Theorem 1).

Remark 5 (Representation)

The CNF formula (a ∨ b ∨ c) ∧ (a ∨ ¬d) is represented as {{a, b, c}, {a,¬d}}.

Example 8

Similarly to the CNF defined above, we may also define Disjunctive Normal Form (DNF).

12
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A term (or cube) is a formula having the form of a conjunction of literals, or ⊤.

Definition 13 (Term, Cube)

The conjunctions b ∧ ¬d and c ∧ ¬d are terms.

Example 9

A propositional formula is in Disjunctive Normal Form (DNF) if it is a disjunction of terms,
or ⊥.

Definition 14 (Disjunctive Normal Form)

The formula ψ = a ∨ (b ∧ ¬d) ∨ (c ∧ ¬d) is a DNF formula that is equivalent to the formula
φ = a ∨ ¬(¬(b ∨ c) ∨ d).

Example 10

The satisfiability problem (or SAT problem, for short) consists in checking whether a propositional
formula φ is consistent.

A propositional formula φ is consistent (or satisfiable) if and only if it has at least one model.
Otherwise, φ is said to be contradictory (or inconsistent, unsatisfiable).

Definition 15 (Consistency, Contradiction)

The formula φ = a ∨ ¬(¬(b ∨ c) ∨ d) is consistent, as it admits at least one model (see
Example 3). On the contrary, the formulae a ∧ ¬a and a ∧ (¬a ∨ b) ∧ ¬b are inconsistent.

Example 11

The empty clause is the clause ⊥. It is equivalent to an empty disjunction, and is thus always
contradictory.

Definition 16 (Empty Clause)

A propositional formula φ is valid if and only if every interpretation of var(φ) is a model of φ.
Equivalently, φ is valid if and only if ¬φ is contradictory.

Definition 17 (Validity)

13
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The clause a ∨ ¬a is valid.

Example 12

The empty term is the term ⊤. It is equivalent to an empty conjunction, and is thus always
valid.

Definition 18 (Empty Term)

1.1.2 Pseudo-Boolean Constraints

In the previous section, we only considered propositional formulae that are defined using logical con-
nectives. We now consider an extension of this language, that allows the use of elementary arithmetic
operations, which is made possible by the numerical interpretation of the propositional variables, taking
their value in {0, 1}. This language is that of pseudo-Boolean formulae, composed of conjunctions of
pseudo-Boolean constraints.

A pseudo-Boolean constraint is a constraint of the form
∑n

i=1 αiℓi △ δ, in which:

• for all i ∈ {1, . . . , n}, αi ∈ Z,
• for all i ∈ {1, . . . , n}, ℓi is a literal,
• △∈ {<,≤,=,≥, >}, and
• δ ∈ Z.

Each αi is called a weight or coefficient, and δ is called the degree (of falsity) or threshold of
the constraint.

Definition 19 (Pseudo-Boolean Constraint)

Given a pseudo-Boolean constraint χ, we denote by var(χ) the set of propositional variables
appearing in χ and by lit(χ) the set of literals appearing in χ.

Notation 6

Let us now generalize the notion of size that we consider for propositional formulae to the case of
pseudo-Boolean formulae.

Let χ be the pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ. The size of χ, denoted |χ|, is given
by |χ| =

∑n
i=1(⌈log2(αi + 1)⌉+ 1) + ⌈log2(δ + 1)⌉.

In other words, the size of χmeasures both the number of literals of the constraint and the size
of its coefficients and degree.

Definition 20 (Size of a Pseudo-Boolean Constraint)

14



1.1. Definitions and Notations

Let us consider the following constraints:

• χ1 : 6b̄+ 6c+ 4e+ f + g + h ≥ 7
• χ2 : 5a+ 4b+ c+ d ≥ 6
• χ3 : a+ d+ ē ≥ 2
• χ4 : b̄+ c+ e ≥ 1

We have that |χ1| = 21, |χ2| = 16, |χ3| = 8 and |χ4| = 7.

Example 13

Observe that the constraint χ4 above, which is equivalent to γ = ¬b∨ c∨ e, does not have the
same size as the one of γ, as |χ4| = 7 while |γ| = 6.
While these two measures are different, this is not a problem, as they always differ at most by
a linear factor. Thus, this difference does not impact our results in the following.

Remark 6

Similarly to propositional formulae, we define the semantics of a pseudo-Boolean constraint through
the definition of a model of this constraint.

Let χ be the pseudo-Boolean constraint
∑n

i=1 αiℓi △ δ An interpretation I over V such that
var(χ) ⊆ V is a model of χ if and only if the inequality

∑n
i=1 αiI(ℓi) △ δ is satisfied. It is

said to be a counter-model of χ otherwise.

Definition 21 (Model, Counter-Model of a Pseudo-Boolean Constraint)

The interpretation I with I(b) = I(c) = I(e) = I(g) = I(h) = 0 and I(a) = I(d) =
I(f) = 1 is a model of the four constraints below:

• 6b̄+ 6c+ 4e+ f + g + h ≥ 7
• 5a+ 4b+ c+ d ≥ 6
• a+ d+ ē ≥ 2
• b̄+ c+ e ≥ 1

The interpretation I ′ given by I ′(a) = I ′(c) = I ′(d) = I ′(e) = I ′(g) = I ′(h) = 0 and
I ′(b) = I ′(d) = I ′(f) = 1 is a counter model of all these constraints.

Example 14

The definitions of logical entailment, logical equivalence, consistency, contradiction and validity
defined in the previous section can be lifted to pseudo-Boolean constraints by using the definition above
for the notion of model.

Let us now define a normalized form for pseudo-Boolean constraints.

15



Chapter 1. Formal Preliminaries

A normalized pseudo-Boolean constraint is a pseudo-Boolean constraint of the form∑n
i=1 αiℓi ≥ δ, in which

• for all i ∈ {1, . . . , n}, ℓ̄i ̸∈ lit(χ),
• for all i ∈ {1, . . . , n}, αi ∈ N, and
• δ ∈ N.

Definition 22 (Normalized Pseudo-Boolean Constraint)

The following proposition justifies the name of normalized pseudo-Boolean constraint in the defini-
tion above.

Any pseudo-Boolean constraint may be written as a conjunction of normalized pseudo-
Boolean constraints that is equivalent to the original constraint in time linear in the size of
the constraint.

Proposition 1 (From [Bar95, BM84a, BM84b, RM09b])

The constraint 6b̄+ 6c+ 4e+ f + g + h ≥ 7 is a normalized pseudo-Boolean constraint.

The constraint 5ā + 4b̄ + c̄ + d̄ < 5 is a non-normalized pseudo-Boolean constraint. A
normalized form for this constraint is 5a+ 4b+ c+ d ≥ 7, as shown below:

5ā+ 4b̄+ c̄+ d̄ < 5 ≡ 5ā+ 4b̄+ c̄+ d̄ ≤ 4 (left hand side in N)

≡ −5ā− 4b̄− c̄− d̄ ≥ −4 (×− 1)

≡ −5(1− a)− 4(1− b)− (1− c)− (1− d) ≥ −4 (ℓ̄ = 1− ℓ)
≡ −5 + 5a− 4 + 4b− 1 + c− 1 + d ≥ −4
≡ 5a+ 4b+ c+ d− 11 ≥ −4
≡ 5a+ 4b+ c+ d ≥ 11− 4

≡ 5a+ 4b+ c+ d ≥ 7

Example 15

In the following, we apply Proposition 1 and thus consider, without loss of generality, that all pseudo-
Boolean constraints are normalized. We also consider two main kinds of normalized pseudo-Boolean
constraints, that are widely used when encoding a large variety of problems.

A cardinality constraint is a pseudo-Boolean constraint of the form
∑n

i=1 ℓi ≥ δ. In other
words, a cardinality constraint is a pseudo-Boolean constraint in which all coefficients are 1.

Definition 23 (Cardinality Constraint)

16



1.1. Definitions and Notations

The constraint a+ d+ ē ≥ 2 is a cardinality constraint.

Example 16

A clause is a pseudo-Boolean constraint of the form
∑n

i=1 ℓi ≥ 1. In other words, a clause
is a pseudo-Boolean constraint in which all coefficients and the degree are 1. In this case, we
have

∑n
i=1 ℓi ≥ 1 ≡

∨n
i=1 ℓi. Moreover, we have that the empty clause ⊥ is equivalent to∑0

i=1 ℓi ≥ 1, i.e, 0 ≥ 1.

Observation 1 (Clauses and Pseudo-Boolean Constraints)

The constraint b̄+ c+ e ≥ 1 is a clause that is equivalent to ¬b ∨ c ∨ e.

Example 17

The definition of normalized pseudo-Boolean constraints, as given by Definition 22, has been
designed so that cardinality constraints generalize clauses, and normalized pseudo-Boolean
constraints generalize cardinality constraints. This way, it is easier to adapt the algorithms that
have been developed for clauses and CNF formulae.

Remark 7

It is worth noting that a single pseudo-Boolean constraint is equivalent to infinitely many other
pseudo-Boolean constraints (see, e.g., [Knu08, Section 7.1.1]). This is not only due to the fact that
one may multiply the coefficients and degree of a constraint by a constant to get an equivalent formula,
but also because we can use different coefficients while preserving the semantics of the constraint, as
illustrated in the example below.

Observe that the following constraints are all equivalent:

• 18a+ 12b+ 6c ≥ 22

• 9a+ 6b+ 3c ≥ 11

• 9a+ 6b+ 3c ≥ 12

• 8a+ 6b+ 3c ≥ 11

• 7a+ 3b+ 3c ≥ 10

• 3a+ 2b+ c ≥ 4

• 3a+ b+ c ≥ 4

• 2a+ b+ c ≥ 3

Example 18

17



Chapter 1. Formal Preliminaries

The normal form of pseudo-Boolean constraints given in Definition 22 does not uniquely characterize
a given pseudo-Boolean constraint. In order to get a canonical representation for a pseudo-Boolean
constraint, one may for instance use the Chow parameters of this constraint, as described in [CLH11,
Section 9.6]. However, an exponential time is required to compute these parameters (even though a
pseudo-polynomial time algorithm exists for computing them, see e.g. [CLH11, Section 9.6.3]).

1.1.3 Pseudo-Boolean Constraints and CNF Formulae

As mentioned in Definition 1, clauses are a particular type of pseudo-Boolean constraints. As such,
it is straightforward to translate any CNF formula into a pseudo-Boolean formula, simply by convert-
ing the logical representation of every clause to a pseudo-Boolean representation. However, retrieving
pseudo-Boolean constraints from clauses encoding them is a difficult task. This is why different algo-
rithms have been proposed to retrieve such constraints, paying a particular attention to the cardinality
constraints encoded as clauses [BLLM14, EN20]. The other way around, it is also possible to find a
CNF representation of a pseudo-Boolean constraint.

A CNF representation of a pseudo-Boolean formula φ is a CNF formula ψ such that φ ≡ ψ
and such that var(φ) = var(ψ).

Definition 24 (CNF Representation)

The following proposition gives a CNF representation for any pseudo-Boolean constraint.

Let χ be the pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ. Let C be the set defined as

C =

L|L ⊆ {ℓ1, . . . , ℓn} and
∑
i|ℓi ̸∈L

αi < δ


The following CNF formula is equivalent to the constraint χ:∧

L∈C

∨
ℓi∈L

ℓi

Proposition 2 ([BSS94])

18



1.1. Definitions and Notations

Let us consider the pseudo-Boolean constraint χ given by 4a+ 2b+ c+ d ≥ 6. If we use the
same notation as in Proposition 2 above, we have:

D = {{a}, {a, b}, {a, c}, {a, d},
{b, c}, {b, d}, {a, b, c}, {a, b, d},

{a, c, d}, {b, c, d}, {a, b, c, d}}

We remark here that, each time one of the sets L ∈ D is a subset of another set L′ ∈ D,
we can remove L′. Indeed, consider for instance the sets {a} {a, b}. These two sets will
produce the clauses a and a ∨ b, respectively. However, since a |= a ∨ b, the second clause
is redundant in the presence of the first one, so that we can remove it. As a consequence, the
CNF representation of χ is given by

χ ≡ (a) ∧ (b ∨ c) ∧ (b ∨ d)

Example 19

Proposition 2 gives a representation of a pseudo-Boolean constraint into clauses that may be exponen-
tially large, in particular when considering cardinality constraints, because of the following proposition.

Let κ be the cardinality constraint given by
∑n

i=1 ℓi ≥ δ. The smallest CNF representation of
κ is given by ∧

L⊆lit(κ)
|L|=δ+1

∨
ℓi∈L

ℓi

Proposition 3 ([DGP04])

Proposition 3 shows in particular that a cardinality constraint may represent exponentially many
clauses, for instance if we consider δ = 2n in the proposition: in this case,

(
2n
n+1

)
clauses are needed.

Let us consider the cardinality constraint κ given by a+ b+ c̄+ d ≥ 2. A CNF representation
of κ is the conjunction of the clauses that contain 3 literals from lit(κ) = {a, b, c̄, d}. We thus
have:

κ ≡ (a ∨ b ∨ c̄) ∧ (a ∨ b ∨ d) ∧ (a ∨ c̄ ∨ d) ∧ (b ∨ c̄ ∨ d)

Example 20

Thus, computing a CNF representation of a pseudo-Boolean formula may lead to an exponential
blow up in the size of the representation. This is why using CNF encodings is often preferred.

19
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Let V and A be two disjoint sets of variables, and let φ and ψ be two formulae such that
var(φ) = V and var(ψ) = V ∪A. ψ is a CNF encoding of φ if and only if ψ is a CNF formula
and:

• for every model M of φ, there is an extension M ′ of M to A that is a model of ψ, and
• for every counter-model C of φ, no extension M ′ of M to A is a model of ψ

Variables from A are called auxiliary variables.

Definition 25 (CNF Encoding)

The use of auxiliary variables in CNF encodings is particularly useful, as they allow to produce for-
mulae that are smaller in practice than the CNF representations of the original formula. This explains
why many CNF encodings have been designed, as for instance Tseitin’s transformation [Tse68], or the
translation proposed by Plaisted and Greenbaum [PG86]. However, such encodings do not always pre-
serve equivalence. In general, they only ensure that the produced formula is equisatisfiable to the original
formula.

Two formulae φ and ψ are said to be equisatisfiable when φ is satisfiable if and only if ψ is
satisfiable.

Definition 26 (Equisatisfiability)

In the case of pseudo-Boolean constraints, many different CNF encodings have been proposed, such
as those implemented in MiniSat+ [ES06], NaPS [SN15] or OpenWBO [MML14]. These encodings are
studied later in this document (for more details, see Section 4.3).

1.2 Complexity Theory

In this section, we give some elementary notions of computational complexity that we use throughout
the document. We assume the reader to be familiar with those notions, and refer to the literature for more
details [GJ79, Pap94].

The complexity of a given problem is a measure of the hardness of solving this particular problem.
Here, a problem is considered in a broad sense, as a statement that describes the input we have and
the output that must be produced given this input. In the following, the complexity of a problem is
evaluated through the runtime of algorithms that solve this problem, following the RAM model described
in [CLRS09].

The running time (or simply runtime) of an algorithm on a particular input X is a function f
mapping X to the number of elementary instructions required for the execution of the algo-
rithm on this input.

Definition 27 (Running Time of an Algorithm)
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As it is common practice in the literature, we consider in the following that the runtime of an algo-
rithm depends on the size of its input, and consider the worst case running time, defined as follows.

Let A be an algorithm having runtime f and let s be a function computing the size of any
input X of A. The worst case runtime of A on inputs of size n is defined as a function r given
by:

r(n) = max{f(X)|s(X) = n}

In this case, we say that A runs in time r(n).

Definition 28 (Worst Case Running Time of an Algorithm)

With the definition above, observe that the worst case running time is a upper bound of the actual
runtime of the considered algorithm, as the number of elementary instructions may vary on different
inputs of the same size. It is thus convenient to consider an order of growth for the runtime, most of the
time through the big-oh notation (Knuth-Landau).

Given a function r : N → N and a function f : N → N, we say that r is in O(f(n)),
denoted r(n) = O(f(n)), if there exists n0 ∈ N and a constant c ∈ N such that, for any
n ≥ n0, r(n) ≤ cf(n).

Definition 29 (O(·))

In the following, we only consider the worst case runtime, and thus simply say runtime to refer to
the worst case runtime. Let us now define the complexity of the algorithm.

The (time) complexity of an algorithm is said to be in O(f(n)) when the runtime of the algo-
rithm is upper bounded by f(n).

Definition 30 (Complexity of an Algorithm)

We often prefer to refer to problems rather than algorithms that solve these problems. It is thus
convenient to consider the complexity of a problem.

We say that the complexity of a problem P is inO(f(n)) if there is an algorithm that solves P
and runs in time O(f(n)).

Definition 31 (Complexity of a Problem)

In the following, we mostly focus on decision problems, i.e., problems that consist in checking
whether a given input satisfies a particular property. When this is the case, there exists a polynomial-sized
certificate (that the algorithm may output or not) that proves that indeed, the input satisfies the property.
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They correspond to formal languages L over an alphabet V . The positive instances of the problems (i.e.,
the ones satisfying the property), are the elements of V ∗ that belong to L. We now consider different
complexity classes of decision problems, defined below.

A problem belongs to the complexity class P if and only if its complexity is inO(p(n)) where p
is a fixed polynomial. In this case, we also say that the problem may be solved in polynomial
time, or that it is tractable.

Definition 32 (Complexity Class P)

A problem belongs to the complexity class NP if and only if there exists a polynomial time
algorithm A such that, for every positive instance X of P , there is a certificate C such that A
accepts when given as input X and C. Moreover, for every negative instance X of P and any
certificate C, A rejects.

Definition 33 (Complexity Class NP)

Clearly, P ⊆ NP. However, we do not know whether P = NP, and it is commonly conjectured
that actually P ̸= NP.

Remark 8

The decision problem consisting in checking whether a given input satisfies a property Π
belongs to the complement of the complexity class NP, denoted coNP, if and only if the
decision problem checking whether a given input does not satisfy the property Π belongs to
the complexity class NP.

Definition 34 (Complexity Class coNP)

In the following, the complexity class C represents either the complexity class NP or coNP. To
determine whether a given problem belongs to the complexity class C, we use the notions defined below.

A problem P is reduced in polynomial time to a problem P ′ if and only if there exists a
polynomial-time algorithm A that, given an instance X of P , computes an instance X ′ of P ′

such that X is a positive instance of P if and only if X ′ is a positive instance of P ′.

Definition 35 (Polynomial Reduction)
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A problem P ′ is said to be C-hard if and only if for every problem P in the complexity class C,
there exists a polynomial reduction from P to P ′.

Definition 36 (Hardness)

A problem is said to be C-complete if and only if it is C-hard and it belongs to the complexity
class C.

Definition 37 (Completeness)

In order to prove that a problem P is C-hard, it is enough to identify a C-complete problem and a
polynomial reduction reducing this problem to P (since reductions are transitive). For instance, to prove
that a problem is NP-hard, one can take advantage to the following theorem and reduce the SAT problem
described in the previous section to the considered problem.

Propositional satisfiability is NP-complete.

Theorem 2 ([Coo71])

If there exists a polynomial time algorithm for solving any NP-complete problem (e.g., the
SAT problem), then P = NP.

Remark 9

1.3 Knowledge Compilation

A convenient way of representing pieces of propositional knowledge is to use propositional formulae.
However, reasoning with such formulae may be computationally hard, and some operations may require
an exponential time to be performed. For many applications, and in particular those involving interactions
with users, runtime guarantees must be provided, which is incompatible with the time complexity of the
operations to perform. To deal with this complexity, knowledge compilation [CD97] has been initiated
about thirty years ago, starting from the following observation: most of the time, knowledge encoded
with a propositional formula does not change much over the time.
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Intuitively, knowledge compilation takes advantage of this fact to perform the “hard” operations once
and for all, in an offline process, so that the operations to perform online become efficient. Ideally, for
applications requiring runtime guarantees, the target complexity class is P, the complexity class of the
problems solvable in polynomial time. To this purpose, many different compilation languages have been
designed to reach this goal. The following section presents these languages.

1.3.1 Some Compilation Languages

Most of the compilation languages we study are based on the notion of circuit, that generalizes the notion
of formula.

A circuit is a directed acyclic graph Γ such that:

• the root and internal nodes of Γ are gates, i.e., logical operators (∨, ∧ or ¬), and
• the leaves of Γ are propositional variables or Boolean constants.

The root of Γ is called an output node. The size of the circuit Γ, denoted |Γ|, is the number of
nodes in Γ.

Definition 38 (Circuit)

As it is common when considering circuits with structurally restricted underlying graphs, we assume
that every input variable appears in only one input gate. This property is sometimes called the read-
once property. Using such circuits, we can represent any propositional formula, following the semantics
defined below.

Let I be an interpretation of the variables of a circuit. The value of a node n in the circuit is
recursively defined as:

• If n is a leaf labeled by a constant b, then I(n) = I(b).
• If n is a leaf labeled by a variable v, then I(n) = I(v).
• If n is a ¬ node having the node n′ as child, then I(n) = 1− I(n′).
• If n is an ∧ node having the nodes n1, . . . , nk as children, then I(n) =
min(I(n1), . . . , I(nk)).
• If n is an ∨ node having the nodes n1, . . . , nk as children, then I(n) =
max(I(n1), . . . , I(nk)).

Definition 39 (Semantics of a Circuit)

The definition of model given in Definition 7 can trivially be extended to circuits. Similarly, the
definitions of logical entailment, logical equivalence, consistency, contradiction and validity defined in
the previous section can be lifted to circuits based on this extended notion of model.
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1.3. Knowledge Compilation

Let us consider again the formula φ given by (a ∨ b ∨ c) ∧ (a ∨ ¬d). A representation of this
formula as a circuit is given below:

∧

∨ ∨

b c a ¬

d

Example 21

Most of the (circuit-based) compilation languages that we study are based on the language of circuit
in Negation Normal Form (NNF).

A circuit is said to be in Negation Normal Form (NNF) when all negation nodes (¬) of the
associated circuit only have leaves as children.

Definition 40 (Negation Normal Form)

Let us consider again the formula φ given by a ∨ ¬(¬(b ∨ c) ∨ d). The representation of this
formula as an NNF circuit is given below:

∨

a ∧

¬d∨

b c

Example 22

As negations are always parents of leaves in a formula in NNF, we often do not represent them
as internal nodes. Instead, we prefer to have literals as leaves, as in the example above.

Notation 7
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In a previous section, we already have mentioned two languages that are subsets of the NNF lan-
guage, namely the CNF language (see Definition 12) and the DNF language (see Definition 14). From
these two languages, we can define two other subsets of NNF, which are the language IP of prime impli-
cants and PI of prime implicates.

Let φ be a circuit. A prime implicant τ of φ is a term such that τ |= φ and, for any term ψ
such that ψ |= φ and τ |= ψ, then ψ ≡ τ .

Definition 41 (Prime Implicant)

a is a prime implicant of the formula φ ≡ a ∨ ¬(¬(b ∨ c) ∨ d)

Example 23

Let φ be a circuit. A prime implicate γ of φ is a clause such that φ |= γ and, for any clause ψ
such that φ |= ψ and ψ |= γ, then ψ ≡ γ.

Definition 42 (Prime Implicate)

a ∨ b ∨ c is a prime implicate of the formula φ ≡ a ∨ ¬(¬(b ∨ c) ∨ d).

Example 24

Let φ be a DNF (resp. CNF) formula. φ belongs to the language IP of prime implicants (resp.
to the language PI of prime implicates) if it is written as the disjunction of its prime implicants
(resp. the conjunction of its prime implicates).

Definition 43 (IP, PI)

Let φ be the formula a ∨ ¬(¬(b ∨ c) ∨ d). Its representation in the language IP is given by
a ∨ (b ∧ ¬d) ∨ (c ∧ ¬d) (see Example 10) while its representation in the language PI is given
by (a ∨ b ∨ c) ∧ (a ∨ ¬d).

Example 25

Let us now consider more general subsets of NNF, which are based on two properties that may be
considered in an NNF formula: decomposability and determinism.
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A conjunction φ1 ∧ . . . ∧ φn is said to be decomposable if and only if var(φi) ∩ var(φj) = ∅
for all i ̸= j, i.e., if the φi do not share any variable.

Definition 44 (Decomposability)

The conjunction b ∧ ¬d is decomposable, while the conjunction (a ∨ b ∨ c) ∧ (a ∨ ¬d) is not,
as a appears in both conjuncts.

Example 26

A disjunction φ1∨ . . .∨φn is said to be deterministic if and only if φi∧φj |= ⊥ for all i ̸= j,
i.e., if the φi do not share any model.

Definition 45 (Determinism)

The disjunction (b∧¬d)∨(¬b∧c∧¬d) is deterministic while the disjunction (b∧¬d)∨(c∧¬d)
is not. In the latter case, observe that, for instance, the model M such that M(b) =M(c) = 1
and M(d) = 0 is a model of both disjuncts.

Example 27

Decomposability and determinism are particularly useful, for instance, to compute the number
of models of a formula. Indeed, the number of models of a decomposable conjunction is
exactly the product of the number of models of each conjunct, and the number of models of a
deterministic disjunction is exactly the sum of the number of models of each disjunct, provided
that the two disjuncts are based on the same set of variables.

Remark 10

Based on these two properties, we can now define some sublanguages of NNF.

Given an NNF circuit φ, we say that φ is:

• in Decomposable NNF (DNNF) if all the conjunctions in φ are decomposable, and
• in deterministic Decomposable NNF (d-DNNF) if it is in DNNF and all the disjunctions

in φ are deterministic.

Definition 46 (DNNF, d-DNNF)
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Let φ be the formula a ∨ ¬(¬(b ∨ c) ∨ d). A representation of φ as a DNNF is given on the
left below, while a d-DNNF representation of φ is given on the right:

∨

a

b

∧

¬d c

∧

∨

a

∧

¬

∨

∧ ∧

b

¬

∧

¬ c

d

Example 28

Another main language on which different compilation languages are based is that of Binary Decision
Diagrams.

A Binary Decision Diagram (BDD) is a directed acyclic graph Γ such that:

• the root and internal nodes of Γ are decision nodes, i.e., nodes representing variables,
• each arc is labeled by either 0 or 1, so as to represent the assignment of the variable of

the node from which this arc starts from, and
• its leaves are exactly 0 and 1.

The size of the BDD Γ, denoted |Γ|, is the number of nodes in Γ.

Definition 47

As for circuits, it is possible to represent any propositional formula using a BDD, following the
semantics given below.

In a BDD, a path from the root to the leaf 0 (resp. 1) is a (partial or complete) interpretation
falsifying (resp. satisfying) the BDD.

Definition 48 (Semantics of a BDD)

28



1.3. Knowledge Compilation

Consider again the formula φ = a∨¬(¬(b∨c)∨d). The following diagram is a representation
of φ as a BDD (for more readability, solid lines are those labeled by 1 while dotted lines are
those labeled by 0).

a

b

c

d

1 0

Example 29

In the following, we mostly consider the following subsets of Binary Decision Diagrams.

A Free Binary Decision Diagram (FBDD) is a BDD in which all variables appear at most once
in each path from the root to any leaf of the BDD.

Definition 49 (Free Binary Decision Diagram)

Let φ be an FBDD and let< be a total order on var(φ). Then φ is said to be an Ordered Binary
Decision Diagram with respect to < (OBDD<) if and only if, for each decision node N in φ
and for each node M that is an ancestor of N in φ, we have vM < vN , where vM and vN are
the variables associated with the nodes M and N , respectively.
The language of Ordered Binary Decision Diagrams (OBDD) is defined as the union of all the
OBDD< languages.

Definition 50 (Ordered Binary Decision Diagram)
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Consider again the formula φ = a ∨ ¬(¬(b ∨ c) ∨ d). The BDD given in Example 29 is an
OBDD< for the order a < b < c < d.
Below is an OBDD< representing φ with respect to the order a < d < c < b.

a

d

c

b

1 0

Example 30

The list of compilation languages presented in this section is not exhaustive. The reader is referred
to the Knowledge Compilation Map [DM02] for more details about the numerous existing compilation
languages.

1.3.2 A Knowledge Compilation Map

In order to identify the most appropriate compilation language(s) for a given application, one may con-
sider the criteria of the Knowledge Compilation Map [DM02]. This map considers commonly used
compilation languages, and compares their spatial efficiency and their temporal efficiency with respect
to the queries and transformations they offer or not.

Expressivity and Succinctness

The first criterion of the knowledge compilation map we consider is the one evaluating the capacity of
a language to represent knowledge. For a given application, the language to choose must be expressive
enough to represent the information needed for the application.

A language L is said to be at least as expressive as another language L′, denoted L ≤e L
′ if and

only if, for every Boolean function f having a representation φ ∈ L′, there exists a formula
ψ ∈ L that also represents f .

Definition 51 (Expressiveness)

Another criterion to take into account when choosing a language for a particular application is its
spatial efficiency, characterized by its succinctness.
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A language L is said to be at least as succinct as another language L′, denoted L ≤s L′

if and only if there exists a polynomial p such that, for every Boolean function f having a
representation φ ∈ L′, there exists ψ ∈ L that also represents f and is such that |ψ| ≤ p(|φ|).

Definition 52 (Succinctness)

The relation ≤s is a pre-order.

Remark 11

Given two languages L and L′, we write L <s L
′ to denote that L ≤s L

′ and L ̸≤s L
′.

Notation 8

The common languages presented above, and all the others studied in the knowledge compilation
map are all as expressive as the others, since they are all fully expressive. Regarding their succinctness,
their comparison is given in Table 1.2.

NNF DNNF d-DNNF sd-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF ̸≤(1) ≤ ≤ ≤ ≤ ≤ ≤ ≤ ̸≤(1) ̸≤(1) ≤ ≤
d-DNNF ̸≤(1) ̸≤(1) ≤ ≤ ≤ ≤ ≤ ̸≤∗ ̸≤(1) ̸≤(1) ? ≤
sd-DNNF ̸≤ ̸≤ ≤ ≤ ≤ ≤ ≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤
FBDD ̸≤ ̸≤ ̸≤ ̸≤ ≤ ≤ ≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤
OBDD ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤ ≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤
OBDD< ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤
DNF ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤ ̸≤ ̸≤ ≤ ≤
CNF ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤ ≤ ̸≤ ≤
PI ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤ ̸≤ ̸≤(2)

IP ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤ ≤
MODS ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ̸≤ ≤

Table 1.2: Comparison of different compilation languages in terms of succinctness. In this table, if the
symbol ▷ appears in the row of the language R and in the column of the language C, then we have R ▷ C.
A ∗ represents that the result is true if NP ⊆ P. Results with a (1) come from [BCMS16], while results
with a (2) are from [Kal17]. Other results are from [DM02].

.

Queries Offered by a Compilation Language

Depending on the needs of the considered application, it is important to consider the temporal efficiency
of different queries on a formula represented by the language used to represent the information we have.
In particular, these criteria aim to identify which queries are tractable (i.e., solvable in polynomial time),
and which are not (unconditionally or unless P = NP). Such queries allow to answer different questions
with respect to the input representation that are presented below for a given compilation language L.
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A language L satisfies CO (resp. VA) if and only if there exists a polynomial time algorithm
verifying whether a given representation φ in L is consistent (resp. valid).

Definition 53 (COnsistency, VAlidity)

A language L satisfies CE if and only if there exists a polynomial time algorithm verifying
whether a given representation φ in L entails a given clause γ.

Definition 54 (Clausal Entailment)

A language L satisfies SE (resp. EQ) if and only if there exists a polynomial time algorithm
verifying, given two representations φ and ψ in L, whether φ entails ψ (resp. φ is equivalent
to ψ).

Definition 55 (Sentential Entailment, EQuivalence)

A language L satisfies IM if and only if there exists a polynomial time algorithm verifying
whether a given representation φ in L is entailed by a given term τ .

Definition 56 (IMplication by a term)

A language L satisfies CT if and only if there exists a polynomial time algorithm counting the
number of models of a given representation φ in L.

Definition 57 (CounTing)

A language L satisfies ME if and only if there exists a polynomial time algorithm enumerating
the models of a representation φ in L in polynomial time with respect to |φ| and the number
of models of φ.

Definition 58 (Model Enumeration)

Alternatively, a language L satisfies ME if and only if there exists an algorithm enumerating the
models of a representation φ in L with a polynomial delay between each enumerated model.
The results do not change if we consider this definition of ME instead of Definition 58.

Remark 12
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The properties of the different compilation languages of the knowledge compilation map in terms of
offered queries are given in Table 1.3.

CO VA CE IM EQ SE CT ME
NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF ✓ ◦ ✓ ◦ ◦ ◦ ◦ ✓
d-DNNF ✓ ✓ ✓ ✓ ? ◦ ✓ ✓
sd-DNNF ✓ ✓ ✓ ✓ ? ◦ ✓ ✓
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD ✓ ✓ ✓ ✓ ? ◦ ✓ ✓
OBDD ✓ ✓ ✓ ✓ ✓ ◦ ✓ ✓
OBDD< ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DNF ✓ ◦ ✓ ◦ ◦ ◦ ◦ ✓
CNF ◦ ✓ ◦ ✓ ◦ ◦ ◦ ◦
PI ✓ ✓ ✓ ✓ ✓ ✓ ◦ ✓
IP ✓ ✓ ✓ ✓ ✓ ✓ ◦ ✓

MODS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1.3: Properties of different compilation languages in terms of queries. A ✓ means that the query
is offered by the language in polynomial time, and a ◦ means that it is not the case, unless P = NP.

Transformations Offered by a Compilation Language

Other criteria to take into account when choosing a compilation language for a given application are
the transformations that may be applied efficiently to the formulae of this language. In particular, this
criterion aims to identify which transformations are tractable (i.e., computable in polynomial time), and
which are not (unconditionally or unless P = NP). Such transformations allow to compute a formula ob-
tained from an input formula by applying logical operations on it, presented here for a given compilation
language L.

Given a circuit φ and a literal ℓ, the conditioning of φ by ℓ, denoted φ|ℓ, is the circuit obtained
by replacing each occurrence of ℓ in φ by ⊤ if ℓ is a positive literal and by ⊥ otherwise.
The conditioning of φ by a consistent term τ is equivalent to the conditioning of φ by all the
literals in τ .

Definition 59 (Conditioning)

A language L satisfies CD if and only if there exists an algorithm computing the representation
in L of the conditioning of a representation φ of L by a consistent term τ in polynomial time
with respect to |φ| and |τ |.

Definition 60 (ConDitioning by a Term)
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Let φ be a circuit and v be a propositional variable. The forgetting of v in φ, denoted ∃vφ,
is the most general logical consequence of φ that does not depend on v, in the sense that φ is
equivalent to a formula in which v does not occur. Otherwise said, for any circuit ψ that does
not contain v, φ |= ψ if and only if ∃vφ |= ψ. In particular, ∃vφ ≡ (φ|v) ∨ (φ|¬v), so that
any model of ∃vφ can be extended to a model of φ.
The forgetting of a set of variables V in φ is the forgetting in φ of all the variables in V .

Definition 61 (Forgetting of a variable)

A language L satisfies FO (resp. SFO) if and only if there exists an algorithm A computing a
representation in L of the forgetting of a set of propositional variables (resp. a singleton) V in
a representation φ of L such that A runs in polynomial time with respect to |φ| and |V|.

Definition 62 (FOrgetting, Singleton FOrgetting)

A language L satisfies ∧C (resp. ∨C) if and only if there exists an algorithm computing the
representation in L of the conjunction (resp. disjunction) of a finite set of representations of L
in polynomial time with respect to the size of the representations in the set.

Definition 63 (Closure under Conjunction, Disjunction)

A language L satisfies ∧BC (resp. ∨BC) if and only if there exists an algorithm computing the
representation in L of the conjunction (resp. disjunction) of two representations φ and ψ of L
in polynomial time with respect to |φ| and |ψ|.

Definition 64 (Bounded Closure under Conjunction, Disjunction)

A language L satisfies ¬C if and only if there exists an algorithm computing the representation
in L of the negation of a representation φ of L in polynomial time with respect to |φ|.

Definition 65 (Closure under Negation)
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The properties of the different compilation languages of the knowledge compilation map in terms of
offered transformations are given in Table 1.4.

CD FO SFO ∧C ∧ BC ∨C ∨BC ¬C
NNF ✓ ◦ ✓ ✓ ✓ ✓ ✓ ✓
DNNF ✓ ✓ ✓ ◦ ◦ ✓ ✓ ◦
d-DNNF ✓ ◦ ◦ ◦ ◦ ◦ ◦ ?

sd-DNNF ✓ ◦ ◦ ◦ ◦ ◦ ◦ ?

BDD ✓ ◦ ✓ ✓ ✓ ✓ ✓ ✓
FBDD ✓ • ◦ • ◦ • ◦ ✓
OBDD ✓ • ✓ • ◦ • ◦ ✓
OBDD< ✓ • ✓ • ✓ • ✓ ✓
DNF ✓ ✓ ✓ • ✓ ✓ ✓ •
CNF ✓ ◦ ✓ ✓ ✓ • ✓ •
PI ✓ ✓ ✓ • • • ✓ •
IP ✓ • • • ✓ • • •

MODS ✓ ✓ ✓ • ✓ • • •

Table 1.4: Properties of different compilation languages in terms of transformations. A ✓ means that
the transformation is offered by the language in polynomial time, a ◦ means that it is not the case, unless
P = NP and a • means that it is not unconditionally.
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Chapter 2

Pseudo-Boolean Constraints from a
Knowledge Representation Perspective

As mentioned in the previous chapter, one of the main advantages of pseudo-Boolean constraints is
that a single pseudo-Boolean constraint may represent an exponential number of clauses (see Proposi-
tion 3). This means that the language of pseudo-Boolean formulae is strictly more succinct than the
language of CNF formulae. Starting from this observation, this chapter studies the properties of pseudo-
Boolean constraints from a knowledge representation perspective. Specifically, we consider the criteria
of the knowledge compilation map [DM02] – namely succinctness, polynomial-time queries and trans-
formations – to systematically compare pseudo-Boolean languages with other well-known compilation
languages, with a particular attention paid to the CNF language.

2.1 Some Properties of Pseudo-Boolean Constraints

First, let us study some intrinsic properties of pseudo-Boolean constraints, by considering the two lan-
guages defined below.

1-PBC (resp. 1-CARD) is the language of pseudo-Boolean formulae composed of a single
normalized pseudo-Boolean constraint (resp. cardinality constraint).

Definition 66 (1-PBC, 1-CARD)

It is clear that, despite being more expressive than clauses, these languages are not expressive enough
to represent all Boolean functions (see, e.g., [Sma07]), so we do not consider them as representation
languages. Instead, we consider other kind of properties for these languages, showing that, in a sense, the
gain in expressivity with respect to clauses is accompanied with an increased difficulty for the handling
of pseudo-Boolean constraints.

For instance, as already mentioned in Chapter 1, there exists an infinite number of normalized
pseudo-Boolean constraints that are equivalent to a given pseudo-Boolean constraint. This is not only
due to the fact that one may arbitrarily multiply the coefficients and the degree of a constraint by a con-
stant, but also to more subtle properties, such as that illustrated by the increasible-degree problem. This
problem is deciding whether it is possible to increase the degree of a pseudo-Boolean constraint while
preserving equivalence, as in the following example.
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Let χ be the pseudo-Boolean constraint 9a + 6b + 3c + d ≥ 11, and let χ′ be the pseudo-
Boolean constraint 9a + 6b + 3c + d ≥ 12. Observe that χ ≡ χ′, so that the degree of χ can
be increased while preserving equivalence.

Example 31

The increasible-degree problem is coNP-hard.

Proposition 4

Proof. Let us reduce the subset-sum problem to the complement of the increasible-degree problem. We
consider a set S = {αi|1 ≤ i ≤ n} ⊆ N and a number δ ∈ N. We want to know whether there exists a
subset S′ of S such that

∑
αi∈S′ αi = δ. To represent this problem, let us consider the pseudo-Boolean

constraint χ given by
∑n

i=1 αivi ≥ δ, in which vi = 1 means that αi ∈ S′.
On the one hand, there exists a set S′ as described above if and only if the constraint

∑n
i=1 αivi = δ

has a solution.
On the other hand, if there exists a solution of this constraint, then it is not possible to increase the

degree of χwhile preserving equivalence, and reciprocally. Indeed, none of the models of
∑n

i=1 αivi = δ
are models of

∑n
i=1 αivi ≥ δ + 1.

Thus, there exists a solution to the subset-sum problem if and only if it is not possible to increase the
degree of χ while preserving equivalence, so that the NP-complete subset-sum problem can be reduced
to the complement of the increasible-degree problem, hence the result.

A related problem is the maximum-degree problem, which is finding the maximum possible degree
for a pseudo-Boolean constraint. This problem is particularly useful from a knowledge representation
perspective, at it allows to strengthen the constraint over the reals, while the constraint remains equivalent
over the Booleans. Yet, this problem is also coNP-hard.

The maximum-degree problem is coNP-hard.

Corollary 1

Proof. The result is trivial, since if the maximum degree for a constraint χ is strictly greater than the
degree of this constraint, then it is possible to increase this degree while preserving equivalence. Thus,
the increasible-degree problem can be reduced to the maximum-degree problem, and the claim follows.

It is never possible to increase the degree of a consistent cardinality constraint
∑n

i=1 ℓi ≥ δ,
as doing so would not preserve the models of this constraint that satisfy exactly δ literals.

Remark 13

Let us now consider the queries and transformations that may be performed on a single pseudo-
Boolean constraint or on a cardinality constraint. The results are given in Tables 2.1 and 2.2.
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CO VA CE IM EQ SE CT ME
1-CARD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
1-PBC ✓ ✓ ✓ ✓ ◦ ◦ ◦ ✓

Table 2.1: Properties of 1-CARD and 1-PBC in terms of queries. A ✓ means that the query is offered by
the language in polynomial time, and a ◦ means that it is not the case, unless P = NP.

CD FO SFO ∧C ∧BC ∨C ∨BC ¬C
1-CARD ✓ ✓ ✓ • • • • ✓
1-PBC ✓ ✓ ✓ • • • • ✓

Table 2.2: Properties of 1-CARD and 1-PBC about transformations. A ✓ means that the language offers
the transformation in polynomial time, whereas a • means that it does not (unconditionally).

Even though performing such operations on these types of constraint is not always meaningful, the
main purpose of this study is to highlight that performing some of them (especially, computing the results
of different queries) is already hard (while they may be trivial for clauses, for instance). The proofs of
these results follow.

Let χ be the pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ. The constraint χ is consistent if and
only if

∑n
i=1 αi ≥ δ.

Proposition 5

Proof. On the one hand, if
∑n

i=1 αi ≥ δ, then satisfying all the literals of χ also satisfies the constraint.
On the other hand, if

∑n
i=1 αi < δ, it is clear that χ cannot be satisfied, as even satisfying all its literals

is not enough to satisfy the constraint.

Checking whether a cardinality constraint (resp. a pseudo-Boolean constraint) is consistent
can be performed in polynomial time, i.e., 1-CARD (resp. 1-PBC) satisfies CO.

Corollary 2

Proof. Let χ be the pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ. Computing
∑n

i=1 αi and checking
whether this value is at least equal to δ can be done in polynomial time, and is enough to determine the
consistency of χ by Proposition 5.
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Given a cardinality constraint (resp. a pseudo-Boolean constraint) χ and a term τ , computing
χ|τ can be done in polynomial time. As a consequence, 1-CARD (resp. 1-PBC) satisfies CD.

Proposition 6

Proof. Replacing a literal by a Boolean constant in a cardinality constraint (resp. a pseudo-Boolean con-
straint) gives a new cardinality constraint (resp. pseudo-Boolean constraint) by a normalization running
in polynomial time.

Given a cardinality constraint (resp. a pseudo-Boolean constraint) χ, enumerating the models
of χ can be done with a polynomial delay. Otherwise said, 1-CARD (resp. 1-PBC) satis-
fies ME.

Corollary 3

Proof. The result is also a direct consequence of Corollary 2 and Proposition 6: as 1-CARD (resp.
1-PBC) satisfies both CO and CD, it also satisfies ME [DM02, Lemma A.3].

Let χ be the pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ, and let γ be a clause. We have that
χ |= γ if and only if the following holds:

n∑
i=1

ℓi ̸∈lit(γ)

αi < δ

Proposition 7

Proof. Recall that χ |= γ if and only if χ∧¬γ |= ⊥. Observe that ¬γ is a term that contains exactly the
negation of the literals of γ, and

χ ∧ ¬γ ≡
n∑

i=1
ℓi ̸∈lit(γ)

αiℓi ≥ δ

Thus, χ |= γ if and only if the constraint above is inconsistent. By Proposition 5, this is the case exactly
when

n∑
i=1

ℓi ̸∈lit(γ)

αi < δ

and the claim follows.
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Given a cardinality constraint κ of degree δ and a clause γ, we have κ |= γ if and only if
|lit(κ)\lit(γ)| < δ.

Corollary 4

Proof. The result is a direct consequence of Proposition 7, as we simply apply the criterion described in
this proposition to the case in which each αi is 1.

Given a cardinality constraint (resp. a pseudo-Boolean constraint) χ and a clause γ, checking
whether χ entails γ can be done in polynomial time. Otherwise said, 1-CARD (resp. 1-PBC)
satisfies CE.

Corollary 5

Proof. The result is a direct consequence of Proposition 7, as its criterion can be checked in polynomial
time.

Let χ be a cardinality constraint (resp. a pseudo-Boolean constraint), and let δ be the degree
of χ. The constraint χ is valid if and only if δ = 0.

Proposition 8

Proof. Let χ be the constraint
∑n

i=1 αiℓi ≥ δ.
On the one hand, if δ = 0, it is clear that

∑n
i=1 αiℓi ≥ 0 is always satisfied, as all coefficients are

non-negative integers (recall that all constraints are supposed to be normalized).
On the other hand, if δ > 0, then the constraint cannot be valid. Indeed, if an interpretation I falsifies

all the literals of χ – which is possible since all constraints are supposed to be normalized, and thus
cannot contain a literal and its negation – then

∑n
i=1 αiℓi = 0 < δ. So, I is a counter-model of χ, which

is thus not valid.
This proof also holds in the particular case of a cardinality constraint, and the claim follows.

Checking whether a cardinality constraint (resp. a pseudo-Boolean constraint) is valid can be
done in polynomial time, i.e., 1-CARD (resp. 1-PBC) satisfies VA.

Corollary 6

Proof. Checking whether a cardinality constraint (resp. a pseudo-Boolean constraint) has a degree equal
to 0 can be done in polynomial time, and is enough to determine the validity of χ by Proposition 8.

41



Chapter 2. Pseudo-Boolean Constraints from a Knowledge Representation Perspective

Given a cardinality constraint (resp. a pseudo-Boolean constraint) χ and a term τ , checking
whether τ entails χ can be done in polynomial time.

Corollary 7

Proof. The result is a direct consequence of Proposition 6 and Corollary 6: as 1-CARD (resp. 1-PBC)
satisfies both CD and VA, it also satisfies IM [DM02, Lemma A.7].

Let κ and κ′ be two consistent cardinality constraints κ =
∑

ℓ∈L ℓ ≥ δ and κ′ =
∑

ℓ′∈L′ ℓ′ ≥
δ′, respectively. κ |= κ′ if and only if δ′ = 0 or |L\L′| ≤ δ − δ′.

Proposition 9

Proof. First, observe that, if δ′ = 0, then κ′ is valid, and the result is trivial. Let us now consider the case
in which δ′ > 0.

First, assume that |L\L′| ≤ δ − δ′, and let us prove that κ |= κ′. Let I be an interpretation that is
a model of κ, and let M be the set of the literals satisfied by I . Such an interpretation exists, as κ is
assumed consistent. Let us now prove that I satisfies at least δ′ literals of L′, i.e., that M contains these
literals. Observe that M is equal to the disjoint union (M ∩ L′) ∪ (M\L′). In terms of cardinality, we
thus have that |M | = |M ∩ L′|+ |M\L′|. As I is a model of κ, it satisfies at least δ literals of κ, so that
δ ≤ |M |. We thus conclude that δ ≤ |M ∩ L′| + |M\L′| (1). Moreover, since M ⊆ L, we also have
that M\L′ ⊆ L\L′, and thus |M\L′| ≤ |L\L′| ≤ δ − δ′ (2). If we now combine (1) and (2), we get
δ ≤ |M | = |M ∩ L′| + |M\L′| ≤ |M ∩ L′| + δ − δ′. In particular, δ ≤ |M ∩ L′| + δ − δ′, and thus
δ − δ + δ′ ≤ |M ∩ L′|, i.e., δ′ ≤ |M ∩ L′|, so that I is a model of κ′.

Now, suppose that |L\L′| > δ−δ′, and let us prove that κ ̸|= κ′. To this end, let us construct a model
of κ that is not a model of κ′. Let us note M the set of the literals satisfied by this model. Consider first
the case in which |L\L′| ≥ δ, and let M = L\L′. The interpretation satisfying exactly the literals of M
satisfies at least δ literals of κ, but none of κ′. This interpretation is thus a model of κ, but not of κ′.
Let us now consider the case in which |L\L′| < δ, and let us construct M as follows. First, let us put
all the literals of L\L′ in M . Then, we choose exactly δ − |L\L′| literals in L ∩ L′. This is possible
as κ is assumed to be consistent: it is possible to satisfy δ literals in L. Since we have |L\L′| < δ, the
δ−|L\L′| literals that are missing to satisfy the constraint are thus necessarily in L∩L′. By construction,
we thus have that |M ∩ L′| = δ − |L\L′|. Since we have supposed that |L\L′| > δ − δ′, we have that
|M ∩ L′| < δ − δ + δ′ = δ′. So, the interpretation satisfying the literals of M is a model of κ, since
it satisfies δ literals of this constraint, but it is not a model κ′, since it satisfies strictly less than δ′ of its
literals.

In both cases, we have built a model M of κ that is not a model of κ′, and the claim follows.

Given two cardinality constraints κ and κ′, checking whether κ |= κ′ can be done in polyno-
mial time. Otherwise said, 1-CARD satisfies SE.

Corollary 8
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Proof. If one of the two constraints is inconsistent – which can be decided in polynomial time by Corol-
lary 2 – it is easy to verify whether κ |= κ′. Otherwise, one simply applies Proposition 9, which can be
done in polynomial time.

Given two cardinality constraints κ and κ′, checking whether κ ≡ κ′ can be done in polyno-
mial time. Said differently, 1-CARD satisfies EQ.

Corollary 9

Proof. To check whether κ ≡ κ′, one simply need to check whether κ |= κ′ and κ′ |= κ, which can be
done in polynomial time by Corollary 8.

Given two pseudo-Boolean constraints χ and χ′, checking whether χ ≡ χ′ is coNP-hard. Said
differently, 1-PBC does not satisfy EQ.

Proposition 10

Proof. Let us reduce the increasible-degree problem, which is coNP-hard by Proposition 4, to the prob-
lem of the equivalence of two pseudo-Boolean constraints.

To do so, simply observe that given a pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ is equivalent to
the other constraint

∑n
i=1 αiℓi ≥ δ + 1 if and only if it is possible to increase the degree of the former

constraint.

The language 1-PBC does not satisfy SE, unless P = NP.

Corollary 10

Proof. As 1-PBC does not satisfy EQ unless P = NP by Proposition 10, it cannot satisfy SE unless
P = NP, as checking whether two pseudo-Boolean constraints χ and χ′ are equivalent can be achieved
by checking that χ |= χ′ and χ′ |= χ.

Given a pseudo-Boolean constraint χ, determining a pseudo-Boolean constraint that is equiv-
alent to ¬χ can be achieved in polynomial time. Said differently, 1-PBC satisfies ¬C.

Proposition 11

Proof. Let χ be the pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ. By definition, ¬χ ≡
∑n

i=1 αiℓi < δ.
The negation of χ is thus obtained by normalizing this constraint, which gives

∑n
i=1 αiℓ̄i ≥∑n

i=1 αi − δ. As explained previously, this operation can be performed in polynomial time.
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Given a cardinality constraint κ, determining a cardinality constraint that is equivalent to ¬κ
can be achieved in polynomial time. Otherwise said, 1-CARD satisfies ¬C.

Corollary 11

Proof. Let κ be the cardinality constraint
∑n

i=1 ℓi ≥ δ. If we apply the same reasoning as in the proof
of Proposition 11, we have that ¬κ ≡

∑n
i=1 ℓ̄i ≥ n − δ. Once again, this constraint can trivially be

obtained from κ in polynomial time.

Counting the model of a cardinality constraint can be done in polynomial time. Said differ-
ently, 1-CARD satisfies CT.

Proposition 12

Proof. Let κ be the cardinality constraint
∑n

i=1 ℓi ≥ δ. The models of κ are the interpretations that
satisfy at least δ of the literals of κ. There are exactly

∑n
i=δ

(
n
i

)
such interpretations, which can be

computed in polynomial time. Indeed, observe that, given κ, the value of n is given in unary (it is the
number of literals in the constraint), so that the sum can be computed with a number that is polynomial
in n and δ, with δ ≤ n.

Counting the number of models of a pseudo-Boolean constraint is NP-hard. Said differently,
1-PBC does not satisfy CT, unless P = NP

Proposition 13

Proof. Let us show that the subset-sum problem can be reduced to the problem of counting the number
of models of a pseudo-Boolean constraint. Let S = {αi|1 ≤ i ≤ n} ⊆ N, and δ ∈ N. We want to find a
subset S′ of S such that

∑
αi∈S′ = δ. Let x1, . . . , xn be propositional variables, such that xi = 1 if and

only if αi ∈ S′.
In order to solve this problem, let us consider the two pseudo-Boolean constraints χ+ defined

by
∑n

i=1 αixi ≥ δ and χ− defined by
∑n

i=1 αix̄i ≥
∑n

i=1 αi + δ. Note that χ− is equivalent to∑n
i=1 αixi ≤ δ.
Now, observe that any interpretation satisfies at least one of these constraints, and that all interpreta-

tions satisfying both constraints are exactly those verifying
∑n

i=1 αixi = δ.
As there exist exactly 2n interpretations of the n literals of χ+ and χ−, the number of interpretations

satisfying both constraints, and thus satisfying
∑n

i=1 αixi = δ, is equal to #(χ+)+#(χ−)− 2n, where
#(χ+) and #(χ−) denote the number of models of χ+ and χ−, respectively.

As this number is not equal to 0 if and only if the subset S′ exists, the subset-sum problem can be
reduced to the counting of the models of a pseudo-Boolean constraint, and we have the result.
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Computing the forgetting of a set of variables in a cardinality constraint (resp. pseudo-Boolean
constraint) can be done in polynomial time. Said differently, the language 1-CARD (resp.
1-PBC) satisfies FO.

Proposition 14

Proof. Let χ be the constraint
∑n

i=1 αiℓi +
∑m

i=n+1 αiℓi ≥ δ, and let V = {var(ℓi)|n+ 1 ≤ i ≤ m}.
It is easy to see that the forgetting of V in χ is equivalent to the disjunction of the two constraints∑n

i=1 αiℓi ≥ δ and
∑n

i=1 αiℓi ≥ δ −
∑m

i=n+1 αi. Now, observe that the former constraint entails the
latter, so that the disjunction is actually equivalent to this latter constraint, and

∃V χ ≡
n∑

i=1

αiℓi ≥ δ −
m∑

i=n+1

αi

As the result we obtain here is a single pseudo-Boolean constraint that may be obtained in polynomial
time, we have the result for 1-PBC. Moreover, if χ is a cardinality constraint, the constraint obtained
above is also a cardinality constraint, thus we also have the result for 1-CARD.

Both languages 1-CARD and 1-PBC satisfy SFO.

Corollary 12

Proof. The result is immediate, as both languages satisfy FO.

The conjunction of two pseudo-Boolean constraints cannot in general be represented as a
pseudo-Boolean constraint. Thus, 1-CARD and 1-PBC do not satisfy ∧BC.

Proposition 15

Proof. Let us consider the two clauses (and thus, cardinality and pseudo-Boolean constraints) a+ b ≥ 1
and ā+ b̄ ≥ 1. Let us denote by φ the conjunction of these two constraints. The models of φ are exactly
a ∧ ¬b and ¬a ∧ b.

Suppose that the pseudo-Boolean constraint χ defined by α1a+ α2ā+ β1b+ β2b̄ ≥ δ is equivalent
to φ. Then, by definition, φ and χ must have the same models. We thus have the following inequations:

−α2 − β2 ≥ 1− δ (1)

α2 + β1 ≥ δ (2)

α1 + β2 ≥ δ (3)

−α1 − β1 ≥ 1− δ (4)

in which, for instance the inequation (1) represents that ¬a ∧ ¬b is not a model of χ, whereas the
inequation (2) represents that ¬a ∧ b is a model of χ
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Now, observe that, on the one hand, if we add together the two inequations (1) and (2), we get the
inequations

β1 − β2 ≥ 1 (5)

while, on the other hand, if we add together the two inequations (3) and (4), we get

β2 − β1 ≥ 1 (6)

If we now add together the two inequations (5) and (6), we get the contradiction 0 ≥ 2. As a
consequence, there is no pseudo-Boolean constraint χ representing φ, and in particular no cardinality
constraint that represent it either.

Computing the conjunction of cardinality constraints (resp. pseudo-Boolean constraints) is
not possible in the language 1-CARD (resp. 1-PBC). Said differently, 1-CARD (resp. 1-PBC)
does not satisfy ∧C.

Corollary 13

Proof. The result is a direct consequence of Proposition 15.

The disjunction of two pseudo-Boolean constraints cannot in general be represented as a
pseudo-Boolean constraint. Thus, 1-CARD and 1-PBC do not satisfy ∨BC.

Proposition 16

Proof. As 1-CARD (resp. 1-PBC) verifies ¬C, but does not satisfy ∧BC, it cannot satisfy ∨BC. Other-
wise, applying De Morgan’s rules would contradict that 1-CARD (resp. 1-PBC) does not satisfy ∧BC.

Computing the disjunction of cardinality constraints (resp. pseudo-Boolean constraints) is not
possible in the language 1-CARD (resp. 1-PBC). Said differently, 1-CARD (resp. 1-PBC)
does not satisfy ∨C.

Corollary 14

Proof. The result is a direct consequence of Proposition 16.

This corollary ends our study of the queries and transformations offered or not by the formulae
composed of a single pseudo-Boolean constraint. We now consider the languages PBC and CARD.
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NNF

PBC

CARD

CNF

DNF

IP

DNNF

FBDD

OBDD

OBDD<

MODS

Figure 2.1: Succinctness of various propositional languages. In this diagram, an arrow L1 → L2 means
that L1 is strictly more succinct than L2, i.e., L1 ≤s L2 and L2 ̸≤s L1. No arrow between two lan-
guages means that they are incomparable. The grayed area highlights the results we claim in this section
(including incomparability).

2.2 Succinctness of Pseudo-Boolean Constraints

In this section, we study the relative succinctness of pseudo-Boolean languages with many other lan-
guages from the knowledge compilation map [DM02]. For this purpose, let us introduce the languages
PBC and CARD.

PBC (resp. CARD) is the language of pseudo-Boolean formulae composed of a (finite) con-
junction of normalized pseudo-Boolean constraints (resp. cardinality constraints).

Definition 67 (PBC, CARD)

In the following PBC and CARD are in particular compared to NNF, CNF, DNF, IP, DNNF, FBDD,
OBDD, OBDD<, and MODS (see Subsection 1.3.1 for a description of these languages). The results we
obtain are summarized by the diagram in Figure 2.1. The proofs of these results are given below.

PBC is strictly more succinct than CARD, i.e., PBC <s CARD.

Proposition 17

Proof. First, since CARD is a subset of PBC, we get that PBC ≤s CARD.
Now, let us prove that CARD ̸≤s PBC. Let χ be the pseudo-Boolean constraint defined by δx +∑2δ

i=1 xi ≥ δ. Let κ be the (non-valid) cardinality constraint
∑n

i=1 ℓi ≥ δ′ such that χ |= κ, and
var(κ) ⊆ var(χ). We first show that, necessarily, δ′ = 1, i.e., κ is a clause.

Let us suppose that δ′ > 1, and let us consider M the model of χ such that x is satisfied, and all
literals (except x) in κ are falsified. Under M , we necessarily have

∑n
i=1 ℓi ≤ 1, since only x is satisfied

by construction. Indeed, if x positively appears in κ, then
∑n

i=1 ℓi = 1. Otherwise, x appears negatively
or does not appear in κ, and we have

∑n
i=1 ℓi = 0. In both cases, since we have assumed δ′ > 1, κ is
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not satisfied, so M is not a model of κ. This contradicts that χ |= κ, so δ′ ≤ 1. Since κ is supposed to
be non-valid, δ′ cannot be equal to 0, so δ′ = 1.

The only way to represent χ as a conjunction of cardinality constraints is thus to use clauses, since all
these constraints must be implied by χ. However, by Proposition 3, we know that an exponential number
of clauses is required to represent χ, which completes the proof.

NNF is more succinct than PBC, i.e., NNF ≤s PBC.

Proposition 18

Proof. It is well known that any pseudo-Boolean constraint can be represented by an equivalent NNF
representation of polynomial size (see, e.g., [Vol99]). Now, when a conjunction of pseudo-Boolean
constraints is considered, an NNF representation of this conjunction consists of the conjunction of all
these “elementary” NNF representations – one per pseudo-Boolean constraint – which produces an NNF
formula. Once again, the result has a polynomial size.

NNF is more succinct than CARD, i.e., NNF ≤s CARD.

Corollary 15

Proof. The result is a direct consequence of Proposition 18, as CARD is a sublanguage of PBC.

CARD is strictly more succinct than CNF, i.e., CARD <s CNF.

Proposition 19

Proof. The results is a direct consequence of Proposition 3.

PBC is strictly more succinct than CNF, i.e., PBC <s CNF.

Corollary 16

Proof. The result is a direct consequence of Proposition 19, as CARD is a sublanguage of PBC.

CARD and PBC are strictly more succinct than PI and MODS, i.e.,

• CARD <s PI and PBC <s PI
• CARD <s MODS and PBC <s MODS

Corollary 17
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Proof. On the one hand, we have by Proposition 19 that CARD <s CNF. On the other hand, we have
by [DM02] that CNF <s PI and CNF <s MODS. By transitivity of <s, the corollary follows. A similar
argument applies to PBC <s PI and PBC <s MODS

The languages DNNF, d-DNNF, sd-DNNF, FBDD, OBDD, OBDD<, DNF and IP are not at
least as succinct as CARD and PBC, i.e.,

• DNNF ̸≤s CARD and DNNF ̸≤s PBC
• d-DNNF ̸≤s CARD and d-DNNF ̸≤s PBC
• sd-DNNF ̸≤s CARD and sd-DNNF ̸≤s PBC
• FBDD ̸≤s CARD and FBDD ̸≤s PBC
• OBDD ̸≤s CARD and OBDD ̸≤s PBC
• OBDD< ̸≤s CARD and OBDD< ̸≤s PBC
• DNF ̸≤s CARD and DNF ̸≤s PBC
• IP ̸≤s CARD and IP ̸≤s PBC

Corollary 18

Proof. We only prove the result for DNNF ̸≤s CARD. A similar proof can be made for all the other
languages.

Let us suppose that DNNF ≤s CARD. By Proposition 19, we have that CARD <s CNF. By
transitivity of≤s, we would then have that DNNF <s CNF. This would contradict the fact that DNNF ̸≤s

CNF [BCMS16]. Hence, DNNF ̸≤s CARD.

PBC is not at least as succinct as OBDD<, i.e., PBC ̸≤s OBDD<.

Proposition 20

Proof. Let φ the formula defined as
⊕n

i=1 xi. Then φ is true if and only if there is an odd number
of satisfied xi. This formula can be written as an OBDD< representation of polynomial size [Bry86].
Let us prove that every representation of φ as a conjunction of pseudo-Boolean constraints requires an
exponential number of constraints.

Let χ be the non-valid pseudo-Boolean constraint
∑m

i=1 αiℓi ≥ δ such that φ |= χ and
var(χ) ⊆ var(φ). Let us denote by L+ and L− the sets of positive and negative literals of χ,
respectively.

Claim 1. We have var(χ) = var(φ).

Proof. If there is x ∈ var(φ) such that x ̸∈ var(χ), then any counter-model of χ can be turned into
a model M of φ by keeping the same assignment, except for x, which must be satisfied. M is still a
counter-model of χ, which contradicts that φ |= χ.
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Claim 2. L− contains an even number of literals.

Proof. Let us suppose that L− contains an odd number of literals. Let M be the interpretation falsifying
all the literals appearing in χ. Clearly, M is not a model of χ, since this constraint is supposed to be
non-valid. However, M satisfies all xi such that x̄i ∈ L−. As there is an odd number of such xi, M is a
model of φ. This contradicts that φ |= χ, so L− contains an even number of literals.

Claim 3. For all i ∈ {1, . . . , n}, we have that αi = δ.

Proof. Without loss of generality, we can suppose that αi ≤ δ for all i ∈ {1, . . . , n}. Indeed, if for
some i, we have αi > δ, it is easy to see that we can replace it by δ while preserving equivalence (this
rule is known as the saturation rule).

Now, suppose that there exists i0 ∈ {1, . . . ,m}, such that αi0 < δ and that the variable associated
with ℓi0 is x. There are two possible cases: either ℓi0 ∈ L+ or ℓi0 ∈ L−. If ℓi0 ∈ L+, let us consider
the interpretation M satisfying x and all xi such that x̄i ∈ L−. By Claim 2, M satisfies thus an odd
number of variables, so it is a model of φ. Otherwise, ℓi0 ∈ L−, and let us consider the interpretation M
satisfying all xi such that x̄i ∈ L−\{ℓi0}. By Claim 2, M satisfies once again an odd number of
variables, so it is a model of φ.

In both cases,
∑n

i=1 αiM(ℓi) = αi0 < δ, so M is not a model of χ. This contradicts that φ |= χ,
and the claim follows.

So, χ has the form
∑n

i=1 δℓi ≥ δ, which is clearly equivalent to the clause
∑n

i=1 ℓi ≥ 1. Then, the
only way to represent φ as a conjunction of pseudo-Boolean constraints is to use clauses, since all these
constraints must be implied by φ. Since φ requires an exponential number of clauses to be represented
without introducing new variables, the proposition follows.

CARD is not at least as succinct as OBDD<, i.e., CARD ̸≤s OBDD<.

Corollary 19

Proof. Towards a contradiction let us suppose that CARD ≤s OBDD<. By Proposition 17, we have
that PBC <s CARD. By transitivity of ≤s, we would then have PBC ≤s OBDD<, which contradicts
Proposition 20.
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CARD and PBC are not at least as succinct as the languages NNF, DNNF, d-DNNF, sd-DNNF,
FBDD and OBDD, i.e.,

• CARD ̸≤s NNF and PBC ̸≤s NNF
• CARD ̸≤s DNNF and PBC ̸≤s DNNF
• CARD ̸≤s d-DNNF and PBC ̸≤s d-DNNF
• CARD ̸≤s sd-DNNF and PBC ̸≤s sd-DNNF
• CARD ̸≤s FBDD and PBC ̸≤s FBDD
• CARD ̸≤s OBDD and PBC ̸≤s OBDD

Corollary 20

Proof. We only prove the result for PBC ̸≤s NNF. A similar proof can be given for all the other
languages.

Suppose that PBC ≤s NNF. By [DM02], we have that NNF ≤s OBDD<. By transitivity of ≤s, we
would then have that PBC ≤s OBDD<, which contradicts Proposition 20. Hence, PBC ̸≤s NNF.

PBC is not at least as succinct as IP, i.e., PBC ̸≤s IP.

Proposition 21

Proof. Let φ the formula from IP defined as
∨n

i=1(xi ∧ yi) [DM02]. Let us show that representing φ as
a conjunction of pseudo-Boolean constraints requires an exponential number of constraints. Let χ be the
non-valid pseudo-Boolean constraint

∑n
i=1 αiℓi ≥ δ such that φ |= χ, with var(χ) ⊆ var(φ).

Claim 4. For all i ∈ {1, . . . , n}, xi or yi appears positively in χ.

Proof. If neither xi nor yi appear in var(χ), then the model of φ satisfying both xi and yi but falsifying
all the literals of χ is not a model of χ, which contradicts φ |= χ.

Claim 5. For all i ∈ {1, . . . , n}, if xi appears positively in χ, and yi does not, then the weight of xi is δ.
Symmetrically, for all i ∈ {1, . . . , n}, if yi appears positively in χ, and xi does not, then the weight of yi
is δ.

Proof. If only xi appears positively in χ, say xi = ℓi0 , and αi0 < δ, then the model of φ satisfying
both xi and yi but falsifying all the other literals of χ is not a model of χ, which contradicts φ |= χ. The
proof for the case when only yi appears positively in χ is similar.

Claim 6. For all i ∈ {1, . . . , n}, if xi and yi appear positively in χ, then the sum of their weights is at
least equal to δ.

Proof. If both xi and yi appear positively as ℓi0 and li1 in χ, respectively, and αi0 + αi1 < δ, then
the model of φ satisfying these two literals but falsifying all the others of χ is not a model of χ, which
contradicts φ |= χ.
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Claim 7. Without loss of generality, χ contains only positive literals.

Proof. If ȳi appears in χ, let χ′ be the pseudo-Boolean constraint obtained by removing the literal ȳi
from χ. Any model M of φ is a model of χ′. Indeed, if M satisfies yi, then it is obviously a model
of χ′. Otherwise, there exists i0 ̸= i such that M satisfies xi0 and yi0 . By Claims 4, 5 and 6, χ′ is also
satisfied by M . So, φ |= χ′, and since we obviously have that χ′ |= χ, it is possible to replace χ by χ′

without losing information. All negative literals can be removed by repeating the same argument. The
case when x̄i appears in χ follows symmetrically.

Now, let K be the pseudo-Boolean formula
∧m

j=1 χj such that φ ≡ K. In particular, φ |= χj for
each j ∈ {1, . . . ,m}. From Claim 7, we have that each χj has the form

∑n
i=1 α0,i,jxi + α1,i,jyi ≥ δj ,

with, for all i ∈ {1, . . . , n}, α0,i,j + α1,i,j ≥ δj by applying Claim 6.
Any counter-model of φ must be a counter-model of K. It remains to show, in the rest of this proof,

that a subset of these counter-models requires the use of an exponential number of pseudo-Boolean
constraints to get a formula logically equivalent to φ.

Any interpretation satisfying for all i ∈ {1, . . . , n} exactly one of xi or yi cannot be a model of K,
since it is not a model of φ. Then, it must not satisfy at least one of the constraints χj . Formally, this
means that the following property must be satisfied.

Property 1. For any function f : {1, . . . , n} → {0, 1}, there exists j ∈ {1, . . . ,m} such that∑n
i=1 αf(i),i,j < δj .

For each of the inequalities induced by Property 1, we define a tuple (f(1), . . . , f(n)) ∈ Bn. We
claim that two inequalities associated with such tuples which have a Hamming distance at least equal to 2
cannot be satisfied for a same j. To see this, let (f1(1), . . . , f1(n)) and (f2(1), . . . , f2(n)) be two tuples
with a Hamming distance at least 2 for a same j. Their associated inequalities are

∑n
i=1 αf1(i),i,j < δj (1)

and
∑n

i=1 αf2(i),i,j < δj (2).
Since the Hamming distance between the two tuples is at least 2, there exists i0, i1 ∈ {1, . . . , n},

with i0 ̸= i1, such that f1(i0) ̸= f2(i0) and f1(i1) ̸= f2(i1). By adding (1) and (2), since f1 and f2 take
their values in {0, 1}, we get:

n∑
i=1

i ̸∈{i0,i1}

(αf1(i),i,j + αf2(i),i,j) + α0,i0,j + α1,i0,j + α0,i1,j + α1,i1,j < 2δj

However, this is impossible since Claim 6 gives us α0,i0,j +α1,i0,j ≥ δj and α0,i1,j +α1,i1,j ≥ δj , so
α0,i0,j +α1,i0,j +α0,i1,j +α1,i1,j ≥ 2δj . We thus need two distinct constraints to satisfy the inequalities
of Property 1 associated with these tuples.

Claim 8. There exists a set of 2n−1 tuples of Bn having pairwise Hamming distance at least 2.

Proof. Consider the set S of solutions over {0, 1} of
∑n

i=1 zi ≡ 0 mod 2. The elements of S have
pairwise Hamming distance at least 2. Finally, S contains 2n−1 elements since any assignment to
z1, . . . , zn−1 can be extended to a solution in S.

Hence, to eliminate all counter-models of φ, at least 2n−1 distinct constraints must be used in its
representation in PBC (those associated with the tuples of Claim 8). So, representing φ as a conjunction
of pseudo-Boolean constraints requires exponentially many constraints.
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CARD is not at least as succinct as IP, i.e., CARD ̸≤s IP.

Corollary 21

Proof. Towards a contradiction let us suppose that CARD ≤s IP. By Proposition 17, we have that
PBC <s CARD. By transitivity of ≤s, we would then have PBC ≤s IP, which contradicts Proposi-
tion 21.

CARD and PBC are not at least as succinct as DNF, i.e., CARD ̸≤s DNF and PBC ̸≤s DNF.

Corollary 22

Proof. The result is a direct consequence of Proposition 21, as IP is a sublanguage of DNF.

In terms of succinctness, the main difference between the pseudo-Boolean languages and CNF is that
PBC and CARD are strictly more succinct than CNF. Compared to the other languages, there is not a
great difference. Let us now consider the queries and transformations that are offered by these languages.

2.3 Querying and Transforming Pseudo-Boolean Constraints

We now present the results about the queries and transformations offered by PBC and CARD, summa-
rized in Tables 2.3 and 2.4.

CO VA CE IM EQ SE CT ME
CNF ◦ ✓ ◦ ✓ ◦ ◦ ◦ ◦
CARD ◦ ✓ ◦ ✓ ◦ ◦ ◦ ◦
PBC ◦ ✓ ◦ ✓ ◦ ◦ ◦ ◦

Table 2.3: Properties of CARD and PBC in terms of queries, compared to CNF. A ✓ means that the
query is offered by the language in polynomial time, and a ◦means that it is not the case, unless P = NP.

CD FO SFO ∧C ∧BC ∨C ∨BC ¬C
CNF ✓ ◦ ✓ ✓ ✓ • ✓ •
CARD ✓ • • ✓ ✓ • • •
PBC ✓ • • ✓ ✓ • • •

Table 2.4: Properties of CARD and PBC concerning transformations, compared to CNF. A ✓ means
that the language offers the transformation in polynomial time, whereas a ◦ means that it does not unless
P = NP and a • means that it does not unconditionally.
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Let us now prove the results of these tables.

CARD does not satisfy any of CO, CE, EQ, SE, CT and ME, unless P = NP.

Proposition 22

Proof. Since the translation of any CNF formula into a conjunction of cardinality constraints can be
done in polynomial time, and since CNF does not satisfy any of these properties unless P = NP, the
proposition follows.

PBC does not satisfy CO, CE, EQ, SE, CT and ME, unless P = NP.

Corollary 23

Proof. The result is an immediate consequence of Proposition 22, as CARD is a sublanguage of PBC.

CARD and PBC satisfy VA.

Proposition 23

Proof. A conjunction of pseudo-Boolean constraints is valid if and only if each of its constraint is valid,
which can be checked in polynomial time by Corollary 6.

CARD and PBC satisfy CD.

Proposition 24

Proof. Computing the conditioning of any formula from PBC (resp. CARD) is easily done by applying
it on each constraint of the formula (see Proposition 6).

CARD and PBC satisfy IM.

Corollary 24

Proof. As CARD and PBC satisfy both VA (Proposition 23) and CD (Proposition 24), the corollary
follows immediately by Lemma A.7 from [DM02].
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CARD and PBC satisfy both ∧BC and ∧C.

Proposition 25

Proof. Given a conjunctively-interpreted set of formulae from CARD (resp. PBC), computing the con-
junction of these formulae can trivially be done in polynomial time, by taking the union of the considered
sets of constraints.

CARD does not satisfy ∨BC.

Proposition 26

Proof. Let φ be the disjunction of the two cardinality constraints κ = y ≥ 1 (i.e., κ ≡ y) and
κ′ =

∑2δ
i=1 xi ≥ δ. It is easy to see that φ is equivalent to δy +

∑2δ
i=1 xi ≥ δ. As shown in the

proof of Proposition 17, a representation of this constraint using only cardinality constraints requires
exponentially many constraints. Hence, the claim follows.

PBC does not satisfy ∨BC.

Proposition 27

Proof. To prove this result, we show that any representation of the inequality ∆ =
∑2δ

i=1 xi ̸= δ, which
is equivalent to the disjunction of

∑2δ
i=1 xi ≥ δ+1 and

∑2δ
i=1 x̄i ≥ δ+1, requires an exponential number

of pseudo-Boolean constraints when δ ≥ 2.
Let us consider a non-valid pseudo-Boolean constraint χ =

∑m
i=1 αiℓi ≥ ν, such that ∆ |= χ, with

var(χ) ⊆ var(∆). Let us note L+ and L− the sets of positive and negative literals of χ, respectively.

Claim 9. We have var(χ) = var(∆).

Proof. Consider a counter-model I of χ. Since ∆ |= χ, I satisfies δ of the xi. If x ∈ var(∆) but
x ̸∈ var(χ), then the interpretation I ′ defined as satisfying exactly the same literals as I and satisfying
also x satisfies δ + 1 of the xi, so it is a model of ∆, but not a model of χ, which contradicts ∆ |= χ.

Claim 10. The set L+ and L− contain the same number of literals, i.e., χ contains exactly δ positive
literals and δ negative literals.

Proof. If L− contains strictly more literals than L+, then by Claim 9, L− contains necessarily strictly
more than δ literals. The interpretation satisfying exactly each xi such that x̄i ∈ L− satisfies strictly
more than δ of the xi, so it is a model of ∆, but not a model of χ as ν > 0.

Otherwise, if L+ contains strictly more literals than L−, then by Claim 9, L+ contains necessarily
strictly more than δ literals. The interpretation satisfying exactly each xi such that x̄i ∈ L− satisfies
strictly less than δ of the xi, so it is a model of ∆, but not a model of χ.
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In both cases, ∆ ̸|= χ, so L+ and L− contain the same number of literals. They necessarily contain
δ literals each, by Claim 9.

Claim 11. We have, for all i ∈ {1, . . . ,m}, αi = δ.

Proof. Let us suppose that there exists i0 ∈ {1, . . . ,m}, such that αi0 < δ and that the variable associ-
ated with ℓi0 is x. There are two possible cases: either ℓi0 ∈ L+ or ℓi0 ∈ L− .

If ℓi0 ∈ L+, let us consider the interpretation M satisfying exactly all the xi such that x̄i ∈ L−
and x. Then, by Claims 9 and 10, M satisfies (n+ 1) of the xi, so it is a model of ∆.

Otherwise, ℓi0 ∈ L− and let us consider the interpretation M satisfying exactly all the xi such that
x̄i ∈ L−, except x. Then, M satisfies (n− 1) of the xi, so it is a model of ∆.

In both cases, under M , we have
∑m

i=1 αiℓi = αi0 < δ, so M is not a model of χ. ∆ |= χ is
contradicted, so for all i ∈ {1, . . . ,m}, we have αi = δ.

Thus, χ has the form
∑2δ

i=1 δℓi ≥ δ, which is equivalent to the clause
∑2δ

i=1 ℓi ≥ 1 The only way to
represent ∆ as a conjunction of pseudo-Boolean constraints is then to use clauses, since all the constraints
must be implied by ∆. However, ∆ requires an exponential number of clauses to be represented without
introducing any new variable. Indeed, a clause as those we have produced in this proof can only eliminate
a single counter-model of ∆, since all those clauses contain all the variables, and there exist

(
2n
n

)
counter-

models. This concludes the proof.

CARD and PBC do not satisfy ∨C.

Corollary 25

Proof. As CARD and PBC do not satisfy ∨BC by Propositions 26 and 27, respectively, they cannot
satisfy ∨C.

CARD and PBC do not satisfy ¬C.

Corollary 26

Proof. Since both languages satisfy ∧C (Proposition 25) and do not satisfy ∨C, they cannot satisfy ¬C.
Otherwise, De Morgan’s rules would allow to compute ∨C in polynomial time.

CARD does not satisfy SFO.

Proposition 28
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Proof. 3 Let δ ≥ 2 and n = 2(δ − 1). Let κ and κ′ be the two formulae defined by the cardinality
constraints

∑n
i=1 xi + y + z ≥ δ and

∑2n
i=n+1 xi + y + z̄ ≥ δ, respectively. Observe that only the

variables y and z are common to both constraints. Let us denote by φ the formula obtained by forgetting z
in the conjunction κ∧κ′, i.e., φ ≡ ∃z(κ∧κ′). Let us prove that any conjunction of cardinality constraints
representing φ requires exponentially many constraints.

First, observe that, by definition, φ ≡ ((κ ∧ κ′)|z) ∨ ((κ ∧ κ′)|z̄), so any model of φ is also a model
of the three formulae:

• φ1 =
∑n

i=1 xi + y ≥ δ − 1
• φ2 =

∑2n
i=n+1 xi + y ≥ δ − 1

• φ3 =
∑n

i=1 xi + y ≥ δ ∨
∑2n

i=n+1 xi + y ≥ δ

Let I be an interpretation of the variables x1, . . . , x2n and y such that
∑n

i=1 xi = δ − 1 and∑2n
i=n+1 xi = δ − 1 are satisfied by I , while y is falsified by I . Observe that I is a counter-model

of φ, as it does not satisfy φ3.
Now, consider the clause γ defined by

∑
I(xi)=0 xi + y ≥ 1, which is obviously falsified by I by

construction (it contains exactly all the literals that are falsified by I). Let us prove that every conjunction
of cardinality constraints representing φ contains γ. We have in particular the following claim.

Claim 12. The clause γ is entailed by φ.

Proof. Let M be a model of φ. There are two cases: either M satisfies y or it does not. If M satisfies y,
then it trivially also satisfies γ. Otherwise,M must satisfy the three formulaeφ1, φ2 andφ3. In particular,
as y is falsified byM , we have thatM must satisfy at least 2δ−1 of the xi. Now, observe that, γ contains
exactly 2δ − 2 of the xi. As there are 4δ − 4 such xi, it follows that M must necessarily satisfy one of
those appearing in γ. Thus, M is a model of γ. As the same applies to any model of φ, the claim follows.

Let K be a conjunction of cardinality constraints representing φ. As φ is falsified by I , we have that
K contains a constraint that is both entailed by φ and falsified by I . This constraint κ0 has the form∑

x∈X x ≥ k, where X ⊆ {x1, . . . , x2n} ∪ {y}.

Claim 13. The set X contains exactly the variables that are falsified by I .

Proof. Towards a contradiction, suppose that there exists a variable v such that v is falsified by I and
v ̸∈ X . The interpretation obtained from I by changing the assignment of v so that this variable is
satisfied does not satisfy κ0, as v does not appear in this constraint. However, it is a model of φ, (see the
proof of Claim 12 above), which contradicts that κ0 is entailed by φ. Hence, all the variables falsified
by I appear in κ0.

Symmetrically, assume that there exists a variable v such that v is satisfied by I and v ∈ X . Let I ′

be the interpretation such that I ′(y) = 1, I ′(v) = 0 and I ′(xi) = I(xi) for any xi ̸= v. Note that the
left-hand side of κ0 has the same value for I and I ′. Indeed, κ0 contains both v and y (as y is falsified
by I), and their values are simply switched between I and I ′. As I does not satisfy κ0, neither does I ′.
However, I ′ is a model of φ (see the proof of Claim 12 above), which contradicts the fact that κ0 is
entailed by φ. Hence, X does not contain any variable satisfied by I .

Altogether, X contains exactly the variables satisfied by I .

3Many thanks to Petr Savicky for this proof.
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Additionally, we show now that k = 1 is the only value of k for which the constraint κ0 is entailed
by φ.

Claim 14. The constraint κ0 is a clause.

Proof. Towards a contradiction, suppose that k > 1. Consider the interpretation M of φ satisfying
exactly all xi such that xi ̸∈ X and y. Then, M is a model of φ (see the proof of Claim 12 above), but
not a model of κ0, as it only satisfies one literal from this constraint, which contradicts κ0 being entailed
by φ.

This reasoning pattern can be applied to any interpretation I as described above. As there are(
n

δ−1

)2
=
(

n
n/2

)2, such interpretations, and since for each of them, the clause γ is different, any rep-
resentation of φ containing only cardinality constraints must contain an exponential number of clauses,
hence the proposition follows.

PBC does not satisfy SFO.

Proposition 29

Proof. Let χ and χ′ be the two pseudo-Boolean constraints defined by
∑2δ

i=1 xi ≥ δ+1 and
∑2δ

i=1 x̄i ≥
δ + 1, respectively. Let us consider, for s a newly introduced variable, the formulae χs defined by
(δ + 1)s+

∑2δ
i=1 xi ≥ δ + 1 and χ′

s defined by (δ + 1)s̄+
∑2δ

i=1 x̄i ≥ δ + 1 which are obtained from χ
and χ′ in polynomial time.

Let φ be the conjunction χs ∧ χ′
s. By construction, φ|s ≡ χ′ and φ|s̄ ≡ χ, so that ∃xφ ≡ χ ∨ χ′.

If an algorithm existed to forget a single variable in a set of pseudo-Boolean constraints, then one could
use it to compute in polynomial time the disjunction of χ and χ′. However, we have proven that it is
not possible (cf. Proposition 27). Then, so it is for the forgetting of a single variable in a conjunction of
pseudo-Boolean constraints.

CARD and PBC do not satisfy FO.

Corollary 27

Proof. As CARD and PBC do not satisfy SFO by Propositions 28 and 29, respectively, they cannot
satisfy FO.
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Chapter 3

Graph Width Measures for CNF
Encodings with Auxiliary Variables

As discussed in Chapter 2, pseudo-Boolean constraints do not bring advantages compared to CNF from
a knowledge representation perspective, except for their succinctness. In particular, we do not gain any
query or transformation, and even lose some that are tractable when given a CNF formula as input. In
this context, and as mentioned in Section 1.1.3, it may be more convenient, depending on the needs, to
use a CNF encoding for the considered pseudo-Boolean formula, as it may often be smaller in practice
than its CNF representation, which has to be equivalent to the original formula.

In the context of propositional satisfiability, we often consider graphs associated with the CNF for-
mulae we study, such as their primal or incidence graphs. One often considers different width mea-
sures of these graphs, such as treewidth and cliquewidth: if the corresponding width is small, there are
algorithms that solve SAT, but also more complex problems like #SAT or MAX-SAT or even QBF ef-
ficiently [SS10a, FMR08, SS13, PSS16, STV15, Che04]. There is also a considerable body of work
on reasoning problems from artificial intelligence restricted to knowledge encoded by CNF formulae
with restricted underlying graphs: for example, treewidth restrictions have been studied for abduction,
closed-world reasoning, circumscription, disjunctive logic programming [GPW10] and answer set pro-
gramming [JPW09].

Curiously, however, there seems to be very little work on the natural question of what we can actually
encode with these restricted CNF formulae. This question is pertinent because good algorithms for
problems are less attractive if they cannot deal with interesting instances. This chapter provides an
answer to this question, based on recent machinery developed in the area of knowledge compilation. In
particular, we use a combination of the algorithm proposed by [BCMS15], the width notion for DNNF
developed by [CM19] and the lower bound techniques introduced by [PD10] and [BCMS16].

Specifically, we show lower bounds on the size or width of representations for Boolean functions,
by taking advantage of communication complexity. Actually, the area has been partially developed for
this purpose, and there is a large literature on this [KN97, Hro97, Juk12]. In particular, there are many
results for showing lower bounds on different forms of branching programs by means of communication
complexity [Weg00, DHJ+04]. More recently, this approach has been generalized to more general lan-
guages considered in knowledge compilation [PD10, BCMS16]. However, beyond the lower bounds on
treewidth already discussed in [BKM11], we are not aware of any use of communication complexity to
show bounds on width measures of CNF formulae.
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Chapter 3. Graph Width Measures for CNF Encodings with Auxiliary Variables

3.1 Preliminaries

Let us introduce some preliminaries on graphs associated with CNF formulae, graph width measures,
communication complexity and structured deterministic DNNF.

3.1.1 Graphs Associated to CNF Formulae

In this chapter, we focus on CNF representations (see Definition 24) and CNF encodings (see Defini-
tion 25) of Boolean functions. We recall that the main difference between the two representations is that
the latter allows the introduction of auxiliary variables that do not appear in the former. More precisely,
given a Boolean function f , every assignment accepted by f is a model of a CNF representation φ of f
and can be extended to a model of a CNF encoding ψ of f by assigning its auxiliary variables. On the
contrary, every assignment rejected by f is a counter-model of φ and cannot be extended to a model of ψ.
Note that the definition of CNF encoding does not indicate how to extend the considered assignments,
and it may in general exist multiple possible extensions, unless auxiliary variables are dependent.

Given a CNF encoding ψ of a Boolean function f , an auxiliary variable v of ψ is called
dependent if and only if for every model M of f , all extensions M ′ of M satisfying ψ take the
same value on v.
We say that ψ has dependent auxiliary variables if all its auxiliary variables are dependent.
Note that for such an encoding the extension M ′ is unique.

Definition 68 (Dependent Auxiliary Variable [GMT02])

CNF formulae are often assigned two graphs that represent their structure, namely the primal graph
and the incidence graph. To define these graphs, we use standard notations from graph theory and assume
the reader to have a basic background in the area [Die12].

The primal graph of a CNF formula φ has as vertices the variables of φ and two variables v
and v′ are connected by an edge if and only if there is a clause γ such that v ∈ var(γ) and
v′ ∈ var(γ).

Definition 69 (Primal Graph of a CNF Formula)

The incidence graph of a CNF formula φ has as vertex set the union of the variable set and
the clause set of φ. Edges in the incidence graph are exactly the pairs (v, γ) such that v is a
variable and γ is a clause such that v ∈ var(γ).

Definition 70 (Incidence Graph of a CNF Formula)
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Let us consider the following clauses:

• γ1 = a ∨ ¬b
• γ2 = b ∨ c ∨ ¬d ∨ ¬e
• γ3 = ¬d ∨ e
• γ4 = d ∨ e

and let the CNF formula φ be defined as φ = γ1 ∧ γ2 ∧ γ3 ∧ γ4. Its primal graph is given by:

a

b c

de

while the incidence graph of φ is given by:

a b c d e

γ1 γ2 γ3 γ4

Example 32

3.1.2 Graph Width Measures

In this section, we introduce several graph width measures we consider in the rest of this chapter. Many
of those measures are based on the notion of tree decomposition.

A tree decomposition (T, (Bt)t∈V(T )) of a graph G = (V,E) consists of a tree T and, for
every node t of T , a set Bt ⊆ V called bag such that:

•
∪

t∈V(T )Bt = V ,
• for every edge (u, v) ∈ E, there is a bag Bt such that {u, v} ⊆ Bt, and
• for every v ∈ V , the set {t ∈ V(T ) | v ∈ Bt} is connected in T .

Definition 71 (Tree Decomposition)
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Chapter 3. Graph Width Measures for CNF Encodings with Auxiliary Variables

The width of a tree decomposition (T, (Bt)t∈V(T )) is defined as max{|Bt| | t ∈ V(T )} − 1.
The treewidth tw(G) of a graph G is defined as the minimum width taken over all tree decom-
positions of G.

Definition 72 (Treewidth)

Intuitively, the treewidth of a graph G estimates how close is G to being a tree. In particular,
trees are exactly the connected graphs of treewidth 1.

Remark 14

For every CNF formula φ, we define the primal treewidth twp(φ) of φ as the treewidth of its primal
graph and the incidence treewidth twi(φ) of φ as that of its incidence graph.

Let us again consider the formula φ of Example 32. A tree decomposition of the primal graph
of φ is given on the left below, while a tree decomposition of its incidence graph is given on
the right:

a, b

b, c, d, e

a, γ1

b, γ1

b, γ2

c, γ2 d, e, γ2

d, e, γ3 d, e, γ4

Both of these decompositions are optimal: it is well-known that for every tree decomposition
of a graph G, the vertices of every clique must be contained in a common bag. So, in this
case, b, c, d, e must be in one bag for every tree decomposition of the primal graph of φ and
thus twp(F ) ≥ 3, which shows that the decomposition above is optimal and twp(F ) = 3.
Concerning the treewidth of the incidence graph, remark that this graph has a cycle and is
thus not a tree. Since trees are well-known to be the only connected graphs of treewidth 1, it
follows that twi(F ) ≥ 2 and thus the decomposition is optimal and twi(F ) = 2.

Example 33

Let us a consider a graph G = (V,E), and let us denote by N(v) the open neighborhood of a
vertex v of G. We say that two vertices u, v in G have the same neighborhood type if and only if
N(u)\{v} = N(v)\{u}. It can be shown that having the same neighborhood type is an equivalence
relation on V .
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A generalization of treewidth is modular treewidth which is defined as follows.

Let G be a graph and G′ be the graph obtained from G by contracting all vertices sharing a
neighborhood type. Said differently, from every equivalence class we delete all vertices but
one in G. The modular treewidth of G is defined to be the treewidth of G′.

Definition 73 (Modular Treewidth)

The modular treewidth mtw(F ) of a CNF formula φ is defined as the modular treewidth of its inci-
dence graph.

Let us consider again the formula φ from Example 32. A contraction of the incidence graph of
the CNF formula φ is given below. In the original graph, d and e have the same neighborhood
type, as do γ3 and γ4. We thus get the shown contraction by deleting e and γ4. Note that the
obtained graph is a tree, so that mtw(φ) = 1.

a b c d

γ1 γ2 γ3

Example 34

The cliquewidth cw(G) of a graph G is defined as the minimum number of labels needed to
construct G with the following operations:

• creating a new vertex with label i,
• taking the disjoint union of two labeled graphs,
• connecting by an edge all vertices with a label i to all vertices with a label j for
i ̸= j, and
• renaming a label i to j for i ̸= j.

Definition 74 (Cliquewidth)

The incidence cliquewidth cw(φ) of a CNF formula φ is defined as the cliquewidth of the incidence
graph of φ [SS13].
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Finally, we consider the adaption of cliquewidth to signed graphs. To this end, let us make some
additional definitions.

The signed incidence graph G′ of a CNF formula φ is the graph we get from the incidence
graph G = (V,E) by labeling the edges with {+,−} as follows:

• every edge (v, γ) such that v appears positively in γ is labeled by +, and
• every edge (v, γ) such that v appears negatively in γ is labeled by −.

Definition 75 (Signed Incidence Graph)

The signed cliquewidth of a graph G′ is defined as the minimum number of labels needed to
construct G′ with the following operations:

• creating a new vertex with label i,
• taking the disjoint union of two labeled graphs,
• connecting all vertices with a label i to all vertices with a label j for i ̸= j by an edge

with label +,
• connecting all vertices with a label i to all vertices with a label j for i ̸= j by an edge

with label −, and
• renaming a label i to j for i ̸= j.

Definition 76 (Signed Cliquewidth)

The signed incidence cliquewidth scw(φ) of CNF formulae φ is defined as the signed cliquewidth of
its signed incidence graph [FMR08].

In the following, we deal with other graph width measures for a CNF formula φ, namely dual
treewidth twd(φ) and MIM-width mimw(φ). Since for those notions we will only use some of their
properties, we do not give their definition here and refer to the literature [SS10a, FMR08, Vat12, STV15,
SS13]. We also consider the treewidth tw(C) and the cliquewidth cw(C) of Boolean circuits C, defined
as the treewidth and cliquewidth of the underlying graph of C, respectively.

3.1.3 Communication Complexity

Here we give some very basic notions of communication complexity [KN97], focusing only on so-called
combinatorial rectangles, which are an important object in the field.

Let X be a set of variables and Π = (Y, Z) a partition of X . A combinatorial rectangle
respecting Π is a Boolean function r(X) that can be written as a conjunction

r(X) = r1(Y ) ∧ r2(Z)

Definition 77 (Combinatorial Rectangle)
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Let f be a Boolean function on a variable set X . A rectangle cover of size s respecting a
partition Π = (Y, Z) is defined to be a representation

f(X) =
s∨

i=1

ri(X) =
s∨

i=1

ri1(Y ) ∧ ri2(Z)

where all ri(X) = ri1(Y ) ∧ ri2(Z) are combinatorial rectangles respecting Π.

Definition 78 (Rectangle Cover)

By definition, all formulae in disjunctive normal forms are rectangle covers of the functions
they compute respecting all possible partitions. For example, the formula φ given by

(¬x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ ¬z)

is a rectangle cover of size 3 respecting every partition of {x, y, z}. However, for example the
partition ({x, y}, {z}) has the smaller rectangle cover

(((¬x ∧ ¬y) ∨ (x ∧ y)) ∧ z) ∨ (x ∧ ¬y ∧ ¬z)

which has size 2. It is not hard to see that there is no smaller rectangle cover of φ for this
partition.

Example 35

The non-deterministic communication complexity of a Boolean function f with respect to a
partition Π = (Y, Z of the variables of f , denoted by cc(f,Π) = cc(f, (Y, Z)) is defined as
log(smin) where smin is the minimum size of any rectangle cover of f respecting Π.

Definition 79 (Non-Deterministic Communication Complexity)

The best-case non-deterministic communication complexity with 1
3 -balance of a Boolean func-

tion f in variables X , denoted cc
1/3
best(f), is defined as cc1/3best(f) := minΠ(cc(f,Π)) where the

minimum is over all partitions Π = (Y, Z) of X with min(|Y |, |Z|) ≥ |X|/3.

Definition 80 (Best-Case Non-Deterministic Communication Complexity)

65



Chapter 3. Graph Width Measures for CNF Encodings with Auxiliary Variables

Consider the function eqn(x1, . . . xn, y1, . . . , yn) which is true if and only if for ev-
ery i ∈ {1, . . . , n} we have xi = yi. It is well-known that, for the partition
Π1 = ({x1, . . . , xn}, {y1, . . . , yn}), we have cc(eqn,Π1) = n [KN97, Chapter 2]. However,
for the partition

Π2 = ({x1, y1, . . . , x⌈n/2⌉, y⌈n/2⌉}, {x⌈n/2⌉+1, y⌈n/2⌉+1, . . . , xn, yn})

we have that

eqn(x1, . . . xn, y1, . . . , yn) =

⌈n/2⌉∧
i=1

xi = yi

 ∧
 n∧

i=⌈n/2⌉

xi = yi


is a rectangle cover of size 1 respecting Π2. Thus, we have cc

1/3
best(eqn) = cc(eqn,Π2) = 0.

Example 36

3.1.4 Structured Deterministic DNNF

We now introduce some representation languages used in the remainder of this chapter. For all circuits
in the following, we assume that ∧-gates have exactly two inputs while the number of inputs of ∨-gates
may be arbitrary.

A v-tree T for a variable set V is a full binary tree whose leaves are in bijection with V . We
call the variable assigned by this bijection to a leaf v the label of v.

Definition 81 (V-Tree [PD08])

For a node t of a v-tree T , we denote by Tt the subtree of T that has t as its root and by var(Tt)
the variables that are labels of leaves in Tt.

Notation 9

A v-tree for the variable set {a, b, c} is given by:

t1

a

b c

t2

For the internal nodes of this v-tree, the node names are given on the right of the nodes whereas
for leaves we assume that the name is the label.

Example 37
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We now give some definitions introduced in [CM19].

A complete structured DNNFD structured by a v-tree T is a Boolean circuit with the following
properties: there is a labeling µ of the nodes in T with subsets of gates of D such that:

• For every gate g of D, there is a unique node tg of T with g ∈ µ(tg).
• If t is a leaf labeled by a variable x, then µ(t) may only contain x and ¬x. Moreover,

for every input gate g, the node tg is a leaf.
• For every ∨-gate g, all inputs are ∧-gates in µ(tg).
• Every ∧-gate g has exactly two inputs g1, g2 that are both ∨-gates or input gates. More-

over, tg1 and tg2 are the children of tg in T and in particular tg1 ̸= tg2 .

A complete structured DNNF is called deterministic when the DNNF circuit itself is determin-
istic.

Definition 82 (Complete Structured DNNF)

In the following, we do not mention the v-tree that structures a complete structured DNNF in cases
where the form of the v-tree is unsubstantial.

The width wi(D) of a complete structured DNNF D is defined as the maximal number of
∨-gates in any set µ(t).

Definition 83 (Width of a Complete Structured DNNF)

Note that we do not allow constant input gates in Definition 82. We remark that if we allowed
those, we could always get rid of them in the circuit by propagation without changing any
other properties of the circuit [CM19, Section 4]. We also remark that in a complete structured
DNNF D, we can forget a variable v (see Definition 61) and construct a complete structured
DNNF D′ computing ∃vD, by setting all occurrences of v and ¬v to 1 and propagating the
constants in the obvious way. This operation does not increase the width [CM19]. However,
if D is deterministic, this is generally not the case for D′.

Remark 15

Intuitively, a complete structured DNNF is a DNNF in which the gates are organized into
blocks λ(t) which form a tree shape. In every block one then computes a 2-DNF whose inputs
are gates from the blocks that are the children of λ(t) in the tree shape.

Remark 16
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A complete structured DNNF structured by the v-tree of Example 37 is given below. All gates
of the DNNF show the operation of the gate (on top) and the name t of the node in the v-tree
for which this gate is in µ(t) (on bottom).

∨
t1

∧
t1

∧
t1

a
a

¬a
a

∨
t2

∨
t2

∧
t2

∧
t2

∧
t2

b

b

¬b
b

c
c

¬c
c

Example 38

3.2 The Effect of Auxiliary Variables

In this section, we motivate the use of auxiliary variables when considering width measures of CNF
encodings. To this end, we will show with an example that auxiliary variables may arbitrarily reduce
the treewidth of encodings. Note that this is not very surprising since it is not too hard to see that CNF
representations of, say, the parity function, are of high treewidth. However, in this case the size of the
representation is exponential, so in a sense parity is a hard function for CNF representations anyway.
Here we will show that even for functions that have small CNF representations there can be a large gap
between the treewidth of representations and CNF encodings with auxiliary variables. That is why we
think it is useful to systematically study width measures for CNF encodings.

As an example for a function where auxiliary variables have a dramatic impact on width, consider
the at-most-one function on variables x1, . . . , xn which accepts exactly those assignments in which at
most one variable is assigned to 1:

at-most-one(x1, . . . , xn) ≡
n∑

i=1

xi ≤ 1

This constraint is actually equivalent to the cardinality constraint
∑n

i=1 x̄i ≥ n − 1 and can be
represented by a CNF formula of quadratic size, given by:

at-most-one(x1, . . . , xn) =
∧

i,j∈{1,...,n},i<j

¬xi ∨ ¬xj

However, this representation has as primal graph the clique Kn which is of treewidth n− 1. We will
see that in fact there is no representation of at-most-one that is of smaller primal treewidth unless one
adds auxiliary variables, in which case there is a simple encoding of primal treewidth 2.
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Any CNF representation of at-most-one of n inputs without auxiliary variables has primal
treewidth n− 1. However, there is a CNF encoding of at-most-one of primal treewidth 2.

Theorem 3

To prove Theorem 3, we split the statement into two lemmas.

Any CNF representation of at-most-one of n inputs without auxiliary variables has primal
treewidth n− 1.

Lemma 1

Proof. Let x1, . . . , xn be the variables of at-most-one. We proceed with two claims.

Claim 15. Every non-tautological clause γ of any CNF representation of at-most-one must contain at
least the negation of two variables from x1, . . . , xn.

Proof. Suppose that a clause γ does not contain two such literals. Then, there are two possible cases:
either γ contains no negated variables, or exactly one. In the first case, the model of at-most-one setting
all variables to 0 does not satisfy γ, so γ cannot be part of the CNF representation. In the second case, let
xi be the (only) variable of at-most-one appearing negatively in γ. Then, the model of at-most-one setting
only xi to 1 and all other variables to 0 does not satisfy γ, so γ cannot be part of the CNF representation
either. Hence, at least two negated variables must appear in C.

From Claim 15, we deduce that all pairs of variables must appear conjointly in at least one clause.

Claim 16. For each pair of variables xi, xj from x1, . . . , xn with i ̸= j, there is a clause in the CNF
representation of at-most-one containing both ¬xi and ¬xj .

Proof. Suppose that, for a pair xi, xj , such a clause does not exist. Let I be the assignment that sets
exactly the variables xi, xj to 1 and all other variables to 0. Let γ be a clause from the CNF representation.
By our previous claim, γ contains two negated variables from x1, . . . , xn. Because of our assumption, at
least one of these literals is neither ¬xi nor ¬xj , and this literal is satisfied by I . Thus γ is satisfied by I .
Since this is true for every clause γ, it follows that I satisfies all the clauses of the representation, so it
is one of its models. However, I is not a model of at-most-one. As a consequence, a clause containing
both ¬xi and ¬xj must exist, which is also true for every pair xi, xj .

Claim 16 shows that for each pair of variables, there is a clause containing both of them. It follows
that all variables are connected to all other variables in the primal graph of the representation. So the
primal graph is a clique which has treewidth n− 1.

We now prove the second part of Theorem 3, which shows that if we allow the use of auxiliary
variables, we may decrease the treewidth dramatically.
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There is a CNF encoding of at-most-one of primal treewidth 2.

Lemma 2

Proof. We use the well-known ladder encoding presented in [GN04] and [BHvMW09, Section 2.2.5].
We introduce the auxiliary variables y0, . . . , yn. The encoding consists of the following clauses, for
every i ∈ {1, . . . , n}:

• the validity clauses ¬yi−1 ∨ yi, and
• clauses representing the constraint xi ↔ (¬yi−1 ∧ yi)

It is easy to see that this encoding is correct: the auxiliary variables yi encode if one of the variables xj
for j ≤ i is assigned to 1. Concerning the treewidth bound, we construct for every index i ∈ {1, . . . , n}
the bag Bi corresponding to the set of variables {yi−1, yi, xi}. Then, (Pn, (Bi)i∈{1,...,n}) where Pn has
nodes {1, . . . , n} and edges {(i, i+ 1) | i ∈ {1, . . . , n− 1}} is a tree decomposition of the encoding of
width 2.

3.3 Width and Communication Complexity

In this section, we show that from communication complexity we get lower bounds for the various width
notions of Boolean functions. The main building block is the following result that is an application of
the main result of [PD10] to complete structured DNNF.

Let D be a complete structured DNNF structured by a v-tree T computing a Boolean func-
tion f in variables X . Let t be a node of T and let Y = var(Tt) and Z = X\var(Tt). Finally,
let n be the number of ∨-gates in µ(t). Then, there is a rectangle cover of f respecting the
partition (Y, Z) of size at most n.

Theorem 4

Note that [PD10] considers models that are structured DNNF which are not necessarily complete, a
slightly more general model than ours. Thus their statement is slightly different. However, it is easy to see
that in our restricted setting, their proof shows the statement we give above [BCMS16, Section 5]. Since
Theorem 4 is somewhat technical, it will be more convenient here to use the following easy consequence.

Let D be a complete structured DNNF structured by a v-tree T computing a function f in
variables X . Let t be a node of T and let Y = var(Tt) and Z = X \ var(Tt). Then,
log(wi(D)) ≥ cc(f, (Y, Z)).

Proposition 30

Proof. From Theorem 4 and the definition of width, it follows directly that the size of an optimal rectan-
gle cover of f respecting (Y, Z) is upper bounded by the width of D. Taking the logarithm on both sides
yields the claim.
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In many cases, instead of considering explicit v-trees, it is more convenient to simply use best-case
communication complexity.

Let f be a Boolean function in variables X . Then, for every complete structured DNNF

computing f , we have wi(D) ≥ 2cc
1/3
best(f).

Corollary 28

Proof. For every v-tree with X on the leaves, there is a node t such that |X|/3 ≤ |var(Tt)| ≤ 2|X|/3.
Plugging this into Proposition 30 directly yields the result.

We will use Corollary 28 to turn compilation algorithms that produce complete structured DNNF
based on a parameter of the input [ACMS18, BS17] into inexpressivity bounds based on this parameter.
We first give an abstract version of this result that we will instantiate for concrete measures later on.

Let L be a (fully expressive) representation language for Boolean functions. Let p be a pa-
rameter p : L → N. Assume that there is for every Boolean function f and every λ ∈ L that
encodes f a complete structured DNNF D with wi(D) ≤ 2p(λ). Then, we have:

p(λ) ≥ cc
1/3
best(f)

Theorem 5

Proof. From the assumption, we get p(λ) ≥ log(wi(D)). Then we apply Corollary 28 to directly get the
result.

Intuitively, it is exactly the algorithmic usefulness of parameters that makes the resulting instances
inexpressive. Note that it is not surprising that instances whose expressiveness is severely restricted allow
for good algorithmic properties. However, here we see that the inverse of this statement is also true in
a quite harsh way: if a parameter has good algorithmic properties allowing efficient compilation into
DNNF, then this parameter puts strong restrictions on the complexity of the expressible functions.

From Theorem 5, we directly get lower bounds for many of the width measures from the litera-
ture [PSS13, SS10a, FMR08, SS13, STV15]. The first result considers the parameters with respect to
which SAT is fixed-parameter tractable.

There is a constant b > 0 such that, for every Boolean function f and every CNF φ encoding f ,
we have min{twi(φ), twp(φ), twd(φ), scw(φ)} ≥ b · cc

1/3
best(f).

Corollary 29

Proof. This follows directly from Theorem 5 and the fact that for all these parameters there are algo-
rithms that, given an input CNF of parameter value k, construct an equivalent complete structured DNNF
of width 2O(k).
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Using the compilation algorithm from [ACMS18, AMS18], we get essentially the same result for
circuit representations.

There is a constant b > 0 such that for every Boolean function f and every circuit C encod-
ing f we have:

min{tw(C), cw(C)} ≥ b · cc1/3best(f)

Corollary 30

For treewidth 1, the circuits of Corollary 30 boil down to so-called read-once functions, which
have been studied extensively [CLH11, Chapter 10].

Remark 17

Finally, we give a version for parameters that allow polynomial-time algorithms when fixed but no
fixed-parameter algorithms.

There is a constant b > 0 such that for every Boolean function f in n variables and every

CNF φ encoding f we have min{mimw(φ), cw(φ),mtw(φ)} ≥ b · cc
1/3
best(f)

log(n) .

Corollary 31

Proof. All of the width measures in the statement allow compilation into complete structured DNNF of
size (and thus also width) nO(k) for parameter value k and n variables [BCMS15]. Thus, with Theorem 5,
for each measure there is a constant b′ with log(nk) = k log(n) ≥ b′cc

1/3
best(f), which completes the

proof.

Note that the bounds of Corollary 31 are lower by a factor of log(n) than those of Corollary 29. We
will see in the next section that in a sense this difference is unavoidable.

3.4 Relations between Different Width Measures of Encodings

In this section, we show that the different width measures for optimal CNF encodings are strongly related.
To this end, we show the relation of treewidth to all other width measures we consider. We then combine
these relationships between treewidth and other width measures to analyze the relationships between all
width measures we consider. We start by proving that primal treewidth bounds imply bounds for modular
treewidth and cliquewidth.
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Let k be a positive integer and f be a Boolean function of n variables that has a CNF encod-
ing φ of primal treewidth at most k log(n). Then f also has a CNF encoding φ′ of modular
incidence treewidth and cliquewidth O(k). Moreover, if φ has dependent auxiliary variables,
then so has φ′.

Theorem 6

Before we prove Theorem 6, let us here discuss this result a little. It is well-known that the modular
treewidth and the cliquewidth of a CNF formula can be much smaller than its treewidth [SS13]. Theo-
rem 6 strengthens this by saying essentially that for every function we can gain a factor logarithmic in
the number of variables.

In particular, this shows that the lower bounds we can get from Corollary 31 are the best possible
ones: the maximal lower bounds we can show are of the form n/ log(n) and since there is always an
encoding of every function of treewidth n, by Theorem 6 there is always an encoding of cliquewidth
roughly n/ log(n). Thus the maximal lower bounds of Corollary 31 are tight up to constants.

Note that for Theorem 6, it is important that we are allowed to change the encoding. For example,
the primal graph of the formula φ =

∧
i,j∈{1,...,n}(xi,j ∨ xi+1,j) ∧ (xi,j ∨ xi,j+1) has the (n × n)-grid

as a minor and thus treewidth n [Die12, Chapter12]. But the incidence graph of φ has no modules and
also has the (n × n)-grid as a minor, so φ has modular incidence treewidth at least n as well. So we
gain nothing by going from primal treewidth to modular treewidth without changing the encoding. What
Theorem 6 tells us is that there is a different formula φ′ that encodes the function of φ, potentially with
some additional variables, such that the treewidth of φ′ is at most O(n/ log(n)).

Let us note that encodings with dependent auxiliary variables are often useful, e.g., when considering
counting problems. In fact, for such CNF encodings, the number of models is the same as for the function
they encode. It is thus interesting to see that dependence of the auxiliary variables can be maintained
by the construction of Theorem 6. We will see that this is also the case for most other constructions we
make.

Proof (of Theorem 6). The basic idea is that we do not treat the variables in the bags of the tree de-
composition individually but organize them in groups of size log(n). We then simulate the clauses of
the original formula by clauses that work on the groups. Since for every group there are only a linear
number of assignments, all encoding sizes stay polynomial. We now give the details of the proof.

Let (T, (Bt)t∈T ) be a tree decomposition of φ of width at most k log(n). For every clause γ of φ
there is a bag λ(γ) that contains the variables of γ. By adding some copies of bags, we may assume
without loss of generality that for every bag B there is at most one clause with λ(γ) ⊆ B and call this
clause λ−1(B).

In a first step, we construct a coloring µ : var(φ)→ {1, . . . , k+1} such that in every bag there are at
most log(n) variables of every color. This can be done iteratively as follows: first split the bag Br at the
root r into color classes as required. Since there are at most k log(n) + 1 variables in Br by assumption,
we can split them into k + 1 color classes of size at most log(n) arbitrarily. Now let t be a node of T
with parent t′. By the coloring of the variables in Bt′ , some of the variables in Bt are already colored.
We simply add the variables not appearing in Bt′ arbitrarily to color classes such that no color class is
too big. Again, since Bt contains at most k log(n) + 1 variables, this is always possible. Moreover, due
to the connectivity condition, there is for every variable v a unique node tv that is closest to the root
under the bags containing v. Consequently, we can make no contradictory decisions during this coloring
process, so µ is well-defined.
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We now construct φ′. To this end, we first introduce for every variable v and every node t such that
v ∈ Bt a new variable vt. Now for every node t with parent t′ and every color i, we add a set Ct′,t,i
of clauses in all variables vt, vt′ with µ(v) = i. We construct these clauses in such a way that they are
satisfied by exactly the assignments in which for each pair vt, vt′ such that both these variables exist,
both variables take the same value. Note that the clauses in Ct,t′,i have at most 2 log(n) variables, so
there are at most n2 of them. Moreover, they contain all the same variables. The result is a formula in
which all vt for a variable v take the same value in all satisfying assignments.

In a next step, we do for each clause γ the following: let t = λ(γ). For every color i, we define
Vi,t to be the set of variables vt such that µ(v) = i. We add a fresh variable yγ,i and clauses Cγ,i in the
variables Vi,t ∪ {yγ,i} that accept exactly the assignments I with

• I(yγ,i) = 1 and there is a vt ∈ Vi,t such that setting v to I(vt) satisfies γ, or
• I(yγ,i) = 0 and there is no vt ∈ Vi,t such that setting v to I(vt) satisfies γ.

Next, we add the clause γ′ =
∨

i∈{1,...,k+1} yγ,i. Finally, for every variable v, rename one arbitrary
variable vt to v. This completes the construction of φ′.

We claim that φ′ is an encoding of f . To see this, first note that, as discussed before, for every
variable v of φ, in the satisfying assignments of φ′, all vt and v take the same value. So, we define for
every assignment I of φ a partial assignment I ′ of φ′ as an extension of I by setting I ′(vt) = I(v) for
every vt. The assignment I satisfies a clause γ if and only if there is at least one variable v of γ such that
I(v) makes γ true. Let µ(v) = i, then I satisfies γ if and only if Cγ,i is satisfied by the extension of I ′ that
sets yγ,i to 1. So I satisfies γ if and only if there is an extension of I ′ that satisfies Cγ,i. Consequently, I
satisfies φ if and only if there is an extension I ′ of I that satisfies φ′, so φ′ is an encoding of f as claimed.

To see that the construction maintains dependence of auxiliary variables, observe first that the auxil-
iary variables already present in φ are still in φ′ and they are still dependent. We claim that all the new
variables depend on those of φ. For the variables vt, this is immediate since they must take the same
value as v in every model. Moreover, the variables yγ,i depend on the vt by definition. As a consequence,
all auxiliary variables are dependent.

We now show that the modular treewidth of φ′ is at most O(k). First, note that all sets Vi,t are
modules as are the clause sets Ct,t′,i and Cγ,i. Without loss of generality, we may assume that, for every t,
there is at most one clause γ with λ(γ) = t and that T is a binary tree. We construct a tree decomposition
(T, (Bt)t∈V(T )) as follows: we put a representative of Vi,t, Ct,t′,i, Ct′,t,i and Cγ,i into B′

t. Moreover, we
add yγ,i and γ′ to B′

t. It is easy to see that constructed like this, (T, (Bt)t∈V(T )) is a tree decomposition
of width at most O(k).

Finally, we will show that the incidence graph of the formula φ′ can be constructed withO(k) labels.
In this construction, the relabeling operation will only ever be used to forget labels, i.e., we change a
label i into a global dummy label d such that vertices labeled by d are never used in joining operations.

In a first step, we color T with 4 colors such that for every node t, the node t, its at most two children
and its parent all have different colors. We denote the color of t by η(t). Then, for every t individually,
we create the nodes in Cγ,i, Vt,i where γ is such that λ(γ) = t. The clauses in Cγ,i get label (i, η(t), 0)
and the variables in Vt,i get label (i, η(t), 1). By joining the vertices with labels (i, η(t), 0) with those
with (i, η(t), 1), we connect the variables in Vt,i with the clauses in Cγ,i. We then create the yγ,i, each
with individual labels and connect them to the clauses with label (i, η, 0). Finally, we create the clause
vertex γ′ with an individual label and connect it to the yγ,i. We then forget the labels of all vertices
except the Vt,i. We call the resulting graph Gt.

Note that at this point, the only thing that remains to do is to introduce the clauses in the Ct,t′,i and
connect them to the variables in Gt and Gt′ . To do so, we work in a bottom-up fashion along T . For the
leaves of T , there is nothing to do. So let t be an internal node of T with children t1, t2. The case in
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which t only has one child is treated analogously. By induction, we assume that we have graphs G′
t1 and

G′
t2 containing Gt1 and Gt2 as respective subgraphs such that:

• all variables appearing in G′
tj are already connected to all clauses, except the variables in the Vtj ,i

which are not yet connected to the clauses Ct,t1,i,
• all vertices in G′

tj except for those in the Vti have the dummy label d.

We proceed as follows: we make a disjoint union of Gt, G′
t1 and G′

t2 . Then we create nodes for all
clauses in the Ct,t1,i giving them the label (i, η(t), 2). Then we connect all nodes with label (i, η(t1), 1)
to those with label (i, η(t), 2), i.e., we connect the nodes in Vt1,i with the clauses in Ct,t1,i. Then we
connect all nodes with label (i, η(t), 1) to those with label (i, η(t), 2), i.e., we connect the nodes in Vt,i
with the clauses in Ct,t1,i. We proceed analogously with t2. Finally, we forget all labels but those for the
Vt,i. This completes the construction.

Verifying the clauses in φ′, one can see that the resulting graph is indeed the incidence graph of φ′.
Moreover, we have only used O(k) clauses by construction. This completes the proof.

We now show that the reverse of Theorem 6 is also true: upper bounds for many width measures
imply also bounds for the primal treewidth of CNF encodings. Note that this is at first sight surprising
since without auxiliary variables many of those width measures are known to be far stronger than primal
treewidth.

Let f be a Boolean function of n variables.

a. If f has a CNF encoding φ of modular treewidth, cliquewidth or mim-width k then f
also has a CNF encoding φ′ of primal treewidth O(k log(n)) with O(kn log(n)) auxil-
iary variables and nO(k) clauses.

b. If f has a clausal encoding φ of incidence treewidth, dual treewidth, or signed incidence
cliquewidth k, then f also has a clausal encoding φ′ of primal treewidth O(k) with
O(nk) auxiliary variables and 2O(k)n clauses.

Theorem 7

To show Theorem 7 and several similar results for other width measures in this section, we make a
detour through DNNF. The idea is to show that from certain DNNF representations of functions, we can
get CNF encodings of primal treewidth strongly related to the width of the DNNF. Since many width
measures can be used to construct small width DNNFs, we get small width CNF encodings for these
width measures. We now give a precise statement of the relation between DNNF and treewidth of CNF
encodings.

Let f be a Boolean function in n variables that is computed by a complete structured DNNFD
of width k. Then, f has a CNF encoding φ of primal treewidth 9 log(k) with O(n log(k))
variables andO(nk3) clauses. Moreover, ifD is deterministic, then φ has dependent auxiliary
variables.

Lemma 3
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The proof of Lemma 3 will rely on so-called proof trees in DNNF, a concept that has found wide
application in circuit complexity and in particular also in knowledge compilation. To this end, we make
the following definition.

A proof tree T of a complete structured DNNF D is a circuit constructed as follows:

1. The output gate of D belongs to T .
2. Whenever T contains an ∨-gate, we add exactly one of its inputs.
3. Whenever T contains an ∧-gate, we add both of its inputs.
4. No other gates are added to T .

Definition 84

Note that the choice in Step 2 is non-deterministic, so there are in general many proof trees for D.
Observe also that due to the structure of D given by its v-tree, every proof tree is in fact a tree which
justifies the name. Moreover, letting T be the v-tree of D, every proof tree of D has exactly one ∨-gate
and one ∧-gate in the set µ(t) for every non-leaf node t of T . For every leaf t, every proof tree contains
an input gate v or ¬v where v is the label of t in T .

The following simple observation that can easily be shown by using distributivity is the main reason
for the usefulness of proof trees.

Let D be a complete structured DNNF and I an assignment to its variables. Then I satisfies D
if and only if it satisfies one of its proof trees. Moreover, if D is deterministic, then every
assignment I that satisfies D satisfies exactly one proof tree of D.

Observation 2

Proof (of Lemma 3). Let D be the complete structured DNNF computing f and let T be the v-tree of D.
The idea of the proof is to use auxiliary variables to “guess” for every t an ∨-gate and an ∧-gate. Then
we use clauses along the v-tree T to verify that the guessed gates in fact form a proof tree and check in
the leaves of T if the assignment to the variables of f satisfies the encoded proof tree. We now give the
details of the construction.

We first note that, as shown by [CM19], in complete structured DNNF of width k, one may assume
that every set µ(t) contains at most k2 ∧-gates so we assume this to be the case for D. For every node t
of T , we introduce a set Vt of 3 log(k) auxiliary variables to encode one ∨-gate and one ∧-gate of µ(t)
if t is an internal node. If t is a leaf, Vt encodes one of the at most 2 input gates in µ(t). We now add
clauses that verify that the gates chosen by the variables Vt encode a proof tree by doing the following
for every t that is not a leaf: first, add clauses in Vt that check if the chosen ∧-gate is in fact an input of
the chosen ∨-gate. Since Vt has at most 3 log(k) variables, this introduces at most k3 clauses. Let t1 and
t2 be the children of t in T . Then we add clauses that verify if the ∧-gate chosen in t has as input either
the ∨-gate chosen in t1 if t1 is not a leaf, or the input gate chosen in t1 if t1 is a leaf. Finally, we add
analogous clauses for t2. Each of these clause sets is again in 3 log(k) variables, so there are at most 2k3

clauses in them overall. The result is a CNF formula that accepts an assignment if and only if it encodes
a proof tree of D.

We now show how to verify if the chosen proof tree is satisfied by an assignment to f . To this end,
for every leaf t of T labeled by a variable x, add clauses that check if an assignment to x satisfies the
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corresponding input gate of D. Since µ(t) contains at most 2 gates, this only requires at most 4 clauses.
This completes the construction of the CNF encoding. Overall, since T has n internal nodes, the CNF
has n(3 log(k) + 1) variables and 3nk3 + 4n clauses.

It remains to show the bound on the primal treewidth. To this end, we construct a tree decomposition
(T, (Bt)t∈V(T )) with the v-tree T as underlying tree as follows: for every internal node t ∈ V(T ), we
set Vt = Vt ∪ Vt1 ∪ Vt2 where t1 and t2 are the children of t. Note that for every clause that is used
for checking if the chosen nodes form a proof tree, the variables are thus in a bag Bt. For every leaf t,
set Bt = Vt ∪ {v} where v is the variable that is the label of t. This covers the remaining clauses. It
follows that all edges of the primal graph are covered. To check the third condition of the definition of
a tree decomposition, note that every auxiliary variable in a set Vt appears only in Bt and potentially in
Bt′ where t′ is the parent of t in T . Thus (T, (Bt)t∈V(T )) constructed in this way is a tree decomposition
of the primal graph of φ. Obviously, the width is bounded by 9 log(k) since every Vt has size 3 log(k),
which completes the proof.

Proof (of Theorem 7). We first prove a. As shown by [BCMS15], whenever the function f has a CNF
encoding φ with one of the width measures from this statement bounded by k, then there is also a
complete structured DNNF D of width nO(k) computing φ. Now forget all auxiliary variables of φ to
get a DNNF representation D′ of f . Note that since forgetting does not increase the width [CM19], D′

also has width at most nO(k). We then simply apply Lemma 3 to get the result.
To see b, just observe that, following the same construction, the width ofD is 2O(k) for all considered

width measures [BCMS15].

Remark that the construction of Theorem 7 has a surprising property: the size and the number of
auxiliary variables of the constructed encoding φ′ does not depend on the size of the initial encoding at
all. Both depend only on the number of variables in f and the width.

To maintain dependence of the auxiliary variables in the above construction, we have to work some
more than for Theorem 7. We start with some definitions.

We say that a complete structured DNNF is reduced if, from every gate, there is a directed
path to the output gate. Note that every complete structured DNNF can be turned into a
reduced DNNF in linear time by a simple graph traversal and that this transformation maintains
determinism and structuredness by the same v-tree.

Definition 85 (Reduced Complete Structured DNNF)

The following property will be useful.

Let d be a reduced complete structured DNNF and let g be a gate inD. Let Ig be an assignment
to var(g), the variables in the subcircuit rooted in g, that satisfies g. Then, Ig can be extended
to an assignment I that satisfies D.

Lemma 4
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Proof. We use the fact that an assignment to D is satisfying if and only if there is a proof tree that
witnesses this. So let Tg be a proof tree that witnesses Ig satisfying g. We extend it to a proof tree for an
extension I of Ig as follows: first add a path from g to the output gate to Tg and then iteratively add more
gates as required by the definition of proof trees where the choices in ∨-gates are performed arbitrarily.
The result is an extension T of Tg which witnesses that an assignment I that extends Ig satisfies D.

Let f be a function in variables V ∪ {z}. We say that z is definable in V with respect to f if
there is a function g such that for all assignments I with f(I) = 1 we have I(z) = g(I|V).

Definition 86 (Definability)

Let f be a function in variables V ∪ {z} such that z is definable in V with respect to f .
Let D be a reduced complete structured deterministic DNNF computing f . Then the complete
structured DNNF D′ we get from D by forgetting z is deterministic as well.

Lemma 5

Proof. By way of contradiction, assume this were not the case. Then there is an ∨-gate g in D′ and an
assignment I ′ to V such that two children g1 and g2 are satisfied by I ′. By Lemma 4, we may assume that
I ′ satisfies D′. Then, there are extensions I1 and I2 of I that assign a value to z such that I1 satisfies g1
and I2 satisfies g2 in D. Note that both I1 and I2 satisfy D and thus, by definability, I1 and I2 assign the
same value to z. So I1 = I2 and hence I1 satisfies both g1 and g2 inD which contradicts the determinism
of D.

Let f be a Boolean function of n variables.

a. If f has a CNF encoding φ with dependent auxiliary variables of modular treewidth,
cliquewidth or mim-width k then f also has a CNF encodingφ′ with dependent auxiliary
variables of primal treewidth O(k log(n)) with O(kn log(n)) auxiliary variables and
nO(k) clauses.

b. If f has a CNF encoding with dependent auxiliary variables of incidence treewidth, dual
treewidth, or signed incidence cliquewidth k, then f also has a clausal encoding φ′ with
dependent auxiliary variables of primal treewidth O(k) with O(nk) auxiliary variables
and 2kn clauses.

Theorem 8

Proof. The proof is essentially the same as that of Theorem 7 with some additional twists. First, observe
that the complete structured DNNF D constructed with the construction of [BCMS15] is deterministic.
Then we use Lemma 5 when forgetting the auxiliary variables and get a D′ that is deterministic without
increasing the width. Then, since D′ is deterministic, we can construct a CNF encoding with dependent
auxiliary variables using Lemma 3.
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Next we will show that signed incidence cliquewidth is linearly related to primal treewidth when
allowing auxiliary variables. We will state a result similar to Lemma 3. To do so, we start with a special
case for which we introduce some more definitions.

A special tree decomposition of a graph G is defined as a tree decomposition (T, (Bt)t∈V(T ))
in which for every vertex v ∈ V(G), the set {t ∈ V(T ) | v ∈ Bt} lies on a leaf-root path in T .

Definition 87 (Special Tree Decomposition [Cou12])

The special treewidth of a graph G is defined as the smallest width of any special tree decom-
position of G.

Definition 88 (Special Treewidth)

The primal special treewidth of a CNF formula is the special treewidth of its primal graph.

Every CNF formula of primal special treewidth k has signed incidence cliquewidth at
most k + 1.

Lemma 6

Proof. Let (T, (Bt)t∈V(T )) be a special tree decomposition of the primal graph of a CNF formula φ. It
is well-known that for every clause γ there is a node t = λ(γ) of T such that all variables of γ are in Bt.
By adding copies of some bags Bt along a root-leaf path in T , we may assume that λ(γ) ̸= λ(γ′) for
every pair γ, γ′ of clauses with γ ̸= γ′.

We will show how to construct the signed incidence graphG′ ofφwith the operations in the definition
of signed cliquewidth along the tree T . In a first step, we label every variable v of φ with a color µ(x)
from {1, . . . , k + 1} such that in every bag Bt there are no two variables with the same label µ(v). This
can be done similarly to the first step of the proof of Theorem 6 by descending from the root to the leaves
and labeling the variables in the bags along this way. The label µ(v) will be the label that the variable
gets when it is created in the construction of G′. As in the proof of Theorem 6, the only renamings of
labels that we will perform will be forget operations, i.e., renaming a label to a dummy label d.

For the construction of G′, we iteratively construct for every t ∈ V(T ) a graph Gt that contains all
variables in St =

∪
t′∈V(Tt)

Bt where Tt is the subtree of T rooted in t. Moreover,Gt contains all clauses
such that λ(γ) lies in Tt and all signed edges connecting them to their variables.

If t is a leaf, then we create all variables in Bt and if there is a clause γ with λ(γ) = t, we introduce
it with color k + 2. Since all variables of γ have different colors, we can then introduce all signed edges
individually. This completes the construction for the leaf case.

Let now t be an internal node with children t1, . . . , tl. By assumption, we have already constructed
Gt1 , . . . , Gtl . Note that for every i the variables in Gti that are not in Bt are by construction already
connected to all their clauses in Gti , so we can safely forget their label in a first step. Now we take the
disjoint union of all Gti . Note that this union is in fact disjoint, because, since we start from a special
tree decomposition, no node appears in more than one Gti . Now we create the variables which appear
in Bt but not in any Gti . Note that at this point the vertices with non-dummy labels are exactly those
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in Bt. If there is no clause γ with λ(γ) = t, we are done. Otherwise, we create γ and connect it to all its
variables by signed edges as in the leaf case. This completes the construction of Gt.

For the root r of T we have Gr = G′ by definition. Moreover, we have used at most k + 2 labels.
This completes the proof.

With Lemma 6, we can give a version of Lemma 3 for signed incidence cliquewidth easily.

Let f be a Boolean function in n variables that is computed by a structured DNNF D of
width k. Then f has a clausal encoding φ of signed incidence cliquewidth and primal spe-
cial treewidth O(log(k)) with O(n log(k)) variables and O(nk3) clauses. Moreover, if D is
deterministic then φ has dependent auxiliary variables.

Lemma 7

Proof. We only have to observe that in fact the tree decomposition in the proof of Lemma 3 is special
and apply Lemma 6.

Let f be a function with a CNF representation of primal treewidth k. Then f has a clausal
encoding of signed incidence cliquewidth and special treewidth O(k).

Corollary 32

We can now state our main result.

Let A = {twp, twd, twi, scw} and B = {mtw, cw,mimw}. Let f be a Boolean function in n
variables.

a. Let w1 ∈ A and w2 ∈ B. Then, there are constants c1 and c2 such that the following
holds: let φ1 and φ2 be CNF representations for f with minimalw1-width andw2-width,
respectively. Then, if w1(φ1) ≤ k log(n), then w2(φ2) ≤ c1k, and if w2(φ2) ≤ k, then
w1(φ1) ≤ c2k log(n).

b. Let w1 ∈ A and w2 ∈ A or w1 ∈ B and w2 ∈ B. Then, there are constants c1
and c2 such that the following holds: let φ1 and φ2 be CNF representations for f with
minimal w1-width and w2-width, respectively. Then, w1(φ1) ≤ k ⇒ w2(φ2) ≤ c1k
and w2(φ2) ≤ k ⇒ w1(φ1) ≤ c2k .

Theorem 9

Proof. Assume first that w1 = twp. For a, we get the second statement directly from Theorem 7 a. For
cw and mtw, we get the first statement by Theorem 6. For mimw, it follows by the fact that for every
graph G, mimw(G) ≤ c · cw(G) for some constant c [Vat12, Section 4].

80



3.5. Some Applications

For b, the second statement is Theorem 7 b. Since for every formula φ we have twi(φ) ≤ twp(φ)+1
by [FMR08], the first statement for twi is immediate. For scw it is shown in Corollary 32, while for twd it
has been shown by [SS10b]. All other combinations of w1 and w2 can now be shown by an intermediate
step using twp.

3.5 Some Applications

We now consider some applications of the results of this chapter to give lower bounds for different
encodings. To this end, we will need the following notations.

Given a function f : N → N and a function g : N → N, we say that f is in Ω(g(n)),
denoted f(n) = Ω(g(n)), if there exists n0 ∈ N and a constant c ∈ N such that, for any
n ≥ n0, cg(n) ≤ f(n).

Definition 89 (Ω(·))

Given a function f : N → N and a function g : N → N, we say that f is in Θ(g(n)),
denoted f(n) = Θ(g(n)), if both f(n) = O(g(n)) and f(n) = Ω(g(n)).

Definition 90 (Θ(·))

3.5.1 Cardinality Constraints

In this section, we focus on cardinality constraints. Without loss of generality, we consider here car-
dinality constraints over positive literals, i.e. constraints of the form

∑n
i=1 xi ≥ δ, in which all xi are

propositional variables. Let us denote this cardinality constraint by κδn.
In Chapter 2, we have studied the properties of cardinality constraints through the representation

language CARD (see Definition 67). We also note that many CNF encodings are known for represent-
ing such constraints [Sin05]. Here we add another perspective on cardinality constraint encodings by
determining their optimal treewidth. We start with the following easy observation.

κδn has an encoding of primal treewidth O(log(min(δ, n− δ))).

Observation 3

Proof. First, assume that δ < n/2. We iteratively compute the partial sums of Sj given by
∑j

i=1 xi and
encode their values in log(δ) + 1 bits yj1, . . . , y

j
log(δ)+1, denoted by Y j . We cut these sums off at δ (if

we have seen at least δ variables set to 1, this is sufficient to compute the output). In the end we encode
a comparator comparing the last sum Sn to δ. Since the computation of Sj+1 can be done from Sj and
xj+1, we can compute the partial sums with clauses containing only the variables in Y j∪Y j+1∪{xj+1},
so O(log(δ)) variables. The resulting CNF formula can easily be seen to be of treewidth O(log(δ)).

If δ > n/2, we proceed similarly but count variables assigned to 0 instead of those set to 1.
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We remark that our construction is the “basic approach” described in [BHvMW09, Section 8.6.7].
It has some similarity with the sequential counter introduced in [Sin05]. The main difference is that
we encode the partial sums Sj in binary whereas in the sequential counter, they are encoded in unary.
This choice is based on the fact that our encoding has smaller treewidth, which is the parameter we are
optimizing for. We did not empirically evaluate how this encoding performs in practice as this work is
purely theoretical, but doing so could provide another point of view on this work. We now show that
Observation 3 is essentially optimal.

Let δ < n/2. Then cc
1/3
best(κ

δ
n) = Ω(log(min(δ, n/3))).

Proposition 31

Proof. Let s = min(δ, n/3). Consider an arbitrary partition Y, Z with n
3 ≤ |Y | ≤

2n
3 . We show that

every rectangle cover of κδn must have s rectangles. To this end, choose assignments (I0, I ′0), . . . , (Is, I
′
s)

such that Ii : Y → {0, 1} assigns δ − i variables to 1 and I ′i : Z → {0, 1} assigns i variables to 1.
Note that every (Ii, I

′
i) satisfies κδn. We claim that no rectangle r1(Y ) ∧ r2(Z) in a rectangle cover

of κδn can have models (Ii, I
′
i) and (Ij , I

′
j) for i ̸= j. To see this, assume that such a model exists

and that i < j. Then, the assignment (Ij , I ′i) is also a model of the rectangle since Ij satisfies r1(Y )
and I ′i satisfies r2(Z). But (Ij , I ′i) contains strictly less than δ variables assigned to 1, so the rectangle
r1(Y ) ∧ r2(Z) cannot appear in a rectangle cover of κδn. Thus, every rectangle cover of κδn must have a
different rectangle for every model (Ii, I ′i) and thus at least s rectangles. This completes the proof.

A symmetric argument shows that for δ > n/2 we have the lower bound cc
1/3
best(κ

δ
n) =

Ω(log(min(n − δ, n/3))). Observing that δ < n for non-trivial cardinality constraints, we get the
following from Theorem 4.

CNF encodings of smallest primal treewidth for κδn have primal treewidth

Θ(log(min(δ, n− δ)))

The same statement is true for dual and incidence treewidth and signed incidence cliquewidth.
For incidence cliquewidth, modular treewidth and mim-width, there are CNF encodings of κδn
of constant width.

Corollary 33

3.5.2 The Permutation Function

We now consider the permutation function perm which has the n2 input variables Xn = {xi,j | i, j ∈
{1, . . . , n}} thought of as a matrix in these variables. The function perm evaluates to 1 on an input I if
and only if I is a permutation matrix, i.e., in every row and in every column of I there is exactly one 1.
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The function perm2 has the variables x1,1, x1,2, x2,1, x2,2 which we interpret organized as

the matrix
(
x1,1 x1,2
x2,1 x2,2

)
. The only inputs on which perm2 evaluates to 1 are

(
1 0
0 1

)
and(

0 1
1 0

)
. Inputs on which perm2 evaluates to 0 are for example

(
1 1
1 0

)
(the first row has

more than one 1-entry) and
(
0 1
0 0

)
(the first column has no 1-entry).

Example 39

The function perm is known to be hard in several versions of branching programs [Weg00].
In [BKM11], it is shown that CNF encodings of perm require treewidth Ω(n/ log(n)). We here give an
improvement by a logarithmic factor.

For every v-tree T on variables Xn, there is a node t of T such that cc(perm, Y, Z) = Ω(n)
where Y = var(Tt) and Z = X\Y .

Lemma 8

Proof. The proof is a variation of arguments used in [BKM11, Kra88, Weg00, Section 4.12]. Since all
models of perm assign exactly n variables to 1, for every model M of perm, there is a node tM in T such
that TM contains between n/3 and 2n/3 variables assigned to 1 by M . Since T has n internal nodes
and perm has n! models, there must be a node t such that for at least (n− 1)! of the models M we have
t = tM . We will show in the remainder that t has the desired property.

Denote byM the set of models M of perm for which tM = t. Let Y = var(Tt) and Z = Xn \ Y as
in the statement of the lemma. Every model M of perm corresponds to a permutation πM on {1, . . . , n}
that assigns every i ∈ {1, . . . , n} to the j such that M(xi,j) = 1. Note that because of the properties
of M , πM is well-defined and indeed a permutation.

Let R(X) = r1(Y ) ∧ r2(Z) be a rectangle in a rectangle cover of perm with partition (Y, Z). We
will show that R(X) contains few models from M. To this end, fix a model M ∈ M of R(X) and
define I(M) = {i | xi,πM (i) ∈ Y }. Observe that, if we denote |I(M)| by k, then k is the number
of variables in Y that are assigned to 1 by M and thus n/3 ≤ k ≤ 2n/3. Let M ′ be another model
of R(X). Then I(M ′) = I(M) because otherwise M |Y ∪M ′|Z does not encode a model, where M |Y
denotes the restriction of M to Y and M ′|Z that of M ′ to Z. Letting I ′(M) = {πM (i) | i ∈ I(M)},
we get similarly that for all models M ′ of R(X) we have I ′(M) = I ′(M ′). It follows that the models
of r1(Y ) are all bijections between I(M) and I ′(M) and thus r1(Y ) has at most k! models.

By a symmetric argument, one sees that r2(Z) has at most (n − k)! models. Thus, the number of
models of R is bounded by k!(n − k)! ≤

(
n
3

)
!
(
2n
3

)
!. As a consequence, to cover all (n − 1)! models

inM, one needs at least

(n− 1)!(
n
3

)
!
(
2n
3

)
!
=

1

n

(
n
n
3

)
≥ 1

n

(
n
n
3

)n
3

=
1

n
3
√
3
n

rectangles, which completes the proof.
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As a consequence of Lemma 8, we get an asymptotically tight treewidth bound for encodings of
perm.

CNF encodings of smallest primal treewidth for permn have primal treewidth Θ(n).

Corollary 34

Proof (sketch). The lower bound follows by using Lemma 8 and Proposition 30 and then arguing as in
the proof of Theorem 5.

For the upper bound, observe that checking if out of n variables exactly one has the value 1 can easily
be done with n variables. We apply this for every row in a bag of a tree decomposition. We perform
these checks for one row after the other and additionally use variables for the columns that remember
if in a column we have seen a variable assigned 1 so far. Overall, to implement this, one needs O(n2)
auxiliary variables and gets a formula of treewidth O(n).

From Corollary 34 we get the following bound by applying Theorem 6. This answers an open
problem from [BKM11], who showed only conditional lower bounds for the incidence cliquewidth of
encodings of perm.

CNF encodings of smallest incidence cliquewidth for permn have width Θ(n/log(n)).

Corollary 35

In this chapter, we have shown several results on the expressiveness of CNF encodings with restricted
underlying graphs. In particular, we have seen that many graph width measures from the literature put
strong restrictions on the expressiveness of encodings. We have also seen that, contrary to the case of
representations by CNF formulae, in the case where auxiliary variables are allowed, all width measures
we have considered are strongly related to primal treewidth and never differ by more than a logarithmic
factor. Moreover, most of our results are also true while maintaining dependence of auxiliary variables.

From a practical standpoint, one point of our results might be that formulae solved with width-
based algorithms as those from the theoretical literature can likely only deal with quite simple formulae.
Otherwise, for example if formulae contain big cardinality constraints or pseudo-Boolean constraints,
the width of the formulae might be infeasibly high. This is because all those algorithms are at least
exponential in the width of the input. An implementation of such algorithms would thus likely have to
implement heuristics and optimizations not presented in the theory literature. For example, [FHZ19]
showed that one can use parallelism of GPUs to improve the efficiency of treewidth-based counting and
thus scale to higher treewidth.
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Conclusion

We have studied properties of representation languages based on pseudo-Boolean constraints. In par-
ticular, we have shown that pseudo-Boolean constraints offer a succinct alternative to clauses, that they
generalize. Interestingly, all the tractable queries available for CNF remain tractable when considering
pseudo-Boolean constraints. However, this is not the case for the transformations that are offered by
CNF, as some of them, such as forgetting and bounded disjunction, become intractable in general when
dealing with pseudo-Boolean constraints. Thus, from a knowledge representation perspective, pseudo-
Boolean languages cannot be considered as actual compilation languages, since important queries (es-
pecially, regarding consistency) cannot be computed in polynomial time, unless P = NP.

We have also studied properties of CNF encodings, as those used to encode pseudo-Boolean formulae
into CNF formulae of reasonable size, thanks to auxiliary variables. We have shown that, if the width of
such encodings is bounded, their expressiveness may be drastically limited, restricting the formulae to
those of low communication complexity.

The main advantage of pseudo-Boolean constraints, when considered as a representation language,
is thus their succinctness. Another benefit of using pseudo-Boolean constraints instead of clauses is
that it is possible to reason on them using a stronger framework, based on the cutting planes proof
system [Gom58, Hoo88]. This reasoning aspect of pseudo-Boolean constraints is studied in the following
part of the document.
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Pseudo-Boolean Solving
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Introduction

During the last decades, many improvements have been made in satisfiability solving. In practice, so-
called “modern” SAT solvers are particularly efficient, and can now solve problems with million of
variables and clauses, while doing so was considered out of reach in the early 1990s [JLRS12]. This
“SAT revolution” has been made possible by the development of the conflict-driven clause learning
architecture (CDCL) [MS99] and of efficient data structures and heuristics [MMZ+01, ES04].

However, some instances remain hard to solve for current SAT solvers. This is particularly true
for inconsistent formulae for which only exponential-sized unsatisfiability proofs exist in the resolution
proof system on which they are based. For instance, this is the case for pigeonhole principle formulae
that state that it is not possible to put n pigeons in n − 1 holes [Hak85]. Many of those hard formulae
require the solvers to be able to either detect and break symmetries or to “count” so as to generate short
proofs [BS94, DBBD16, MBK19].

This was an important motivation for the development of pseudo-Boolean reasoning [RM09a], which
benefits from the expressiveness of pseudo-Boolean constraints and from the strength of the cutting
planes proof system [Gom58, Hoo88, Nor15]. This proof system is in theory strictly stronger than the
resolution proof system used in SAT solvers, as the former p-simulates the latter [CCT87]: any resolution
proof can be simulated by a cutting planes proof of polynomial size with respect to the size of the original
proof.

In practice, however, none of the current pseudo-Boolean solvers uses the full power of the cutting
planes proof system [VEG+18]. Indeed, most of them exploit a subset of cutting planes which can be
viewed as a generalization of resolution [Hoo88]. This allows to extend clausal inference to pseudo-
Boolean inference, inheriting many of the techniques used in SAT solving [DG02, CK05]. In particular,
the conflict-driven clause learning architecture has been extended to pseudo-Boolean problems, and many
solvers have been developed in this direction [DG02, CK05, SS06, LP10, EN18].

Disappointingly, pseudo-Boolean solvers fail to keep in practice the promises of theory. While they
perform generally well on specific classes of benchmarks, they fail to run uniformly well on all bench-
marks [EGNV18]. This is partly due to the complexity of deciding when to use the rules of the cutting
planes proof system, and of implementing their application efficiently. The initial trend has been to re-
place the application of the resolution rules by the generalized resolution rules [Hoo88] during conflict
analysis. However, this approach is not satisfactory because it is equivalent to resolution when applied
to clauses, and requires a specific preprocessing to derive cardinality constraints [BLLM14, EN20].

In the following, we study the resolution of the decision problem consisting in determining whether a
pseudo-Boolean formula is consistent. To this end, Chapter 4 surveys the current state of pseudo-Boolean
solving. In particular, we introduce the CDCL architecture of modern SAT solvers and its extension to
pseudo-Boolean solving. We also briefly describe how resolution-based SAT solvers can be used to solve
pseudo-Boolean problems.

In Chapter 5, we consider the problem of irrelevant literals produced by pseudo-Boolean solvers dur-
ing their conflict analyses [LMMW20]. Such literals have no effect on the truth value of the constraints
in which they appear. However, if such a constraint is used during conflict analysis to derive new con-
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straints, the resulting constraints may be weaker than they could be if irrelevant literals were not there in
the first place. They may thus impact the performance of the solver, as weaker constraints may lead to
longer unsatisfiability proofs.

Chapter 6 investigates different weakening strategies that can be applied by pseudo-Boolean solvers
to preserve the conflict during conflict analysis [LMW20]. In particular, we show that one can weaken
so-called ineffective literals to also remove irrelevant literals, while doing so forces to only derive clauses,
and thus weak constraints. We also study how to implement in a solver based on RoundingSat [EN18] a
less aggressive weakening strategy that improves the performance of the solver.

Chapter 7 finally extends different strategies inspired by those used in resolution-based CDCL SAT
solvers to pseudo-Boolean solving. More precisely, we consider different branching heuristics, restart
policies, and learned constraint deletion strategies which are well-known to play a key role in the effi-
ciency of modern SAT solvers. Our extensions of these strategies take advantage of the specific properties
of pseudo-Boolean constraints to improve the performance of pseudo-Boolean solvers. Preliminary re-
sults of this contribution have been presented in a workshop [Wal20] and in a seminar [Nor20]. The
feedback received allowed us to improve the reporting and analysis of our experimental results.
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Chapter 4

State of Pseudo-Boolean Solving

Compared to CNF formulae, pseudo-Boolean formulae have a number of advantages. In addition to
being more succinct, they are also a more natural language to encode a wide variety of problems, such
as the well-known subset sum or knapsack problems (see, e.g., [CLRS09]). Over the years, several
approaches have thus been proposed for pseudo-Boolean problems, following the development of SAT
solvers [FM09]. For instance, the Davis-Putnam procedure [DP60] has been adapted into opbdp [Bar95]
for handling pseudo-Boolean optimization. Different pseudo-Boolean solvers based on the SAT solver
GRASP [MS99] have also been developed, such as bsolo [MS97], which integrates a branch-and-bound
procedure, or SATIRE [WS01], which extends its conflict-driven clause learning architecture to natively
support pseudo-Boolean constraints (while still performing the conflict analysis on clauses). Local search
incomplete algorithms have also been proposed for solving such problems [Wal97]. Since the “SAT revo-
lution” initiated by Chaff [MMZ+01], most SAT solvers have adopted the CDCL architecture, especially
the implementation proposed by Minisat [ES04]. This is also true for pseudo-Boolean solvers, either by
directly using a SAT solver on a CNF encoding of the pseudo-Boolean formula, or by natively supporting
pseudo-Boolean reasoning through the cutting planes proof system [RM09a]. In this chapter, we focus
on such current pseudo-Boolean solvers, and survey the existing techniques for solving pseudo-Boolean
constraints. We also discuss the pros and cons of different techniques.

4.1 Practical SAT Solving

Despite the NP-completeness of the SAT problem [Coo71], so-called “modern” SAT solvers are cur-
rently often able to solve industrial CNF instances with millions of variables and clauses [JLRS12].
This practical efficiency is mostly due to the combination of different building blocks, such as the
conflict-driven clause learning architecture [MS99], and the use of efficient data structures and heuris-
tics [MMZ+01, ES04]. These building blocks are studied in this section.

4.1.1 Exploring the Search Space

In order to find a model of an input formula or to prove its inconsistency, SAT solvers try different
(partial) assignments of the variables of this formula. This allows either to eliminate falsifying assign-
ments or to find a satisfying assignment (if any). This exploration of the search space is done by making
decisions and propagating literals.
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Making a decision is the process of selecting an unassigned variable of the input formula and
assigning it to a chosen truth value.

Definition 91 (Decision)

Note that Definition 91 does not specify how to select the variable to assign, and neither it
describes how to choose which truth value to assign. For now, we only assume that these
choices are performed heuristically. Some heuristics are described later in this chapter.

Remark 18

When a variable has been assigned (e.g., after a decision), the formula may be simplified. In par-
ticular, clauses that contain the corresponding satisfied literal may be removed from the formula, and
clauses containing the corresponding falsified literal may be shortened on this literal, as in the following
example.

Consider a CNF formula Σ and a clause γ of Σ defined by a ∨ ¬b ∨ c. If c becomes falsified,
the clause γ can be shortened into a∨¬b. If b is now falsified, the literal ¬b becomes satisfied,
which also satisfies the clause. In this latter case, γ can thus be removed from Σ.

Example 40

Typically, when making a decision, we eliminate the (possibly) satisfying assignment in which the
opposite decision is taken. However, if the literal is pure, this does not happen.

Given a CNF formula Σ and a literal ℓ ∈ lit(Σ), ℓ is said to be pure when ¬ℓ ̸∈ lit(Σ).

Definition 92 (Pure Literal)

Consider a CNF formula Σ defined by (a ∨ ¬b ∨ c) ∧ (b ∨ ¬c). In this formula, a is pure,
while b and c are not.

Example 41

Pure literals are useful because they allow removing clauses from the input formula while avoiding to
shorten, and thus strengthen, other clauses. In this context, the strengthening of the shortened clauses is
due to the fact that making a decision eliminates all (possibly) satisfying assignments in which the oppo-
site decision is made, which may also be the only satisfying assignments of the considered formula. On
the contrary, the (in)consistency of the formula is preserved when satisfying pure literals and simplifying
the input formula accordingly. However, the obtained formula is not equivalent to the original formula in
general (the formulae are only equisatisfiable). On the contrary, equivalence is preserved when satisfying
unit literals.
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A unit clause is a clause that contains exactly one literal. This unique literal is called a unit
literal.

Definition 93 (Unit Clause)

The clause ¬b is unit while the clause b ∨ ¬c is not.

Example 42

Unit clauses are particularly useful during the exploration of the search space, because they force
their unit literal to be satisfied, as it is the only way to satisfy such a clause. When unit clauses are
detected, the corresponding literals are thus propagated to true.

Unit propagation (also known as Boolean Constraint Propagation (BCP)) is the process of
satisfying all unit literals appearing in a CNF formula, simplifying the formula, and repeating
the operation until no more unit literals appear in the formula.

Definition 94 (Unit Propagation)

When a unit clause γ propagates a literal ℓ to true, we we say that γ is the reason for ℓ, which
is denoted by reason(ℓ) = γ.

Notation 10

This latter notation illustrates the main difference between decisions and propagations: while they
both assign literals, the former does not have a clear reason for making the assignment, while the latter
has been forced to a truth value because of a unit clause.

As mentioned above, any assignment, no matter if it is a decision or a propagation, may trigger sim-
plifications on the input formula. In practice, most current SAT solvers only perform the simplification
of the formula implicitly: clauses are not actually shortened nor removed from the formula. Instead, SAT
solvers keep track of the current assignment of their literals. In particular, they maintain for each literal
the decision level of its assignment (if any).

Let v be a propositional variable. The decision level of v is the number dl(v) such that:

• either v is the dl(v)-th variable on which the solver has made a decision, or
• the truth value of the variable v has been unit propagated after the dl(v)-th decision and

before the (dl(v) + 1)-th decision.

The decision level of a literal ℓ is defined as the decision level of the corresponding variable,
i.e., dl(ℓ) = dl(var(ℓ)).

Definition 95 (Decision Level)
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We denote by val(v) the value assigned by the solver to the variable v.

Notation 11

v(b@d) denotes that the variable v is assigned the Boolean value b ∈ {0, 1} at decision level
d. v(?@?) denotes that v is not assigned under the current partial assignment.
ℓ(b@d) denotes that the literal ℓ is assigned the Boolean value b ∈ {0, 1} at decision level d.
ℓ(?@?) denotes that ℓ is not assigned under the current partial assignment.
In the following, we use either the variable notation or the literal notation, depending on which
is more convenient in the context. In particular, we always use the literal notation when dealing
with clauses or constraints.

Notation 12

If a literal ℓ is propagated before any decision is made, we say that the literal is propagated at
decision level 0, and thus write ℓ(1@0).

Remark 19

In order to take into account the implicit simplifications made by the solver when it assigns a variable,
let us consider a new definition of unit clause.

A clause is said to be unit under a partial assignment when it contains exactly one unassigned
literal, while all its other literals are falsified by the current partial assignment.

Definition 96 (Unit Clause Under a Partial Assignment)

The clause a(?@?) ∨ ¬b(0@1) ∨ c(0@2) is unit under the current partial assignment. The
clauses a(?@?)∨¬b(?@?)∨ c(0@2), a(1@2)∨¬b(0@1)∨ c(0@2) and a(0@2)∨¬b(0@1)∨
c(0@2) are not unit under the current partial assignment.

Example 43

In the following, unit clauses are always considered unit under the current partial assignment. Unit
clauses play a key role in modern SAT solvers: it has been estimated that almost 80% of the runtime of
these solvers is spent performing unit propagation [MMZ+01]. An efficient algorithm for detecting unit
clauses is thus required.

A first approach for detecting whether a clause is unit is to maintain a counter of its falsified literals,
so as to know when only one literal remains unassigned. In practice, this technique requires a precise
vision of the formula to update the counter each time the assignment of a literal changes, which is not
appropriate in the architecture of modern SAT solvers, based on lazy data structures. This has motivated
the development of more sophisticated algorithms and lazy data structures for detecting unit clauses,
based on the following observation.
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If a clause contains at least two non-falsified literals, it cannot be unit.

Observation 4

Intuitively, it is thus enough to keep track, for each clause, of two non-falsified literals. A first
approach for doing so is the head-tail approach described in [ZS96, ZS00]. In this case, the two literals
being considered are the first (head) and last (tail) non-falsified literals of the clause. These two literals
are marked with a pointer that is moved when the head or tail literals become falsified. When it is not
possible to update the pointer, the clause is falsified and, when the first and last non-falsified literals are
identical, this literal must be propagated as in the following example.

Consider the clause a(?@?) ∨ ¬b(?@?) ∨ c(?@?). Initially, the head literal is a and the tail
literal is c. If b is assigned to 0, nothing changes with respect to the head and tail literals. Now,
if a becomes falsified, a new head literal must be identified. The next non-falsified literal in
the clause is c, which becomes the new head literal. As it is also the tail literal, it must be
propagated.

Example 44

While being more efficient than the counter-based approach, as assignments made between the head
and the tail literals do not alter these literals, this approach is not completely satisfactory. In particular,
when literals are being unassigned during the exploration of the search space, it may be necessary to
update the head and tail literals. For instance, in the example above, if a becomes unassigned again, the
head pointer must be updated to point to this literal.

To improve the performance of unit propagation, current solvers mostly use another approach, intro-
duced in [MMZ+01] and known as watched literals. This data structure always ensures that the two first
literals of the clause are unassigned: whenever one of these watched literals becomes falsified, the solver
searches for another non-falsified literal in the clause, which takes the position of the falsified watched
literal [MMZ+01, Gel02, ES04]. If the clause does not contain a non-falsified literal that can replace this
literal, then the other watched literal must be propagated. This procedure is described in Algorithm 1.

In practice and as described in the algorithm, watched literals are maintained so that the first
literal of the clause is always the one to propagate.

Remark 20

Consider again the clause a(?@?) ∨ ¬b(?@?) ∨ c(?@?). Initially, the two watched literals
are a and b. If b is assigned to 0, it is replaced by c, giving the clause a(?@?) ∨ c(?@?) ∨
¬b(0@1). Now, if a becomes falsified, its position is first switched with that of c, giving
c(?@?)∨a(0@2)∨¬b(0@1). Then, the solver searches for a new watched literal to replace a.
As no such literal exists, the first literal of the clause (i.e., the first watched literal) must be
propagated.

Example 45
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Algorithm 1: updateWatchedLiterals
Input : A clause γ with watched literals ℓ1 and ℓ2 and a falsified literal ℓ
Output: The literal to propagate, if any

1 if ℓ ̸= ℓ1 and ℓ ̸= ℓ2 then
2 return null
3 end
4 if ℓ = ℓ1 then
5 Swap ℓ1 and ℓ2 in γ
6 end
7 foreach literal ℓ′ of γ that is not watched do
8 if ℓ′ is not falsified then
9 Swap ℓ2 and ℓ′ in γ

10 return null
11 end
12 end
13 return ℓ1

The main advantage of using watched literals is that they are a lazy data structure: these literals must
be updated only when one of them becomes falsified, and are independent of the assignment of the other
literals. In particular, they do not need to be updated when literals become unassigned in the clause (for
instance, in the example above, if either a or b become unassigned, the current watched literals, c and a,
remain correct).

The head-tail procedure described above can be improved by moving the head and tail literals
to the first and last position of the clause, respectively, instead of moving pointers in the clause.
Doing so, the head-tail and watched literals approaches have similar performances.

Remark 21

During unit propagation, it may happen that the same literal is propagated to both true and false at
the same decision level. In this case, we say that a conflict has occurred. Intuitively, a conflict is due to
a sequence of decisions made at some point while exploring the search space. In order to identify the
sequence that is responsible for the conflict, the solver performs a conflict analysis so as to not run into
the same conflict again.

4.1.2 Intelligent Backtracking

During the early development of SAT solvers, several algorithms have been designed to decide the satis-
fiability of a CNF formula. Among these algorithms is the one by Davis and Putnam [DP60], best known
as DP, which makes an heavy use of the resolution proof system. This proof system is composed of the
two following rules.

v ∨
∨n

i=1 ℓi v̄ ∨
∨m

j=1 ℓ
′
j

(resolution)∨n
i=1 ℓi ∨

∨m
j=1 ℓ

′
j

ℓ ∨ ℓ ∨
∨n

i=1 ℓi (merge)
ℓ ∨
∨n

i=1 ℓi
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Let us describe the notation used for these rules. The clauses above the horizontal bars are
called premises. From the premises, we deduce (or derive) the clauses that is below the hori-
zontal bar. For instance, the first rules reads as: “if we have v ∨

∨n
i=1 ℓi and v̄ ∨

∨m
j=1 ℓ

′
j , then

we can infer
∨n

i=1 ℓi ∨
∨m

j=1 ℓ
′
j”. From a logical viewpoint, this first rule can also be read as:(

v ∨
n∨

i=1

ℓi

)
∧

v̄ ∨ m∨
j=1

ℓ′j

 |= n∨
i=1

ℓi ∨
m∨
j=1

ℓ′j

Notation 13

Note that one can reuse the derived clause as a premise for the application of another rule.

Remark 22

In the following, we call the application of the resolution rule, followed by a systematic application
of the merge rule, when needed, a resolution step. In practice, clauses are often represented as sets of
literals, so that the merge rule is is applied implicitly.

Observe that, in the resolution rule above, if more than one literal appear with an opposite sign
in the two clauses being resolved, one gets a tautology, as in the following example:

a ∨ b ∨ c ¬a ∨ ¬b ∨ ¬d
b ∨ ¬b ∨ c ∨ ¬d

The clause derived here is equivalent to⊤, as it contains both b and¬b, and that every complete
assignment satisfies exactly one of these literals.

Remark 23

Let γ and γ′ be two clauses containing ℓ and ¬ℓ, respectively. We denote γ ⊞ γ′ the result of
the application of the resolution rule followed by the merge rule (if needed) on the clauses γ
and γ′. The resulting clause is called the resolvent of γ and γ′, and ℓ is called the pivot of the
resolution.

Notation 14

The resolution proof system is particularly adapted to SAT solving, as it is both sound and refutation
complete.

A proof system is said to be sound if and only if, all formulae derived by this proof system are
logical consequences of the conjunction of the original formulae.

Definition 97 (Soundness)
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A proof system is said to be refutation complete if and only if, for any conjunction of inconsis-
tent formulae, the rules of this proof system allow to derive ⊥ from the original formulae. We
call the combination of the rules and clauses that yields⊥ a refutation proof or unsatisfiability
proof.

Definition 98 (Refutation Completeness)

It is thus possible to decide the satisfiability of a CNF formula by finding an unsatisfiability proof
from its clauses. This can be achieved by computing the forgetting (see Definition 61) of all the variables
of the formula. If at some point, an empty clause is derived, the formula is unsatisfiable, otherwise it is
satisfiable. This procedure is described by Algorithm 2 below.

Algorithm 2: DP
Input : A CNF formula Σ
Output: Whether Σ is satisfiable

1 Σ← unitPropagate(Σ)
2 if Σ contains the empty clause then
3 return UNSATISFIABLE
4 end
5 Σ← satisfyPureLiterals(Σ)
6 if Σ is empty then
7 return SATISFIABLE
8 end
9 v ← chooseVariable(Σ)

10 foreach clause γ in Σ containing v do
11 foreach clause γ′ in Σ containing ¬v do
12 γr ← γ ⊞ γ′

13 if γr ̸≡ ⊤ then
14 add γr to Σ
15 end
16 end
17 end
18 remove all clauses from Σ containing v or ¬v
19 return DP(Σ)

The algorithm first applies unit propagation on the input formula, and returns that the formula is
unsatisfiable when the empty clause is derived during this process, which (implicitly) simplifies the
formula. Then, all pure literals are satisfied, so as to simplify the formula. If all clauses are satisfied,
then the formula is consistent. Otherwise, a variable v is chosen among those appearing in Σ. In [DP60],
the first variable of the shortest clause in Σ is chosen. All possible resolutions using v as pivot are then
applied, and the corresponding resolvents are added to Σ. All clauses containing the variable v are then
removed from Σ, giving the forgetting of v in Σ. A recursive call to the algorithm repeats all these
operations, so as to forget all the variables of Σ, which guarantees the soundness of the algorithm.
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While it allows to decide the satisfiability of a CNF formula, the DP algorithm has several drawbacks.
First, computing all possible resolvents is both time and space consuming, making the algorithm ineffi-
cient in practice, and not scalable to large instances. Second, when the input formula is satisfiable, DP
is not able to provide a model of the formula. This has motivated the development of another algorithm,
known as DPLL [DLL62], which is given by Algorithm 3 below.

Algorithm 3: DPLL
Input : A CNF formula Σ
Output: Whether Σ is satisfiable

1 Σ← unitPropagate(Σ)
2 if Σ contains the empty clause then
3 return UNSATISFIABLE
4 end
5 Σ← satisfyPureLiterals(Σ)
6 if Σ is empty then
7 return SATISFIABLE
8 end
9 ℓ← chooseLiteral(Σ)

10 if DPLL(Σ ∧ ℓ) = SATISFIABLE) then
11 return SATISFIABLE
12 end
13 return DPLL(Σ ∧ ¬ℓ)

Contrary to DP, the DPLL procedure does not apply the resolution rule, but relies on so-called
backtrack search. Once a literal ℓ is chosen, it is first assigned true (note that this is done in the algorithm
by applying unit propagation on Σ ∧ ℓ during the recursive call). If the simplified formula is satisfiable,
then the original formula is satisfiable as well (and ℓ appears as satisfied in the model built by the solver),
otherwise the literal is assigned false, and a similar check is performed on the resulting formula. This
algorithm is less space consuming than DP, as only the current partial assignment changes from one call
to another, but also allows to identify a model (actually, an implicant) of the formula, which corresponds
to the partial assignment currently stored by the solver when the formula is identified as satisfiable.

Despite these improvements, SAT solvers using the DPLL procedure are still too slow in practice to
solve instances containing tens of thousands of variables. One of the main limitations of DPLL is that
it can only produce tree-like proofs (while DAG-like proofs, for instance, may be shorter). Moreover,
DPLL can only performs chronological backtracking (or simply backtracking). In this context, when
a conflict is due to decisions made at the very beginning of the algorithm, these decisions can only be
reconsidered after having explored the whole search space rooted at these decisions, so that the solver
may run into the same conflict again and again. In order to identify these decisions earlier, the Conflict-
Driven Clause Learning (CDCL) architecture [MS99] has been developed.

Recall that a conflict occurs when a literal is propagated to both 0 and 1 at the same decision level,
or, in practice, when a clause becomes falsified. This may occur in two different contexts. If the conflict
is detected at decision level 0, i.e., without having made any decision, then the formula is trivially unsat-
isfiable. Otherwise, a decision needs to be reconsidered at some point. The purpose of conflict analysis
is to identify such a decision. To do so, the solver needs to keep track of all decisions and propagations
that have produced this conflict with an implication graph.
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An implication graph is a directed acyclic graph such that:

• the vertices of the graph may either be⊤ or an assignment of a variable v(val(v)@dl(v)),
• the predecessors of a vertex v(val(v)@dl(v)) are the assignments (decisions and propa-

gations) that triggered the unit propagation of the value val(v) for the variable v, or ⊤ if
the unit propagation was triggered by a unit clause of the original formula, and
• each edge is labeled by the clause that has triggered the unit propagation it represents.

Definition 99 (Implication Graph)

In practice, the implication graph is only maintained implicitly by the solver. The solver ex-
ploits an assignment stack, also known as trail, in which each assignment (decision or propa-
gation) is pushed, together with its reason (if any).

Remark 24

A conflict occurs in the implication graph when two vertices v(0@dl(v)) and v(1@dl(v)) are simul-
taneously present in the graph, as illustrated in the following example.

Consider the CNF formula containing the following clauses:

• γ1 : a

• γ2 : ¬a ∨ ¬b ∨ c

• γ3 : ¬b ∨ ¬d ∨ e

• γ4 : ¬c ∨ ¬e ∨ f

• γ5 : ¬f ∨ g

• γ6 : ¬a ∨ ¬g ∨ h

• γ7 : ¬f ∨ ¬g ∨ ¬h

First, observe that the literal a is propagated at decision level 0, before any assignment is made.
Then, suppose that the decisions d(1@1) and b(1@2) are taken. A decision level 2, some unit
propagations are triggered, as illustrated in the implication graph below.

⊤

a(1@0)

b(1@2)

d(1@1)

c(1@2)

e(1@2)

f(1@2)

h(1@2)

g(1@2)

h(0@2)

γ1

γ2

γ7

γ2

γ3

γ3

γ4

γ4

γ5

γ6 γ6

γ7

Observe that there is a conflict in the graph, as it contains both vertices h(0@2) and h(1@2).

Example 46
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When a conflict is identified, the analysis starts by choosing a clause γ0 that is falsified by the current
assignment. This clause is also referred to as the conflict.

From a theoretical viewpoint, the conflict is the propagation of a literal to both 0 and 1 at the
same decision level. In practice, however, the conflict is only identified when the (watched)
literal to be propagated has already been falsified during unit propagation, meaning that the
clause itself is also falsified. This is why we consider here a falsified clause as the conflict.

Remark 25

A conflict analysis is then performed by following a path in the implication graph in a bottom-up
fashion, starting from the conflict. The path is chosen by considering the reason for the last propagated
variable, by popping the latest assignment from the trail (see Remark 24). A resolution operation is then
applied between the conflict and this reason, to produce a new conflicting clause.

By construction, the resolution performed during conflict analysis can never produce tautolo-
gies. Indeed, as the conflict only contains falsified literals and the reason contains only one
satisfied literal, it is clear that only one literal appears with an opposite sign in the clauses
being resolved.

Remark 26

The resolution operations above are applied until the clause that is derived is assertive.

Given a set of decision levels {d0, . . . , dn}, a clause is said to be assertive at decision level di
(0 ≤ i < n) if and only if it is unit under the partial assignment given at decision level di.

Definition 100 (Assertive Clause)

A mostly accepted approach for producing an assertive clause in current implementation of SAT
solvers is to construct a clause that is a unique implication point [MS99].

Consider a clause γ that is conflicting under the current partial assignment, and a set of deci-
sion levels {d0, . . . , dn}. The clause γ is a Unique Implication Point if and only if it contains
a single literal assigned at decision level dn.
In this case, γ is assertive at the decision level di such that all the literals in γ are assigned, but
the one that is assigned at decision level dn.

Definition 101 (Unique Implication Point)

When a unique implication point is reached, it allows to cancel all decisions made after the decision
level di at which the inferred clause is assertive, and thus to perform non-chronological backtracking,
also known as backjumping.

The conflict analysis procedure used to derive a unique implication point is given by Algorithm 4
below.
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Algorithm 4: findUIP
Input : A conflicting clause γ0 and an implication graph Γ
Output: A clause that is a unique implication point

1 γ ← γ0
2 while γ contains more than one literal assigned at the current decision level do
3 choose a literal ℓ assigned at the last decision level in γ
4 γ′ ← reason(¬ℓ)
5 γ ← γ ⊞ γ′

6 end

A decision is always a UIP, so the procedure stops in the worst case at the last decision that
has been taken.

Remark 27

When this algorithm is applied to a conflicting clause γ0, the clause it returns is guaranteed to be
a unique implication point (UIP). In particular, it is the first-unique implication point, or 1-UIP, in the
sense that no other UIP could have been produced before. There exists other algorithms, aiming at
deriving different UIPs, for instance the Decision-UIP, Last-UIP, 2-UIP, 3-UIP or All-UIP [MMZ+01,
ZMMM01]. We do not consider these variants here, as most modern SAT solvers implement the
1-UIP scheme, which is also known to yield the highest possible backjump level (in the sense that it
allows to undo a maximum number of decisions) [ABH+08]. This UIP clause, also known as no-good,
is added to the clause database of the solver: we say that the solver learns this clause.

The main advantage of clause learning is that it allows to perform backjumps which, compared to
chronological backtracking, make it possible to reconsider decisions that were made early during the
exploration of the search space, without having to explore the whole search space they define, as they
may allow to undo multiple decisions at the same time. This is illustrated in the example below.

Example 47 (Example 46 cont’d)

In Example 46, the clause γ7 is falsified. Let us consider this clause as γ0 in the algorithm. γ0
is not assertive, as the literals ¬g and ¬h are assigned at the current decision level. We thus
apply the resolution rule until only one literal in the conflicting clause is assigned at decision
level 2. First, we resolve the conflicting clause γ0 with the reason for h, i.e., γ6.

γ0 γ6
¬a(0@0) ∨ ¬f(0@2) ∨ ¬g(0@2)

The resolvent we obtain is a new clause, that is still conflicting. It is not assertive yet, so we
apply a resolution step between this new conflict and the reason for g, i.e., γ5.

¬a(0@0) ∨ ¬f(0@2) ∨ ¬g(0@2) γ5

¬a(0@0) ∨ ¬f(0@2)
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The clause ¬a(0@0)∨¬f(0@2) that is derived is now assertive, as it only contains one literal
that is falsified at the current decision level, namely ¬f . This literal is thus propagated at
decision level 0 (i.e., the one at which ¬a has been falsified). Hence, this clause is learned,
and a backjump to decision level 0 is performed (i.e., all literals assigned at decision level 1
and 2 become now unassigned).

Algorithm 5 summarizes the algorithm used to determine the satisfiability of a CNF formula using
the CDCL approach.

Algorithm 5: CDCL
Input : A CNF formula Σ
Output: Whether Σ is satisfiable

1 decisionLevel← 0
2 while true do
3 Σ← unitPropagate(Σ)
4 if Σ contains a conflicting clause γ0 then
5 if decisionLevel = 0 then
6 return UNSATISFIABLE
7 else
8 γl ← findUIP(γ0)
9 Σ← Σ ∧ γl

10 backtrackLevel← assertionLevel(γl)
11 backjumpTo(backtrackLevel)
12 decisionLevel← backtrackLevel
13 end
14 else
15 ℓ← chooseLiteral(Σ)
16 if ℓ = null then
17 return SATISFIABLE
18 end
19 decisionLevel← decisionLevel + 1
20 ℓ← 1

21 end
22 end

Algorithm 5 works as follows. First, unit propagation is applied to the input formula. If a conflict is
detected at level 0, then the formula is clearly unsatisfiable, as no decision has been taken. Otherwise,
if a conflict is detected at another decision level, it is analyzed to derive a UIP clause (see Algorithm 4)
that is added to the clause database. A backjump to the decision level at which the UIP clause is assertive
is then performed, so as to forget all decisions taken after this decision level. Then, the loop continues.
Note that, as the clause is assertive, the first unit propagation necessarily propagates a literal which was
not propagated before at this decision level. This guarantees that the solver does not explore the same part
of the search space. If no conflict is encountered during unit propagation, then a new literal is assigned
to true to explore a subpart of the search space (unless all literals are already assigned, in which case a
model of the formula has been found). Note that the literal is not assigned to 0 in case of a failure of the
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decision: instead, the CDCL algorithm relies on the learned clauses to explore another part of the search
space.

In practice, the conflict analysis procedure described above is not enough to make CDCL SAT solvers
efficient. Indeed, modern SAT solvers also use a number of internal heuristics and features that guide the
search towards a solution or an unsatisfiability proof.

4.1.3 Guiding the Search

In addition to clause learning, the CDCL architecture comes with many strategies that help the solver
find its way through the search space. It is commonly accepted that, without these strategies, modern
SAT solvers become very bad [EGG+18]. Particularly important are the decision heuristic, but also
other features like learned clause deletion and restarts. This section describes their purposes and their
implementations in SAT solvers.

Branching Heuristics

An important component of a SAT solver is its branching heuristic: to efficiently find a solution or an
unsatisfiability proof, the solver has to choose the right variables on which to make decisions. With
the initial development of DPLL-based solvers, a number of heuristics considering the number of oc-
currences of a literal have been designed. This is for example the case of the Bohm’s heuristic [BB92],
the maximum occurrences on clauses of minimum size (MOM’s) heuristics [DABC93, Fre95] or its vari-
ant known as Jeroslow-Wang [JW90], and also many others described, for instance, in [Mar99]. These
heuristics require a complete view of the input formula, as they need to know the assignment of each
literal and the clauses that are satisfied. As such, they do not fit well in modern SAT solvers, which
mostly rely on lazy data structures.

To be efficient, SAT solvers thus need lazy branching heuristics. This has motivated the development
of the variable state independent decaying sum (VSIDS) heuristic [MMZ+01], on which many heuristics
implemented in modern SAT solvers are based. In this heuristic, each variable is assigned a score that is
incremented each time a new clause containing this variable is learned. Additionally, variable scores are
regularly divided by 2 (in practice, every 256 conflicts), so as to favor variables appearing in the most
recent learned clauses (this operation is called rescoring). When it comes to selecting a variable, the
solver chooses the variable with the highest score.

The most popular variant of VSIDS is exponential VSIDS (EVSIDS), introduced in MiniSat [ES04].
In this heuristic, a value g is chosen between 1.01 and 1.2 at the beginning of the execution of the
solver. When a variable is encountered during the analysis of the i-th conflict, the score of this variable
is updated by adding gi to its current score. Such an update is called variable bumping. It preserves the
property of favoring variables appearing in recent conflicts while avoiding the cost of a regular rescoring.
Moreover, modern implementations of VSIDS not only update the score of variables appearing in the
learned clauses, but also that of variables appearing in all clauses used to produce them. This approach
aims to favor the selection of variables that are involved in recent conflicts. To this aim, some solvers
such as Sat4j [LP10] even bump all literals encountered during conflict analysis each time they are
encountered, while MiniSat [ES04] for instance bumps them only once per conflict.

Another heuristic aiming to favor recently used variables is known as variable move to
front (VMTF) [Rya04]. Here, the score of a variable becomes the index of the latest conflict in
which the variable was involved.

Over the years, many other heuristics based on VSIDS have been developed (see, e.g., [BF15] for
an overview). More recently, new heuristics have been introduced, such as that known as learning rate
branching (LRB) [LGPC16]. This heuristic uses machine learning techniques (concretely, multi-armed
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bandits) so as to predict which variables will be present in more learnt clauses, and to branch on such
variables.

The branching heuristics described above allow to decide on which variable the next decision should
be taken. In order to decide which truth value should be assigned to this variable, most SAT solvers
use the so-called phase saving heuristic. Typically, the solver assigns the variable to the last truth value
(phase) to which it has been propagated [PD07]. More recently, it has been proposed to consider instead
the trend of the phases propagated for a literal, by aggregating all propagations instead of only keeping
the latest. This is achieved through the decaying polarity score (DPS) and the generalization of VSIDS
to literals with the literal state independent decaying sum (LSIDS) [SM20].

Deleting Learned Clauses

Each time a conflict is encountered in a SAT solver, a new clause is learned. This allows the solver to
be efficient in practice, but it has also a drawback: many conflicts may occur during the search, so that
the number of clauses in the clause database may become very large, which may both increase memory
usage and slow down unit propagation, as literals may be watched in many clauses. This is why, since
the early development of CDCL solvers, the management of learned clauses has been considered. In
particular, different techniques have been developed to delete clauses that have been learned.

First, one needs to consider when to delete clauses. A possibility is not to keep the clause at all, and
simply use it to perform the backjump, as for instance in [Gin93] or as Lingeling [Bie16] does for long
learned clauses. Typically, in such cases, the clause is just used as a reason for the propagation of the
literal after the backjump, but not added to the clause database, so that it can only be used during conflict
analysis and not for propagating other literals later on. Another approach is limiting the number of
clauses in the database, and to delete some of them when the limit is reached, while potentially changing
this limit during the execution of the solver [MMZ+01, ES04, Bie16].

Furthermore, one also needs to decide which clauses should be deleted. A first approach is to consider
the size of the learned clauses. Intuitively long clauses containing many literals take much space and are
weak, especially from a propagation viewpoint: many literals need to be falsified before the clause can
trigger a unit propagation. However, deleting such clauses may also prevent the solver from finding an
unsatisfiability proof: long clauses may be required to derive inconsistency [BJ10].

Another approach is considering the age of the learned clauses, i.e., remove first the clauses that were
the first to be learned. This strategy is however not satisfactory, as it does not take into account the role
played by the clause in recent conflicts. This is why an activity based approach has been designed in
MiniSat [ES04]: similarly to the variables, each learned clause has a score that is incremented each time
the clause is encountered during conflict analysis. When removing clauses, clauses with high activity,
i.e., those that were involved in recent conflicts, are preferred over those with low activity, so the latter
are deleted first.

Later on, a quality measure known as literal block distance (LBD) [AS09] has been introduced.

Consider a clause γ and the current assignment of its literals. Let π be a partition of these
literals, such that literals are partitioned with respect to their decision levels. The LBD of γ
is the number of elements in π.

Definition 102 (Literal Block Distance)

The LBD is first computed when the clause is learned, and is then updated each time the clause
propagates a literal. When clause deletion is performed, clauses having a high LBD are removed before
those with low LBD.
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Restarting the Search

Restarting the search is a feature that was first introduced in [GSK98] to avoid the so-called heavy-tail
phenomenon, i.e., the non-negligible probability that exploring a subpart of the search space may take
exponentially more time than the exploration of all previously explored subparts. Intuitively, restarts
allow avoiding that decisions taken at the beginning of the search keep the solver stuck in a part of the
search space. Modern SAT solvers all implement restarts, and it is commonly accepted that this feature
is a major component without which the solver has poor performances [EGG+18, PD11, VEG+18,
AFT11]. However, the notion of restarts is not currently completely understood.

In practice, restarting consists in forgetting all decisions made by the solver, then going back to the
root decision level, as a backjump to decision level 0. We call the execution of the solver between two
restarts a run. It is worth noting that the solver does not completely reset itself when performing a restart
as learned clauses, variable scores and saved phases are kept from one run to another. This ensures that
restarting the search will allow to explore another subpart of the search space. However, when a solver
implements both restart and clause deletion, it may theoretically never terminate for certain instances,
especially if run lengths are not guaranteed to increase arbitrarily.

A key aspect when implementing restarts is to detect when the solver should perform a restart. A first
approach are static restarts, in which restarts are generally triggered after a given number of conflicts,
that fixes the length of a run. This number may either be fixed once for the whole execution of the solver,
or be modified during the execution. This is for example the case of MiniSat [ES04], which performs
restarts based on a geometric function: the first length is fixed to a number N and the following lengths
are increased by a factor of 1.5.

The main disadvantage of this restart policy is that it only triggers few restarts, while it is often
preferred to make frequent restarts. This has motivated the use of another static restart policy, based on
the notion of reluctant doubling and the Luby series [LSZ93, Hua07]:

luby(i) =

{
2k−1 if i = 2k − 1

luby(i− 2k−1 + 1) if 2k−1 ≤ i < 2k − 1

This sequence is better described by Donald E. Knuth [Knu16, Section 7.2.2.2] as follows:

“ The elements of this sequence are all powers of 2. Furthermore we have
luby(i+ 1) = 2× luby(i) if the number luby(i) has already occurred an even
number of times, otherwise luby(i) = 1. ”

Donald E. Knuth

Similarly to the geometric approach described above, this restart policy starts by making a run of
length N , and then makes runs of length N × luby(i), where i is the index of the current run.

Another static restart policy that is designed to trigger frequent restarts is that in the original imple-
mentation of PicoSAT [Bie08b]. This strategy performs so-called inner restarts, following a geometric
function on the number of encountered conflict. In addition to inner restarts, outer restarts are performed
after a certain number of restarts (following a geometric function of the number of restarts) to reset the
number of conflicts before triggering a restart to the initial one.

More recently, dynamic restart policies have been developed, in order to consider the current state of
the solver to decide whether a restart should be performed. This is for example the case of the restart
policy implemented in a more recent version of PicoSAT, based on the average number of recently
flipped assignments (ANRFA) [Bie08a]. In this case, a global measure is used to evaluate the agility of
the solver, based on the number of recent flips. A flip is defined as the propagation of a truth value to a
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Figure 4.1: Activity diagram representing the CDCL algorithm.

variable that is the opposite of the previous propagated value for this variable. Intuitively, the agility is
high when many flips occur. When the agility becomes too low, a restart is performed.

Another dynamic restart policy is the one introduced by Glucose [AS12], in which the decision of
whether a restart should be performed depends on the quality of the constraints that are currently being
learned: when this quality decreases, the solver is most likely exploring the wrong search space. In
Glucose, the learned clause quality is measured with their LBD (see Definition 102). To measure the
decrease in the quality of learned clauses, the average LBD is computed over the most recent learned
clauses (in practice, the last 100 clauses). Whenever this average is greater than 70% of the average
LBD computed over all learned clauses, a restart should be performed. Glucose also implements a
feature known as restart blocking: whenever the solver seems close to find a complete satisfying, no
restart can be triggered to improve the performance of the solver on satisfiable instances. This feature
is designed so that, similarly to the way restarts are triggered, when the number of currently assigned
variables is above the average number of assigned variables when the previous restarts were performed,
restarts are blocked.

Combined with the deletion of learned clauses we presented above, the restart feature is integrated in
the CDCL architecture to get the algorithm that is summarized in Figure 4.1.

Even though current SAT solvers allow to exploit more power of the resolution proof system com-
pared to their older implementations, they are not always powerful enough to find short unsatisfiability
proofs. In particular, instances that are hard for resolution, as for instance pigeonhole-principle for-
mulae [Hak85], are necessarily hard for resolution-based SAT solvers (simply denoted as SAT solvers
in the following). For such problems, considering a different proof system may allow to improve the
performance of the solver.
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4.2 Pseudo-Boolean Solving Based on Cutting Planes

As an alternative to the weak resolution proof system, pseudo-Boolean solvers may use the stronger cut-
ting planes proof system to derive new constraints during conflict analysis. In particular, unsatisfiability
proofs of the cutting planes proof system can be exponentially shorter than their resolution counterpart.
This section studies how the cutting planes proof system may be implemented in pseudo-Boolean SAT
solvers (or simply pseudo-Boolean solvers, as opposed to the SAT solvers based on the resolution proof
system described in the previous section) to extend the CDCL architecture so as to deal with pseudo-
Boolean constraints.

4.2.1 Detecting Propagations

As in SAT solvers, pseudo-Boolean solvers explore the search space by taking decisions and propagating
assignments. However, propagations in pseudo-Boolean and cardinality constraints are slightly different
compared to those in clauses. In particular, such constraints may propagate multiple literals at the same
decision level, as in the following example.

The cardinality constraint a(?@?) + b(?@?) + c(0@1) ≥ 2 propagates both a and b under the
current partial assignment.

Example 48

Moreover, pseudo-Boolean constraints may trigger propagations multiple times, and even when some
other literals are not assigned yet, as illustrated below. Additionally, a pseudo-Boolean constraint may
also become conflicting after having triggered a propagation at an earlier decision level.

The pseudo-Boolean constraint 8a(?@?)+ 2b(?@?)+ c(?@?)+ d(?@?) ≥ 10 propagates the
literal a at decision level 0 (i.e., before making any decision). Later on, if d becomes falsified,
say at decision level 3, then the constraint 8a(1@0) + 2b(?@?) + c(?@?) + d(0@3) ≥ 10
propagates b under the current partial assignment.

Example 49

These observations make the detection of propagations in pseudo-Boolean constraints harder, so that
we need a new definition of assertivity, based on the slack of a pseudo-Boolean constraint [CK05, DG02].

Let χ be the pseudo-Boolean constraint given by
∑n

i=1 αiℓi ≥ δ, the slack of χ under the
current partial assignment is the value:

slack(χ) =
n∑

i=1,ℓi ̸=0

αi − δ

Definition 103 (Slack)
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The slack of a pseudo-Boolean constraint is also referred to as poss or possible in the literature
(e.g., in [DG02]).

Remark 28

In the definition above, it is possible to consider the slack independently of the current assign-
ment, by computing the sum of the coefficients of all literals. In this case, we talk about the
absolute slack.

Remark 29

The slack of the constraint 8a(1@0)+ 2b(?@?)+ c(?@?)+ d(0@3) ≥ 10 is 1. The absolute
slack of this constraint is 2.

Example 50 (Example 49 cont’d)

Thanks to the slack of a constraint, it is in particular possible to detect whether a constraint is assertive
or conflicting, based on the following observation.

Let χ be a pseudo-Boolean constraint. If slack(χ) < 0, then the constraint χ is conflicting
under the current partial assignment.

Observation 5

The observation above is quite clear: intuitively, the slack is negative when the sum of the coefficients
of all non-falsified literals is lower than the degree, and in this case, the constraint cannot be satisfied.
More generally, this observation also allows to provide a new definition of assertivity, which takes into
account the case of pseudo-Boolean constraints.

A pseudo-Boolean constraint χ is said to be assertive if it contains an unassigned literal ℓ with
coefficient α such that α > slack(χ). In this case, the literal ℓ is propagated by the constraint
under the current partial assignment.

Definition 104 (Assertive Constraint)

The notion of assertivity above is well-defined: indeed, observe that, when slack(χ) < α, then
slack(χ)− α < 0, so that the constraint becomes falsified if the literal ℓ is falsified. In this case, ℓ must
thus be propagated to prevent the constraint from being falsified. The following example illustrates how
the definition above can be applied to detect propagations.
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As the constraint 8a(?@?) + 2b(?@?) + c(?@?) + d(?@?) ≥ 10 has slack 2, it propagates a
since this literal is unassigned and has coefficient 8 > 2.
If we now consider 8a(1@0)+2b(?@?)+ c(?@?)+ d(0@3) ≥ 10, this constraint has slack 1,
so that it propagates b as this literal is unassigned and has coefficient 2 > 1. Note that a is not
propagated as it is already satisfied.

Example 51 (Example 50 cont’d)

Thanks to the slack of a constraint, it is thus possible to detect when a constraint becomes con-
flicting. This is for example the default approach used by Sat4j [LP10] for detecting propagations in
pseudo-Boolean constraints, and also in solvers such as Galena [CK05] for instance. However, this ap-
proach is similar in the spirit to the counter-based algorithm for detecting propagations in clauses, since
maintaining the slack requires an update each time a literal is assigned or unassigned in the constraint,
for instance during backtracking. This is why different watched literal schemes extending that used in
SAT solvers have been pointed out. In particular, the following observation illustrates how to implement
watched literals for cardinality constraints.

A cardinality constraint of degree δ containing at least δ + 1 unfalsified literals cannot be
assertive.

Observation 6

Thanks to this observation, it is possible to generalize the notion of watched literals, so that any
cardinality constraint of degree δ has δ + 1 watched literals. Note that this is indeed a generalization of
the watched literals in clauses, as a clause may be seen as a cardinality constraint of degree 1.

If we now consider a pseudo-Boolean constraint, it is also possible to design a lazy approach inspired
by the watched literals used in clauses or cardinality constraints, but they are trickier to maintain. To
design such a data structure, we can take advantage of the following observation.

If there exists a set W of literals in a pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ such that all
the literals in W are non-falsified and the sum of their coefficients is greater than δ + αmax,
where αmax denotes the greatest coefficient of an unassigned literal in the constraint, then the
constraint is not assertive.

Observation 7

Intuitively, literals in W are those being watched, and their coefficients are used to compute a lower
bound of the slack of the constraint. Based on this observation, we can design an algorithm to maintain
a set of watched literals for a pseudo-Boolean constraint.

This algorithm is similar to Algorithm 1 used to update the watched literals of a clause, except that it
requires to identify multiple watched literals to ensure that the sum of their coefficients guarantees that
there is no literal to propagate. Moreover, observe that, each time a conflict is identified when looking for
watched literals, the falsified literal is added back to the set of watched literals. This ensures to preserve
the property that watched literals do not require to be updated during backjumps. In practice, the falsified
literal may also be added back during backjumps, to ensure to watch as few literals as possible.
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Algorithm 6: updateWatchedLiteralsPB
Input : A pseudo-Boolean constraint χ given by

∑n
i=1 αiℓi ≥ δ with its set W of watched

literals and a falsified literal ℓ ∈W
Output: A set of literals to propagate, or CONFLICT if a conflict is detected.

1 W ←W\{ℓ}
2 S ←

∑n
i=1,ℓi∈W αi

3 V ← {ℓi|ℓi ̸= 0 and ℓi ̸∈W}
4 αmax ← max{αi|ℓiis unassigned}
5 while S < δ + αmax and V ̸= ∅ do
6 αs ← max{αi|ℓi ∈ V }
7 S ← S + αs

8 W ←W ∪ {ℓs}
9 V ←W\{ℓs}

10 end
11 if S < δ then
12 W ← ℓ
13 return CONFLICT
14 end
15 P ← ∅
16 m← S − δ
17 foreach literal ℓi in W do
18 if m < αi then
19 if ℓi is not falsified then
20 P ← P ∪ {ℓi}
21 end
22 else
23 W ← ℓ
24 return CONFLICT
25 end
26 end
27 end
28 return P
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Let us consider the constraint 5a + 2b + 2c + 2d + 2e + f ≥ 6. At the beginning, αmax is
equal to 5, so that the sum of the coefficients of the literals to watch must be at least equal to
5 + 6 = 11. The watched literals are thus a, b, c and d.
Now, if a becomes falsified, the new αmax is equal to 2, and the sum of watched literals must
be at least equal to 8. We thus now watch the literals b, c, d and e.
When b becomes falsified, αmax is still equal to 2, so we now watch c, d, e and f . However,
when watching these literals, the sum of their coefficients is only equal to 7, while 8 is needed.
As such, all literals having a coefficient that is greater than 8 − 6 = 2 must be propagated,
i.e., c, d and e.
Moreover, in order to make sure that the watched literals remain valid after a future backjump,
the last removed watched literal (i.e., b) remains watched, even if it is currently falsified.

Example 52

The main disadvantage of the procedure described in Algorithm 6 is that one constantly needs to
retrieve the value of αmax when updating watched literals. This may be costly if the constraint contains
many literals. To avoid the cost of recomputing αmax, a conservative approach has been proposed in
both Galena [CK05] and Pueblo [SS06]. It consists in considering as αmax the largest coefficient of the
constraint, independently of the current assignment.

If we consider again the constraint 5a + 2b + 2c + 2d + 2e + f ≥ 6, the value of αmax is
always equal to 5, so that the sum of the coefficients of the literals to watch must be at least
equal to 5 + 6 = 11 whatever the current assignment. The watched literals are initially set
to a, b, c and d, as previously.
Now, if a becomes falsified, αmax is not updated, and we still need to find a set of watched
literals so that the sum of their coefficients is at least 11. In this case, we thus need to watch
all the literals b, c, d, e and f , for which the sum of the coefficients is equal to 9.
First, observe that more literals than needed are watched (actually, in this case, it would have
been enough to only watch b, c, d and e, as in the previous example). Still, as 9− 6 = 3, there
is no literal to propagate, since all literals have a coefficient that is strictly less than 3.
As before, the literal a remains watched to ensure that no update will be required on backtrack.

Example 53

This approach may however require to watch more literals than needed, and thus to perform ad-
ditional checks when looking for propagations, made in the loop that computes the set of propagated
literals. If the exact αmax were used, the corresponding literal should be propagated, and αmax recom-
puted.

Let us compare the performance of the different algorithms used to detect propagations as presented
in this section. To do so, we ran different configurations of the pseudo-Boolean solver Sat4j [LP10]
on the whole set of decision benchmarks containing only “small” integers collected during all pseudo-
Boolean evaluations since the first edition [MR06]. Experiments have been run on a cluster equipped
with bi-processors quadcore Intel XEON X5550 (2.66 GHz, 8 MB cache) and 32 GB of RAM (for more
details, see Appendix B). This experimental setting is referred to as the “usual setting” in the rest of this
document. The results are given in Figure 4.2.
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Figure 4.2: Cactus plot comparing the different algorithms for detecting propagations in the pseudo-
Boolean solver Sat4j-GeneralizedResolution.

This figure is a so-called cactus plot: each line corresponds to a solver and represents the distribution
of the runtime (in seconds) of this solver on the execution of all considered benchmarks. More precisely,
for a fixed runtime (on the y axis), the line gives the number of instances (on the x axis) that are solved
within this runtime. In particular, the more to the right the line in plot, the better the solver (in terms
of number of solved instances). Moreover, for more readability, this figure only shows the results on
non-easy instances, i.e., instances for which at least one of the approaches took more than 1 minute to
get a result.

On the cactus plot, we can see that the approaches based on watched literals are clearly faster than that
based on the slack in the case of Sat4j-GeneralizedResolution. In both cases, we note, as also mentioned
in [SS06], that the difference of performance between the watched literal-based strategies is not really
significant. In the case of Sat4j [LP10], the default approach for detecting propagations is the slack-based
approach (as in [CK05]) for general pseudo-Boolean constraints, while the original RoundingSat [EN18]
uses watched literals with a conservative value of αmax. For cardinality constraints and clauses, both
solvers used watched literals.

In a more recent version of RoundingSat [Dev20], the watched literal scheme has been improved with
the opt-watch algorithm. This approach relies on different optimizations. In particular, to avoid watching
too many literals after backjumps, no replacement literals are looked for when an excess watched literal
becomes falsified (recall that watched literals may contain more literals than necessary to avoid updates
during backjumps). Moreover, the index of watched literals is kept, instead of having a set of watched
literals, so as to make sure that coefficients remain sorted to allow an efficient detection of the literals to
propagate.
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Consider again the constraint 5a+2b+2c+2d+2e+ f ≥ 6. In the previous example, a was
falsified and all the literals were watched. If a backtrack occurs and all literals in the constraint
become unassigned, they all remain watched.
However, it would be enough to only watch a, b, c and d. As no update is performed on
watched literals, all literals remain watched. Instead, if f is falsified then, the algorithm detects
that enough literals are already watched (the sum of their coefficients is 9, and thus already
greater than 8), and f is simply unwatched.

Example 54 (Example 53 cont’d)

Whether they use a slack-based or an algorithm based on watched literals for detecting propagations,
pseudo-Boolean solvers can make decisions and apply Boolean constraint propagation until they find a
solution or identify a conflict. In the latter case, a conflict analysis procedure, similar to that implemented
in modern SAT solvers, allows to learn new pseudo-Boolean constraints, in a conflict-driven constraint
learning architecture.

4.2.2 Analyzing Conflicts with Cutting Planes

Similarly to the use of the resolution proof system in SAT solvers, pseudo-Boolean solvers use the cutting
planes proof system during conflict analysis. This proof system has the following axioms:

(bounds)
0 ≤ x ≤ 1

(negation)
x̄ = 1− x

The cutting planes proof system also defines the following main inference rules:

∑n
i=1 αiℓi ≥ δ

∑n′

i=1 βiℓ
′
i ≥ δ′ (addition)∑n

i=1 αiℓi +
∑n′

i=1 βiℓ
′
i ≥ δ + δ′∑n

i=1 αiℓi ≥ δ λ ∈ N∗
(multiplication)∑n

i=1 λαiℓi ≥ λδ

Given a pseudo-Boolean constraint χ and an integer λ, we denote by λχ the result of multi-
plying the constraint χ by λ, as defined in the multiplication rule above.

Notation 15

Let x ∈ R. The value ⌈x⌉ denotes the unique integer r such that r − 1 < x ≤ r.

Notation 16

∑n
i=1 αiℓi ≥ δ ρ ∈ N∗

(division)∑n
i=1⌈

αi
ρ ⌉ℓi ≥ ⌈

δ
ρ⌉
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The constraint that is derived in the division rule above is not equivalent to the original con-
straint in general. However, equivalence is preserved as long as ρ is a divisor of all the coef-
ficients of the constraints. Note that, in this context, the degree does not need to be divisible
by ρ.
This property is part of what makes cutting planes more powerful than resolution [CCT87].
For example, the constraint 2x+2y+2z ≥ 3 becomes x+ y+ z ≥ 2, which has less rational
solutions.

Remark 30

The rules defined above are often combined to define new rules used to form sound and refutation
complete subsets of the cutting planes proof system.

A popular subset of cutting planes is the generalized resolution proof system [Hoo88], consisting of
the two following rules: saturation and cancellation.

∑n
i=1 αiℓi ≥ δ (saturation)∑n

i=1min(αi, δ)ℓi ≥ δ

Given a constraint χ, we denote by saturation(χ) the application of the cancellation rule on χ.

Notation 17

αℓ+
∑n

i=1 αiℓi ≥ δ βℓ̄+
∑n′

i=1 βiℓ
′
i ≥ δ′ ρ, ρ′ ∈ N∗ ρα = ρ′β

(cancellation)∑n
i=1 ραiℓi +

∑n′

i=1 ρ
′βiℓ

′
i ≥ ρδ + ρ′δ′ − ρα

Let χ and χ′ be two pseudo-Boolean constraints containing ℓ and ℓ̄, respectively. We denote
by ρχ⊞ρ′χ′ the result of the application of the cancellation rule described above, followed by
the saturation rule (if needed).

Notation 18

Note that, most of the time, the value of ρ and ρ′ are chosen in the cancellation rule so as to minimize
the value of ρα = ρ′β. In particular, we often choose ρ = lcm(α, β)/α and ρ′ = lcm(α, β)/β, where
lcm denotes the least common multiple of two integers.

An important observation is that the cancellation rule above is not enough to ensure the completeness
of the proof system, which is why the saturation rule is required.
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Consider the inconsistent CNF formula (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b), which is
equivalent to the pseudo-Boolean formula:

(a+ b ≥ 1) ∧ (a+ b̄ ≥ 1) ∧ (ā+ b ≥ 1) ∧ (ā+ b̄ ≥ 1)

If the only allowed rule is the cancellation rule, then it is not possible to prove the inconsistency
of this formula.

Example 55

Intuitively, the reason why saturation is needed for completeness is that the cancellation rule
is also sound over the reals. Saturation allows to take into account that variables are integral.

Remark 31

Two other useful rules, also obtained by combining the three main rules of the cutting planes proof
system and the axioms, are the weakening rules, given below.

αℓ+
∑n

i=1 αiℓi ≥ δ α ∈ N
(weakening)∑n

i=1 αiℓi ≥ δ − α

αℓ+
∑n

i=1 αiℓi ≥ δ ε ∈ N 0 ≤ ε < α
(partial weakening)

(α− ε)ℓ+
∑n

i=1 αiℓi ≥ δ − ε

Given a constraint χ and a literal ℓ, we denote by weaken(ℓ, χ) the application of the weaken-
ing rule on χ that weakens away the literal ℓ.

Notation 19

The main advantage of using the cutting planes proof system is that it p-simulates the resolution
proof system, but the converse does not hold. Intuitively, this means that for every unsatisfiability proof
produced by the resolution proof system, there exists an unsatisfiability proof of polynomial size (in
terms of number of derivation steps) in the cutting planes proof system. In this case, the resolution rule
and the merge rule are particular cases of the cancellation rule and of the saturation rule, respectively.

ℓ+
∑n

i=1 ℓi ≥ 1 ℓ̄+
∑n′

i=1 ℓ
′
i ≥ 1

(resolution)∑n
i=1 ℓi +

∑n′

i=1 ℓ
′
i ≥ 1 + 1− 1 = 1

∑n
i=1 αiℓi ≥ 1

(merge)∑n
i=1min(αi, 1)ℓi ≥ 1

116



4.2. Pseudo-Boolean Solving Based on Cutting Planes

In theory, the cutting planes proof system is thus strictly stronger than the resolution proof system,
in the sense that the former allows to find shorter unsatisfiability proofs than the latter.

Let us consider a pigeonhole principle formula, which states that n pigeons cannot fit into
n − 1 holes. There exists an unsatisfiability proof of linear size in the cutting planes proof
system, while only exponential-sized proofs exist with the resolution proof system [Hak85,
CR79, CCT87, Nor15]

Example 56

Now that we have presented the cutting planes proof system, let us consider its use in the conflict
analysis procedure. As in SAT solvers, this analysis is triggered in a pseudo-Boolean solver when a
conflict is detected. In this case, a conflict occurs when a pseudo-Boolean constraint becomes falsified
by the current assignment.

Similarly to SAT solvers, the analysis is performed by following a bottom-up path in the implication
graph (implicitly) maintained by the pseudo-Boolean solver, while taking into account the following
remark.

Contrary to the implication graph of a SAT solver, a given pseudo-Boolean constraint may
trigger multiple propagations, at different decision levels. This constraint may thus appear at
different places in the implication graph, and it may thus be used multiple times during conflict
analysis.

Remark 32

During the conflict analysis procedure, the cancellation rule is applied between the conflicting con-
straint and the reasons that are encountered along the path in the implication graph. However, particular
attention has to be paid to the preservation of the conflict when doing so: indeed, contrary to SAT solvers,
applying the cancellation rule between a conflicting constraint and a reason does not guarantee deriving a
new conflicting constraint. Instead of performing the cancellation rule and checking whether the derived
constraint is conflicting, which would be too costly in practice, one can take advantage of the following
proposition.

The slack is subadditive with respect to the cancellation rule. That is, given two constraints χ
and χ′, slack(ρχ⊞ ρ′χ′) ≤ ρslack(χ) + ρ′slack(χ′).

Proposition 32
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Proof. To prove the results, we need two main claims enabling to simplify the proof, without losing
generality.

Claim 17. We can consider that ρ = ρ′ = 1, and thus consider that the two constraints χ and χ′ have
the same coefficients for the pivot of the cancellation.

Proof. It is easy to see that, if the two constraints χ and χ′ do not have the same coefficient for the
pivot, one may simply apply the multiplication rule to produce constraints that are equivalent to χ and χ′

and having the same coefficient of the pivot. Moreover, it is easy to see that for any ρ ∈ N, we have
slack(ρχ) = ρslack(χ), so that reasoning on the constraints obtained after multiplication is enough to
prove the result.

Claim 18. Computing the slack of a constraint χ under the current partial assignment is equivalent to
computing the (absolute) slack of the constraint obtained by simplifying χ with respect to the current
partial assignment.

Proof. Let χ be the pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ. Under the current partial assignment,
we can write χ as

n∑
i=1,ℓi=0

αiℓi +
n∑

i=1,ℓi=1

αiℓi +
n∑

i=1,ℓi ̸∈{0,1}

αiℓi ≥ δ

After simplification with respect to the current assignment, we get the constraint χs given by

n∑
i=1,ℓi ̸∈{0,1}

αiℓi ≥ δ −
n∑

i=1,ℓi=1

αi

Now, simply observe that, under the current partial assignment, slack(χ) =
∑n

i=1,ℓi=1 αi +∑n
i=1,ℓi ̸∈{0,1} αi − δ and slack(χs) =

∑n
i=1,ℓi ̸∈{0,1} αi −

(
δ −

∑n
i=1,ℓi=1 αi

)
, so that the two slacks

are indeed equal.

Following the two claims above, let us consider the two pseudo-Boolean constraints χ and χ′ given
by αℓ +

∑n
i=1 αiℓi ≥ δ and αℓ̄ +

∑m
i=1 α

′
iℓ
′
i ≥ δ′, respectively, such that these two constraints contain

only unassigned literals. Now, let us identify literals ℓi and ℓj such that ℓi = ℓ̄j for some indices i and j.
For the sake of simplicity, we may assume that these literals are identified with the same index i, for
instance by rearranging the terms of the sum. For such literals, let us denote by ℓ̂i the literal ℓi if αi ≥ α′

i

and the literal ℓ′i otherwise. Then, we have that χ⊞ χ′ is given by

n∑
i=1

ℓ̄i ̸∈lit(χ′)

αiℓi +
m∑
i=1

ℓ̄′i ̸∈lit(χ)

α′
iℓ
′
i +

min(n,m)∑
i=1

ℓ̄i∈lit(χ′)
ℓ̄′i∈lit(χ)

(max(αi, α
′
i)−min(αi, α

′
i))ℓ̂i ≥ δ + δ′ −

min(n,m)∑
i=1

ℓ̄i∈lit(χ′)
ℓ̄′i∈lit(χ)

min(αi, α
′
i)
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The slack of this constraint is given by

n∑
i=1

ℓ̄i ̸∈lit(χ′)

αi +
m∑
i=1

ℓ̄′i ̸∈lit(χ)

α′
i +

min(n,m)∑
i=1

ℓ̄i∈lit(χ′)
ℓ̄′i∈lit(χ)

(max(αi, α
′
i)−min(αi, α

′
i))− δ − δ′ +

min(n,m)∑
i=1

ℓ̄i∈lit(χ′)
ℓ̄′i∈lit(χ)

min(αi, α
′
i)

Observing that the two occurrences of min(αi, α
′
i) cancel each other, we simplify the expression

above and get that slack(χ⊞ χ′) is equal to

n∑
i=1

ℓ̄i ̸∈lit(χ′)

αi +

m∑
i=1

ℓ̄′i ̸∈lit(χ)

α′
i +

min(n,m)∑
i=1

ℓ̄i∈lit(χ′)
ℓ̄′i∈lit(χ)

max(αi, α
′
i)− δ − δ′

Now, observe that, as min(αi, α
′
i) > 0 by normalization of χ, we have

slack(χ⊞ χ′) ≤ slack(χ⊞ χ′) +

min(n,m)∑
i=1

ℓ̄i∈lit(χ′)
ℓ̄′i∈lit(χ)

min(αi, α
′
i)

As the right-hand side of the inequation above contains both the sum of max(αi, α
′
i) and that of

min(αi, α
′
i) for each i such that ℓi appears with an opposite polarity in χ and χ′, we simplify this

inequation as follows

slack(χ⊞ χ′) ≤


n∑

i=1
ℓ̄i ̸∈lit(χ′)

αi +

min(n,m)∑
i=1

ℓ̄i∈lit(χ′)
ℓ̄′i∈lit(χ)

αi − δ

+


m∑
i=1

ℓ̄′i ̸∈lit(χ)

α′
i +

min(n,m)∑
i=1

ℓ̄i∈lit(χ′)
ℓ̄′i∈lit(χ)

α′
i − δ′


Now, observe that the sums in parentheses are actually the slacks of χ and χ′, and thus

slack(χ⊞ χ′) ≤ slack(χ) + slack(χ′)

To conclude, one just needs to observe that applying the saturation rule on the resulting constraint
can only decrease the slack of this constraint, as it only reduces the coefficients of the literals and does
not affect the degree.
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Proposition 32 allows to estimate the slack of the constraint that will be obtained after applying the
cancellation rule by computing a upper bound of its slack: whenever this upper bound is not negative,
the constraint may be non-conflictual, as in the example below.

Let us consider the three following pseudo-Boolean constraints:

• χ1 : a+ d+ ē ≥ 2
• χ2 : 6b̄+ 6c+ 4e+ f + g + h ≥ 7
• χ3 : 5a+ 4b+ c+ d ≥ 6

Suppose that the decisions a(1@1) and c(0@2) are taken. If the decision d(0@3) is taken now,
this triggers some propagations that are illustrated in the implication graph below.

a(1@1)

c(0@2)

d(0@3) e(0@3)

b(1@3)

b(0@3)

χ2

χ3

χ3

χ1

χ2

Observe that a conflict has been produced: the graph contains both the vertices b(0@3)
and b(1@3) (bold-faced in the graph).
In this case, the constraint χ2, i.e., 6b̄(1@3) + 6c(0@2) + 4e(0@3) + f(?@?) + g(?@?) +
h(?@?) ≥ 7, is the reason for b̄, while the constraint χ3, i.e., 5a(1@1) + 4b(0@3) +
c(0@2) + d(0@3) ≥ 6 is conflicting. The cancellation rule must thus be applied between
these two constraints to eliminate b, similarly as in SAT solvers. However, slack(χ2) = 2
and slack(χ3) = −1, and the subadditivity of the slack gives that slack(2χ2 ⊞ 3χ3) ≤
2 × 2 − 3 × 1 = 1. As a consequence, the constraint that will be derived by applying the
cancellation rule is not guaranteed to be conflicting.

Example 57

It is important to note that the subadditivity property of the slack illustrated in the example above is
really a heuristic for determining whether the conflict will be preserved. In particular, if the upper bound
that is obtained when estimating the slack is positive, this does not necessarily mean that the constraint
will not be conflicting (this is why it is a upper bound). This is illustrated by the following example.
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Consider the reason for a given by 6a(1@2)+6b(0@2)+2c(0@1)+2d(?@?)+2e(?@?) ≥ 6,
which has slack 4 and the conflicting constraint 6ā(0@2)+6f(0@2)+2g(0@1)+2d̄(?@?)+
2ē(?@?) ≥ 6, which has slack −2.
If we now compute the upper bound of the slack of the constraint obtained by applying the
cancellation rule on these two constraints, we obtain 4 − 2 = 2. This upper bound being
positive, there is no guarantee that the constraint will be conflicting.
However, when applying the cancellation rule, we obtain the constraint 6b(0@2)+6c(0@2)+
2d(0@1) + 2g(0@1) ≥ 2, which is equivalent to the clause b(0@2) + c(0@2) + d(0@1) +
g(0@1) ≥ 1, which is still conflicting.

Example 58

Whenever the estimated slack is not negative, non-falsified literals are successively weakened away
from the constraint until the estimated slack becomes negative after the application of the saturation rule,
following the procedure of Algorithm 7.

Algorithm 7: reduce
Input : A constraint χr that is the reason for propagating a literal ℓ and a conflicting constraint

χc containing ℓ̄
Output: The constraint χr reduced to preserve the conflict after the cancellation.

1 ρ← lcm(coefficient(ℓ, χr), coefficient(ℓ̄, χc))/coefficient(ℓ, χr)
2 ρ′ ← lcm(coefficient(ℓ, χr), coefficient(ℓ̄, χc))/coefficient(ℓ̄, χc)
3 while ρslack(χr) + ρ′slack(χc) ≥ 0 do
4 ℓ′ ← a non-falsified literal of χr such that ℓ ̸= ℓ′

5 χr ← saturation(weaken(ℓ, χr))
6 ρ← lcm(coefficient(ℓ, χr), coefficient(ℓ̄, χc))/coefficient(ℓ, χr)

7 end
8 return χr

In Algorithm 7, it is possible to select any non-falsified literal from the constraint χ. In partic-
ular, it is possible to select first literals that are unassigned, satisfied, or any of both. In Sat4j,
for instance, unassigned literals are selected first.

Remark 33

By applying the algorithm above, the reason for the propagation of a literal ℓ will be reduced into
another pseudo-Boolean constraint, that is also a reason for the literal ℓ, but that ensures that the conflict
will be preserved.

Algorithm 7 eventually derives a reason that preserves the conflict being analyzed.

Proposition 33
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Proof. Consider the pseudo-Boolean constraint χ that is the reason for the propagation of ℓ defined by
αℓ+

∑n
i=1 αiℓi ≥ δ. Note that, in the worst case, Algorithm 7 weakens away all non-falsified literals ℓi

to get the constraint χ′ which still propagates ℓ: indeed, whatever the assignment of the literals that are
weakened away, the literal ℓ must be satisfied by construction. Note that this literal is the only one to be
non-falsified in χ′, so that it must necessarily be equal to the degree of the constraint to satisfy it, and
thus slack(χ′) = 0.

As the conflicting constraint has (by definition) a slack that is negative, applying the cancellation rule
thus necessarily yields a conflicting constraint, thanks to the subadditivity of the slack (Proposition 32).

The following example illustrates how the reduction algorithm may be applied to ensure the preser-
vation of the conflict during conflict analysis.

When applying the cancellation rule between the reason χ2 for b̄, given by 6b̄(1@3) +
6c(0@2)+4e(0@3)+f(?@?)+g(?@?)+h(?@?) ≥ 7, and the conflicting constraint χ3 given
by 5a(1@1) + 4b(0@3) + c(0@2) + d(0@3) ≥ 6, the resulting constraint is not guaranteed to
be conflicting.
The constraint χ2 is thus weakened away on a non-falsified literal, say h, for instance, yielding
the constraint χ′

2 given by 6b̄(1@3) + 6c(0@2) + 4e(0@3) + f(?@?) + g(?@?) ≥ 6, which
has slack 2. Observe now that slack(2χ′

2 ⊞ 3χ3) ≤ 2 × 2 − 3 × 1 = 1, so that the constraint
that will be obtained after the cancellation step is still not guaranteed to be conflicting.
It is thus necessary to weaken away another non-falsified literal from χ′

2, say g, to get the
constraint 6b̄(1@3)+6c(0@2)+4e(0@3)+f(?@?) ≥ 5 which, after saturation, is equivalent
to the constraint χ′′

2 given by 5b̄(1@3) + 6c(0@2) + 4e(0@3) + f(?@?) ≥ 5. In this case,
slack(χ′′

2) = 1, so that slack(4χ′′
2 ⊞ 5χ3) ≤ 4 × 1 − 5 × 1 = −1, and the conflict will

be preserved as the slack of the produced constraint will be necessarily negative. Also, note
that the coefficients have changed since the coefficient of the pivot has been reduced by the
application of the saturation rule.

Example 59 (Example 57 cont’d)

In addition to the subadditivity property of the slack, one may ensure that the conflict will be pre-
served using the following proposition.

Let χ1 and χ2 be the two constraints αℓ +
∑n

i=1 αiℓi ≥ δ and ℓ̄ +
∑m

i=1 βiℓ
′
i ≥ δ′, respec-

tively. If χ1 (resp. χ2) propagates ℓ and χ2 (resp. χ1) is conflicting under the current partial
assignment, then the result of applying the cancellation rule to these two constraints on ℓ is
conflicting under the current partial assignment.

Proposition 34 (From [Dix04, Proposition 4.3.6])

Proof. By the subadditivity of the slack, we have that slack(χ1 ⊞ αχ2) ≤ slack(χ1) + αslack(χ2).
Suppose that χ1 propagates ℓ and χ2 is conflicting. We have that slack(χ1) < α and slack(χ2) < 0,

i.e., slack(χ1) ≤ α − 1 and slack(χ2) ≤ −1, so that slack(χ1 ⊞ αχ2) ≤ α − 1 + α × −1 = −1. The
slack of χ1 ⊞ αχ2 is negative, and the conflict is preserved.
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4.2. Pseudo-Boolean Solving Based on Cutting Planes

Symmetrically, if χ2 propagates ℓ and χ1 is conflicting, we have that slack(χ1) ≤ −1 and
slack(χ2) ≤ 0, so that slack(χ1 ⊞αχ2) ≤ −1+α× 0 = −1. Once again, the slack of χ1 ⊞αχ2 is thus
necessarily negative, hence the conflict is preserved.

With Algorithm 7 above, we can now guarantee that a conflict is preserved when applying the cancel-
lation rule. We can thus define a conflict analysis procedure similar to that of SAT solvers, given by Al-
gorithm 8. Note that this algorithm, contrary to the one used in SAT solvers, may return CONFLICT :
in this case, the inconsistency of the input formula is proven during conflict analysis.

Algorithm 8: learnPB
Input : A conflicting constraint χ0 and an implication graph Γ
Output: An assertive constraint, or CONFLICT if the unsatisfiability is proven during

conflict analysis

1 χ← χ0

2 while there exists an assigned literal ℓ in χ do
3 χ′ ← reduce(reason(ℓ̄))
4 χ← χ⊞ χ′

5 if χ is assertive then
6 return NO_CONFLICT
7 end
8 end

9 return CONFLICT

Similarly to the conflict analysis performed in SAT solvers, cancellations are typically applied
on the literals in the reversed order of their assignment.

Remark 34

Since pseudo-Boolean constraints may propagate different literals at different decision levels (see
Example 49), checking whether such a constraint is assertive and at which level it is is harder than when
considering clauses or cardinality constraints. Indeed, in the case of a pseudo-Boolean constraint, one
may compute, for each literal ℓ of the constraint, whether the constraint propagates a literal at the decision
level at which ℓ had been assigned (based on the slack at this decision level, for instance). Moreover,
the pseudo-Boolean constraint produced by the conflict analysis procedure may be assertive at different
decision levels. In this case, the backjump must be performed at the first decision level at which the
constraint is assertive, as the solver always performs the propagations as soon as they appear. This is
achieved following Algorithm 9 below.

This algorithm iterates over all the literals of the constraint to identify a decision level at which the
constraint is assertive. In this case, we consider only literals that are falsified in the constraint, as a
propagation always occurs when a literal becomes falsified. The decision level that is returned is the
highest one (i.e., the one having the lowest value, as we are talking about the depth of the search).
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Chapter 4. State of Pseudo-Boolean Solving

Algorithm 9: computeAssertionLevel
Input : A conflicting constraint χ and the current decision level d
Output: The first decision level at which the constraint is assertive

1 b← d
2 foreach assigned literal ℓ in χ do
3 d′ ← dl(ℓ)
4 if ℓ is falsified and d′ < b and χ is assertive at decision level d′ then
5 b← d′

6 end
7 end

Initially, in Sat4j, the decision level was computed by identifying the last literal to be assigned
(instead of falsified) before the literal to propagate. While this approach is not incorrect, the
resulting backjump level is not optimal, in the sense that considering falsified literals allows
higher backjumps.
The following scatter plot compares the performance of Sat4j with the two approaches de-
scribed above, on non-easy instances from the pseudo-Boolean evaluations (see Appendix B).
Each point in the plot is an instance, and its coordinates give the runtime (in seconds and in
logarithmic scale) of a solver executed on this particular instance. As such, points that are
below the red line represents instances that are solved faster by the configuration on the y-
axis, while points that are above the red line represent the instances that are solved faster by
the solver on the x-axis. In this case, we can see that, in general, the approach considering
falsified literals is more efficient.
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Figure 4.3: Scatter plot comparing the runtime (in seconds, logarithmic scale) of different ways
of determining the assertion level of the learned constraint in Sat4j-GeneralizedResolution.

Remark 35
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Thanks to the different algorithms we have presented here, we can now illustrate the conflict analysis
procedure by the following example.

After the reduction of the constraint χ2 yielding 5b̄(1@3)+6c(0@2)+4e(0@3)+f(?@?) ≥ 5,
the cancellation rule is applied between this reason and the conflict 5a(1@1) + 4b(0@3) +
c(0@2) + d(0@3) ≥ 6 to eliminate b. This operation produces the conflicting constraint
25a(1@1) + 25c(0@2) + 16e(0@3) + 5d(0@3) + 4f(?@?) ≥ 30. This constraint is not
assertive yet, so a new cancellation step must be done.
The cancellation rule is then applied between this latter constraint and the reason for ē, namely
a(1@1) + d(0@3) + ē(1@3) ≥ 2. Observe that the coefficient of ē is 1 in this constraint, so
that the conflict is guaranteed to be preserved and the constraint does not need to be reduced.
The constraint that is obtained here is 41a(1@1) + 25c(0@2) + 21d(0@3) + 4f(?@?) ≥ 46,
which is both conflicting and assertive: it propagates d at decision level 2. This constraint is
thus learned, and a backjump is performed to decision level 2.

Example 60 (Example 59 cont’d)

Let us now discuss an important difference between the conflict analysis procedure implemented in
pseudo-Boolean solvers compared to SAT solvers: the need to apply arithmetic operations. Even though
this is the main strength of pseudo-Boolean solvers (they are able to “count”), it is also a weakness.
Indeed, when applying the cancellation rule, the coefficients appearing in the constraints that are derived
may grow significantly. For instance, observe the growth of the coefficients in few cancellation steps
in Example 60: in practice, there may be many such steps during conflict analysis, and the learned
constraints will be reused later on, so that coefficients will continue to grow, requiring to use arbitrary
precision encodings for them. Dealing with such an encoding slows down the solver, as it cannot use the
arithmetic operations provided on fixed precision encodings (typically, on primitive types such as int
or long int).

Different solutions have been proposed to limit the size of the coefficients, such as the reduction of
the derived constraints to cardinality constraints [CK05], following Algorithm 10.

The algorithm has two main steps. The first one identifies the minimum number of literals that
must be satisfied to satisfy the constraint. This is achieved by greedily choosing the literals with the
highest coefficients, until the sum of their coefficients becomes greater than the degree. The second part
of the algorithm removes the literals with a low coefficient so as to strengthen the derived cardinality
constraint. Intuitively, such literals can be removed when their weakening from the original constraint
does not change the minimum number of literals that must be satisfied to satisfy the constraint, as in the
example below.
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Algorithm 10: reduceToCardinality
Input : A pseudo-Boolean constraint χ given by

∑n
i=1 αiℓi ≥ δ

Output: A cardinality constraint κ entailed by χ

1 s← 0
2 d← 0
3 αlast ← 0
4 foreach literal ℓi in χ by descending coefficient do
5 s← s+ αi

6 αlast ← αi

7 d← d+ 1
8 if s ≥ δ then
9 break

10 end
11 end
12 L← lit(χ)
13 µ← δ − (s− αlast)
14 while min({αi|ℓi ∈ L}) < µ do
15 αmin ← min({αi|ℓi ∈ L})
16 L← L\{ℓmin}
17 µ← µ− αmin

18 end
19 return

∑
ℓ∈L ℓ ≥ d

Consider the constraint χ given by 8a + 2b + c + d ≥ 10. First, observe that this constraint
requires at least 2 literals to be satisfied. Indeed, if we consider the coefficients in decreasing
order, the first literal (a) has coefficient 8, which is not enough to satisfy the constraint. We
thus consider the next literal (b), which has coefficient 2. Together with a, these two literals
are enough to satisfy the constraint, so the degree of the cardinality constraint is 2. We could
stop it and get the cardinality constraint a+ b+ c+ d ≥ 2. Now observe that we can weaken
away the literal d from χ, to get 8a+2b+c ≥ 9. This constraint is implied by χ, and allows to
derive the cardinality constraint a+ b+ c ≥ 2, which is stronger than the one derived before,
as we removed d from this constraint. To detect that d can be removed, observe that here the
value of µ, as defined in the algorithm, is equal to 2, and that αmin = 1 < 2.
Similarly, if we consider the constraint 6a + 6b + 2c + 2d + 2e ≥ 6, we first derive the
cardinality constraint a+ b+ c+ d+ e ≥ 1. Now, we observe that µ = 6, so that d and e can
successively be removed to get the cardinality constraint a+ b+ c ≥ 1.
If we now consider the constraint 6b̄ + 6c + 4e + f + g + h ≥ 7, we derive the cardinality
constraint b̄+ c+ e+ f + g + h ≥ 2. No literal can be removed, as µ = 1.

Example 61
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When Algorithm 10 is applied to a learned constraint, the resulting cardinality constraint may
not be conflicting anymore, and thus may not propagate any literal. To prevent this from hap-
pening, the implementation in Galena [CK05] weakens away all non-falsified literals before
applying the reduction above when the conflict is not guaranteed to be preserved.

Remark 36

Another advantage of the reduction to cardinality constraints, as observed in [CK05], is that propa-
gations can easily be detected on such constraints, as watched literals generalize directly for such con-
straints. Limiting constraint learning to cardinality constraint learning allows thus to improve the effi-
ciency of unit propagation and of the conflict analysis, as fixed precision arithmetic may be used. The
simplicity of handling cardinality constraints compared to general pseudo-Boolean constraints explains
why solvers dedicated to problems encoded with cardinality constraints, such as MiniCARD [LM12],
have been developed. However, reasoning only with cardinality constraints may drastically reduce the
strength of the constraints learned by the solver. For instance, Algorithm 10 requires to weaken the de-
rived constraints to make sure they remain cardinality constraints. To maintain the inference of strong
constraints, solvers taking advantage of the division rule have been developed.

To limit the growth of the coefficients during conflict analysis, RoundingSat [EN18] introduced an
aggressive use of the weakening and division rules, applying Algorithm 11 to reduce the constraint before
applying the cancellation rule, on both the conflict and the reason side.

Algorithm 11: roundingSatReduce
Input : A pseudo-Boolean constraint χ and a literal ℓ of χ
Output: The constraint χ after reduction

1 α← coefficient(ℓ, χ)
2 foreach literal ℓ′ in χ do
3 α′ ← coefficient(ℓ′, χ)
4 if ℓ′ is not currently falsified then
5 if α′ is not divisible by α then
6 // The literal ℓ′ is weakened away
7 degree(χ)← degree(χ)− α′

8 α′ ← 0

9 end
10 end
11 // Dividing the coefficient: α′ is always divisible by α here
12 coefficient(ℓ′, χ)← α′/α

13 end
14 return χ

When a conflict occurs, both the conflict and the reason are weakened so as to remove all literals not
falsified by the current assignment and having a coefficient not divisible by the weight of the literal used
as pivot for the cancellation step, before being divided by this weight. This ensures that the pivot has a
weight equal to 1, which guarantees that the result of the cancellation step will be conflictual, thanks to
Proposition 34.
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The weakening operation is applied on the reason for b̄, given by 6b̄(1@3) + 6c(0@2) +
4e(0@3)+ f(?@?)+ g(?@?)+h(?@?) ≥ 7. All non-falsified literals having a coefficient not
divisible by 6 are weakened away, giving 6b̄(1@3)+6c(0@2)+4e(0@3) ≥ 4. This constraint
is then divided by 6, to get b̄(1@3) + c(0@2) + e(0@3) ≥ 1.
Similarly, the weakening operation is applied on the conflict given by 5a(1@1) + 4b(0@3) +
c(0@2) + d(0@3) ≥ 6. All non-falsified literals having a coefficient not divisible by 4 are
weakened away, giving 4b(0@3) + c(0@2) + d(0@3) ≥ 1. This constraint is then divided
by 4, to get b(0@3) + c(0@2) + d(0@3) ≥ 1
Applying the cancellation rule on these two constraints gives 2c(0@2)+d(0@3)+e(0@3) ≥ 1
(which is not saturated, as RoundingSat does not use the saturation rule). This constraint is not
assertive, so a new cancellation step is performed between this constraint and the reason for e,
i.e., a(1@1) + d(0@3) + ē(1@3) ≥ 2.
In this case, the coefficient of the literals in e is 1 in both constraints, so there is no need
to apply any weakening or division operation (in practice, the reduction is a no-op on both
constraints). The cancellation rule is thus applied to the two constraints, giving 2c(0@2) +
2d(0@3) + a(1@1) ≥ 2, which propagates the literal d at decision level 2.

Example 62 (Example 60 cont’d)

RoundingSat’s approach allows both to keep coefficients small in practice and to preserve the strength
of the cutting planes proof system. However, some constraints inferred by RoundingSat may be weaker
than those inferred using generalized resolution (compare the constraints derived in Examples 60 and 62).

Let us compare the performances of the two main cutting planes proof systems, namely generalized
resolution, as used in Sat4j [LP10], and RoundingSat’s proof system [EN18]. To this end, we ran these
two solvers on the same experimental settings as in the previous section. The timeout was set to 1200
seconds and the memory limit to 32 GB. The results are given in Figures 4.4, 4.5, 4.6, 4.7.

The scatter plot in Figure 4.4 compares the implementation of the classical generalized resolution
algorithm implemented in Sat4j (named Sat4j-GeneralizedResolution) to the implementation of Round-
ingSat in Sat4j (named Sat4j-RoundingSat). On most instances, it is clear that the RoundingSat-based
algorithm performs better than the other algorithm, even though some instances are faster solved by the
generalized resolution-based approach.

It is however important to note that Sat4j-RoundingSat does not use exactly the same algorithm as
RoundingSat (see Appendix A for more details). In particular, RoundingSat is much faster than Sat4j-
RoundingSat, as shown by the scatter plot in Figure 4.5 (partially because the former is written in Java,
while the latter is written in C++). More precisely, RoundingSat solves 4442 instances, while Sat4j-
RoundingSat only solves 3843 instances. The difference is less marked when considering RoundingSat2,
as this solver solves 4178 with gmp (Figure 4.6) and 4216 instances without gmp (Figure 4.7).
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Figure 4.4: Scatter plot comparing the runtime (in seconds) of Sat4j-GeneralizedResolution and Sat4j-
RoundingSat, in logarithmic scale.
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Figure 4.5: Scatter plot comparing the runtime (in seconds) of RoundingSatand Sat4j-RoundingSat (log-
arithmic scale).
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Figure 4.6: Scatter plot comparing the runtime (in seconds) of RoundingSat2 (gmp) and Sat4j-
RoundingSat (logarithmic scale).
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Figure 4.7: Scatter plot comparing the runtime (in seconds) of RoundingSat2 (no gmp) and Sat4j-
RoundingSat (logarithmic scale).
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4.2.3 Guiding the Search in a Pseudo-Boolean Solver

As in SAT solvers, the CDCL algorithm implemented in pseudo-Boolean solvers also relies on additional
features allowing to improve the performance of the solver. Mostly inherited from SAT solvers, these
features may also be adapted to the pseudo-Boolean case, for instance by taking into account the coef-
ficients of the constraints being considered. In practice, however, current pseudo-Boolean solvers often
implement strategies similar to those used in classical SAT solvers, as described in this section.

Pseudo-Boolean Branching Heuristic

Current pseudo-Boolean solvers rely on the VSIDS heuristic (or one of its variants) to decide which
variable should be assigned next. In practice, this heuristic may be used as is by pseudo-Boolean solvers,
even though doing so does not allow to take into account all the information given by a pseudo-Boolean
constraint, as observed in [CK05] (which, however, does not explicitly provide a more suitable heuristic).
This is why different variants of this heuristic have been proposed.

In [Dix04, Section 4.5], it is proposed to add, for each variable appearing in a cardinality constraint of
the original problem (i.e., not for learned constraints) the degree of this constraint to the initial score of
the corresponding variables. This approach actually counts the occurrences of the variable in the clauses
that are represented by the cardinality constraint.

If the cardinality constraint a + b + c ≥ 2 is present in the original constraint database, the
score of each of its variables is increased by 2. Indeed, this constraint is equivalent to the
conjunction of the clauses a + b ≥ 1, a + c ≥ 1 and b + c ≥ 1. If this constraint is learned,
the corresponding scores are only increased by 1.

Example 63 (Example from [Dix04, Section 4.5])

Despite providing a more specific heuristic than the original VSIDS heuristic when considering
pseudo-Boolean problems, this heuristic is not completely satisfactory, as pointed out by the following
observation.

The VSIDS implementation proposed in [Dix04, Section 4.5] does not fit well in modern
implementations of VSIDS, and especially of EVSIDS.
First, as only the original constraints are considered, the heuristic does not bring any im-
provement over the classical implementation of the heuristic, which essentially relies on the
bumping of variables involved in recent conflicts.
Second, the particular form of general pseudo-Boolean constraints is not taken into account by
this heuristic. The main reason for only considering cardinality constraints in this case is that
computing the number of clauses in which a literal of a pseudo-Boolean constraint appears is
hard in general.

Observation 8

Another alternative, implemented in Pueblo [SS06], consists in estimating the relative importance
of a literal in a constraint, by computing the ratio of its coefficient by the degree of the constraint. This
value is then added to the VSIDS score of the variable.
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When bumping the variable a from the constraint 5a + 5b + c + d + e + f ≥ 6, the score is
augmented by 5/6.

Example 64

On the contrary, Sat4j [LP10] and RoundingSat [EN18] both implement a more classical EVSIDS
heuristic. However, some implementation details are worth noting for these two solvers. In particular,
Sat4j bumps each literal encountered during conflict analysis each time it appears in a reason, while
RoundingSat, bumps all these literals only once (as in MiniSat), except if the literal is used as pivot
during conflict analysis, in which case it is bumped twice.

Learned Constraint Deletion

For reasons similar to SAT solvers, pseudo-Boolean solvers regularly delete constraints from their
database. Recall that doing so allows to limit the memory usage, and to prevent Boolean constraint
propagation from slowing down.

In current pseudo-Boolean solvers, this feature is mostly inherited directly from SAT solvers. For
instance, both Pueblo [SS06] and Sat4j [LP10] use MiniSat’s learned constraint deletion, based on their
activity (the less active constraints are removed first), while RoundingSat considers a hybrid approach,
based on both the LBD and the activity measures (the latter is used as a tie-break rule when the former
gives identical measures).

The Literal Block Distance, as described in Definition 102, is not well-defined for pseudo-
Boolean constraints, as some literal may be unassigned in such constraints when they are
conflicting or assertive. The workaround chosen by RoundingSat is to compute the LBD over
assigned literals only.

Observation 9

In other solvers, such as pbChaff [DG02] and Galena [CK05], the learned constraint deletion in use
(if any) is not documented. In [CK05], a perspective is however mentioned, which consists in weakening
the learned constraints instead of removing them.

A possible explanation for the few implementations of learned constraint deletion strategies dedicated
to pseudo-Boolean solving is that this feature is not as essential as in SAT solvers. Indeed, pseudo-
Boolean solvers are slower in practice than SAT solvers, especially because the operations they need to
perform, such as detecting propagations and applying the cancellation rule, are more complex than their
counterpart in SAT solvers. In practice, this means that the number of conflicts per second in a pseudo-
Boolean solver is lower than that in a SAT solver, and so is the number of learned constraints. As a
consequence, a pseudo-Boolean solver does not need to clean its learned constraint database as regularly
as a SAT solver, and can even avoid doing so. Figures 4.8 and 4.9 show that never deleting learned
constraint may even provide better performances, in this case compared to the activity-based deletion
strategy (which is the default strategy in Sat4j).

The scatter plots show that, for instances that are solved in less than about 50 seconds, there is very
little difference: on these inputs, the solver does not learn enough constraints to need to delete any of
them. For the rest of the instances, we can indeed see that there are more instances that are solved faster
without constraint deletion than when this feature is enabled. In practice, when all the constraints are
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Figure 4.8: Comparison of the runtime (in seconds) of Sat4j-GeneralizedResolution with and without
learned constraint deletion enabled (logarithmic scale).
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Figure 4.9: Comparison of the runtime (in seconds) of Sat4j-RoundingSat with and without learned
constraint deletion enabled (logarithmic scale).

133



Chapter 4. State of Pseudo-Boolean Solving

kept, this allows to improve the propagation power of the formula being considered by the solver, and
there are not enough constraints to actually slow down these propagations.

Restarts

Another feature that is implemented in pseudo-Boolean solvers are restarts. For instance, Sat4j imple-
ments PicoSAT’s static and aggressive restart scheme [Bie08b] and RoundingSat [EN18] uses a Luby-
based restart policy [LSZ93, Hua07]. Note that a common point to these two strategies is that they do
not take into account the constraints that are being considered, as they are both static policies. They may
thus be reused since they are independent from the type of the constraints being considered.

In older solvers, it is not clear whether restarts are implemented or not, as there is no mention of this
feature in pbChaff [DG02] and in Galena [CK05]. As Pueblo [SS06] is heavily based on MiniSat [ES04],
it is most likely to inherit its restart policy, even though no mention of this feature is made in [SS06]
either.

Yet, as in SAT solvers, restarts are an important feature of pseudo-Boolean solvers. They allow
together with learned constraint deletion, the EVSIDS branching heuristic and the conflict analysis pro-
cedure based on the cutting planes proof system, to efficiently solve pseudo-Boolean problems. Yet,
solvers based on cutting planes are slower in practice than classical SAT solvers, which explains why
resolution-based pseudo-Boolean solvers have been developed.

4.3 Pseudo-Boolean Solving Based on Resolution

Current implementations of the cutting planes proof system in CDCL pseudo-Boolean solvers fail to keep
the promises of the theory. In particular, these solvers do not implement the full power of the cutting
planes proof system [VEG+18], mostly because finding which rules to apply and when is not easy. In
this context, a number of pseudo-Boolean solvers relying on the resolution proof system for their conflict
analysis have been developed [WS01, ES06, SN15, MML14]. Typically, these solvers use internally a
classical SAT solver, which is given as input the original pseudo-Boolean formula, converted into a CNF
formula.

The main difference between such solvers relates on how they encode the original input. Undeniably,
considering the CNF representation of the original pseudo-Boolean formula, i.e., a strictly equivalent rep-
resentation of this formula, is too costly in practice. Indeed, such representations may be exponentially
larger than the original pseudo-Boolean representation (Proposition 3), and thus cannot scale on large
instances. Instead, resolution-based solvers use other approaches, as for instance those based on CNF
encodings that are equisatisfiable to the original pseudo-Boolean formulae (see Definition 26).

The main advantage of using such encodings is that, thanks to the introduction of auxiliary variables,
the size of the CNF encoding that is produced from a pseudo-Boolean formula is often much smaller in
practice than the CNF representation of the same formula. However, to make sure that a resolution-based
pseudo-Boolean solver is efficient in practice, the encoding must also be clever enough to counterbalance
the relative weakness of the resolution proof system compared to cutting planes.

An important criterion, for instance, is to preserve the propagations of the original formula (we
also say that the encoding is arc-consistent). Intuitively, this means that the same literals are prop-
agated under the same partial assignment in both the original formula and its encoding. This is for
instance the case of the BDD-based encodings used by MiniSat+ [ES06] or by NaPS [SN15] (the latter
actually uses ROBDDs to represent pseudo-Boolean constraints). This is also the case of the ladder
encoding [AM05, AS14], the sequential encoding [HMS12] and the cardinality network [ANORC11]
implemented in Open-WBO [MML14].
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Some other encodings are not arc-consistent, but provide smaller encodings, such as the adder en-
coding and the sorting networks also implemented in MiniSat+ [ES06]. Many other encodings have
been proposed (see, e.g., [PS15]). We do not study all of them, as this thesis mostly focuses on native
pseudo-Boolean reasoning.

Another approach for using resolution-based reasoning on pseudo-Boolean problems consists in
lazily inferring clauses during conflict analysis, as in SATIRE [WS01] or Sat4j-Resolution [LP10]. In
such an approach, the pseudo-Boolean constraints are considered as they are, in particular for detecting
propagations and conflicts. However, during conflict analysis, conflicting and assertive constraints are
turned into clauses, so as to perform a resolution step between the two obtained clauses (and thus de-
rive a new clause), similarly to what is done in constraint programming with the so-called lazy clause
generation [Stu10]. Algorithm 12 describes the procedure for deriving a clause from a pseudo-Boolean
constraint during conflict analysis.

Algorithm 12: inferClause
Input : A (conflicting or assertive) pseudo-Boolean constraint χ and a threshold θ
Output: A set of falsified literals

1 σ ← sumOfCoefficients(χ)− degree(χ)
2 F ← ∅
3 foreach literal ℓ appearing with a coefficient α in χ do
4 if ℓ is falsified under the current assignment then
5 F ← F ∪ {ℓ}
6 σ ← σ − α
7 if σ < θ then
8 break
9 end

10 end
11 end
12 return F

Intuitively, the algorithm allows to select as many falsified literals as needed to preserve the conflict
or the propagation. To ensure this preservation, the slack is incrementally computed while selecting
variables, and the selection stops when the slack is below the threshold. This threshold is set to 0 in case
of a conflict and to the coefficient of the propagated literal in case of a propagation, so that the set of
selected literals produced by the algorithm can either be interpreted as a conflicting clause or a reason
for the propagation of a literal.

In the algorithm above, it is possible to iterate over the constraint in any order. However, in
order to get shorter clauses, it is commonly preferred to perform the iteration greedily, i.e., by
descending coefficients.

Remark 37

The algorithm above allows to lazily infer clauses during conflict analysis from the considered
pseudo-Boolean constraints, and thus to apply classical resolution, as illustrated in the following ex-
ample.
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Figure 4.10: Cactus plot comparing the different algorithms for detecting propagations in the pseudo-
Boolean solver Sat4j-Resolution on non-easy instances.

Consider the constraint 5a(0@3)+5b(?@?)+c(?@?)+d(?@?)+e(0@1)+f(1@2) ≥ 6. This
constraint propagates b under the current partial assignment, so that the threshold is set to 5 in
the algorithm, as this is the coefficient of b in the constraint. The value σ is here initialized to
8. The first falsified literal to be considered is a, which has coefficient 5. This literal is added
to the set F , and σ is updated and is now assigned 3. As this value is below the threshold, the
algorithm stops. The reason for b is thus the clause a(0@3) + b(?@?) ≥ 1.
After the propagation of b, the constraint 2a(0@3)+ b̄(0@3)+c(?@?)+e(0@1) ≥ 2 becomes
conflicting. In this case, the threshold of the algorithm is set to 0 and the value of σ is initialized
to 3. In this case, all falsified literals are added to F , to get σ = −1. The conflicting clause is
thus a(0@3) + b̄(0@3) + e(0@1) ≥ 1.
The clause a(0@3)+e(0@1) ≥ 1 is then obtained by applying the resolution rule between the
two clauses derived above.

Example 65

The main advantage of this approach is that it allows to apply the efficient CDCL algorithm of
classical SAT solvers, while considering a succinct (and implicit) CNF representation of the original
pseudo-Boolean formula.

Let us now empirically evaluate the different state-of-the-art approaches presented in this chapter for
solving pseudo-Boolean problems. The following experiments have been executed in the same exper-
imental setting as above, and described in Appendix B. The timeout was set to 1200 seconds and the
memory limit to 32 GB.
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Figure 4.11: Scatter plot comparing the runtime (in seconds) of Sat4j-Resolution and Sat4j-
GeneralizedResolution.

First, an interesting observation regarding Sat4j-Resolution is that for this solver, as shown in the
cactus plot in Figure 4.10, the slack-based approach for detecting propagations in pseudo-Boolean con-
straints is more efficient than the one based on watched literals. This is the opposite observation as that
we made for Sat4j-GeneralizedResolution (see Figure 4.2). This can be explained by the fact that Sat4j-
Resolution only derives clauses: the cost of maintaining watched literals in pseudo-Boolean constraints
is not amortized by their number. It is important to note that this observation only takes into account the
impact of how propagations are detected in general pseudo-Boolean constraints: propagations in clauses
and cardinality constraints are always detected using watched literals, as it is easy to maintain them for
such constraints.

Now, let us evaluate the benefits of Sat4j-Resolution over Sat4j-GeneralizedResolution. A com-
parison of these two solvers is presented in Figure 4.11. Clearly, the resolution-based approach is more
efficient, but there remain instances (e.g., from the vertexcover or subsetcard families) for which
generalized resolution is faster: these instances are hard for the resolution proof system (they have only
exponential-sized refutation proofs). This illustrates the complementarity of the two approaches, which
is leveraged by solvers such as Sat4j-Both. This solver runs both approaches in parallel (one CPU core
per approach), and outputs the result obtained by the faster approach. Results are shown in Figures 4.12
and 4.13. A variant of this solver, Sat4j-Both (sober), only runs Sat4j-GeneralizedResolution for one
minute, and let Sat4j-Resolution run the rest of the time.

As shown by these scatter plots, Sat4j-Both benefits from both approaches and, despite a slight
overhead due to the multi-threaded environment in which the solvers are executed, the solver is able to
solve quite efficiently most of the considered instances.
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Figure 4.12: Scatter plot comparing the runtime (in seconds) of Sat4j-Both and Sat4j-
GeneralizedResolution.
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Figure 4.13: Scatter plot comparing the runtime (in seconds) of Sat4j-Both and Sat4j-Resolution.
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solvers.

Figure 4.14 also compares the performance of these solvers with other state-of-the-art pseudo-
Boolean solvers (the experimental settings is the same as above). In this cactus plot we can see that
resolution-based solvers have good performance, even though RoundingSat (which, at the time of
writing, has not yet participated in any pseudo-Boolean competition), is the best of all solvers studied
here. We can observe that the performance of RoundingSat is quite impressive, especially because it is
close to that of the Virtual Best Solver (VBS). This solver is obtained by choosing, for each instance, the
runtime of the solver that is the fastest to solve the instance.

However, one can also observe that more recent versions of this solver (denoted as RoundingSat2)
are not as efficient as the first version of RoundingSat. In particular, RoundingSat2 now uses arbitrary
precision arithmetic to represent big coefficients, which adds a supplementary cost during conflict anal-
ysis (while Sat4j has always used arbitrary precision arithmetic). One can note that, in our experiments,
the version of RoundingSat2 that does not use gmp to represent large numbers (and which actually uses
boost) is slightly more efficient than that using gmp.

Also, note that all solvers here are written in C++, except those based on Sat4j, which are written in
Java: this impacts the efficiency of these latter solvers, as Java-based programs are roughly three times
slower than their C++ equivalent. Moreover, in Java, it is not possible to finely tune memory usage,
while in C++ programs it is possible to do so in order to optimize the performance of the solver. For
instance, compare in Figure 4.15 the performance of MiniSat 2.2.0, written in C++, and jMiniSat, which
is a Java port of MiniSat 2.2. This comparison is made from the results of the two solvers during the SAT
Competition 2011 [JLBR11].
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Figure 4.15: Scatter plot comparing the runtime of MiniSat and JMiniSat on the instances of “Phase 1”
of the SAT Competition 2011.
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Chapter 5

On Irrelevant Literals in Pseudo-Boolean
Constraint Learning

In order to get more benefits from the conflict analysis procedure implemented in pseudo-Boolean
solvers, the constraints that are learned must be as strong as possible. Indeed, strong constraints al-
low to eliminate a larger part of the search space, and thus to find more efficiently a solution or an
unsatisfiability proof. In practice, however, current implementations of the cutting planes proof system
in pseudo-Boolean solvers do not always allow the derivation of the strongest possible constraints. In
this chapter, we study a specific problem arising with pseudo-Boolean constraints but not with clauses
or cardinality constraints that are neither tautological nor contradictory: the presence of irrelevant liter-
als [LMMW20].

A literal ℓ is said to be irrelevant with respect to a constraint χ when χ|ℓ ≡ χ|ℓ̄, where χ|ℓ
denotes the conditioning of χ by ℓ (see Definition 59). Otherwise, ℓ is said to be relevant with
respect to χ. In this case, we also say that χ depends on ℓ.

Definition 105 (Irrelevant Literal)

In the constraint 10a+ 5b+ 5c+ 2d+ e+ f ≥ 15, the three literals d, e and f are irrelevant.

Example 66

In the following, when there is no ambiguity about which constraint is considered, we omit the
constraint and simply say that ℓ is relevant or irrelevant.

5.1 Characterization of Irrelevant Literals

Let us start our study of irrelevant literals with a characterization of irrelevant literals, in order to identify
them in the pseudo-Boolean constraints that are handled by pseudo-Boolean solvers. First, the following
theorem provides a useful alternative definition for irrelevant literals.
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Let χ be a pseudo-Boolean constraint and ℓ be a literal of this constraint. ℓ is irrelevant in χ
if and only if, for any model M of χ, flipping the value of ℓ in M does not make it a counter-
model of χ.

Theorem 10

Proof. Let χ be a pseudo-Boolean constraint containing a literal ℓ.
First, suppose that the literal ℓ is relevant in χ. Then, χ|ℓ ̸≡ χ|ℓ̄. As we always have χ|ℓ̄ |= χ|ℓ (the

two constraints only differ on the degree, and the latter is smaller), necessarily χ|ℓ ̸|= χ|ℓ̄, and there is a
model M of χ|ℓ that is not a model of χ|ℓ̄. Now, observe that χ ≡ ((χ|ℓ) ∧ ℓ) ∨ ((χ|ℓ̄) ∧ ℓ̄). So, if M
satisfies ℓ, it is also a model of (χ|ℓ) ∧ ℓ, and thus of χ. On the contrary, if M falsifies ℓ, it is neither a
model of (χ|ℓ) ∧ ℓ nor of ((χ|ℓ̄) ∧ ℓ̄), and is thus a counter-model of χ. Hence, changing the value of ℓ
in M can make it either a model or a counter-model of χ.

Now, suppose that ℓ is irrelevant in χ. Let us start by proving the following claim.

Claim 19. Let χ be a pseudo-Boolean constraint and ℓ be a literal of this constraint. If ℓ is irrelevant
in χ, then χ ≡ χ|ℓ ≡ χ|ℓ̄.

Proof. First, observe that, clearly, χ |= χ|ℓ and χ|ℓ̄ |= χ. Now, as ℓ is irrelevant, we also have that
χ|ℓ ≡ χ|ℓ̄, and in particular, χ|ℓ |= χ|ℓ̄. By transitivity of |=, we conclude that the three constraints χ,
χ|ℓ and χ|ℓ̄ are logically equivalent.

If ℓ is irrelevant, we thus have that any model M of χ is also a model of χ|ℓ̄. Now, observe that, in
this case, the fact that M is a model of χ|ℓ̄ does not depend on the value it assigns to ℓ (as this constraint
neither contains ℓ nor ℓ̄). Thus, flipping the value of ℓ in M does not affect the fact that it is a model χ|ℓ̄,
and thus of χ, which ends the proof.

An easy consequence of Theorem 10 is that, in a sense, literal relevance is a monotonic property
(with respect to the coefficients of the literals in the constraint).

Let χ be the pseudo-Boolean constraint αℓ +
∑n

i=1 αiℓi ≥ δ such that ℓ is irrelevant. All
literals ℓi having a coefficient αi ≤ α in χ are also irrelevant.

Proposition 35

Proof. Consider a constraint χ as in the proposition. Let i0 ∈ {1, . . . , n} such that αi0 ≤ α. Towards a
contradiction, let us suppose that ℓi0 is relevant.

By Theorem 10, there exists a modelM of χ such thatM satisfies ℓi0 and flipping its value makesM
a counter-model of χ. Let us denote byM ′ this counter-model. As ℓ is irrelevant, we can assume without
loss of generality that it is falsified by M , and thus by M ′. M satisfies the constraint χ|(ℓ̄ ∧ ℓ′) ≡∑n

i=1 αiℓi ≥ δ−α′ (1), and so it is forM ′, becauseM andM ′ coincide on ℓi. As ℓ is irrelevant, flipping
its value cannot make M ′ a model of χ. Thus, M ′ does not satisfy χ|(ℓ ∧ ℓ̄′) ≡

∑n
i=1 αiℓi ≥ δ − α (2).

However, because α′ ≤ α, we have (1) |= (2), which is incompatible with the fact that M ′ |= (1).
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This proposition is particularly useful for detecting irrelevant literals in a pseudo-Boolean constraint,
without having to consider all literals in the constraint, as illustrated in the following example.

In the constraint 10a + 5b + 5c + 2d + e + f ≥ 15, one can observe that d is irrelevant. As
a consequence, so are e and f , which have lower coefficients. Symmetrically, as c is relevant,
so are a and b, which have coefficients that are greater or equal to that of c.

Example 67 (Example 66 continued)

Another consequence of the definitions is given by the following proposition.

Let χ be an assertive constraint propagating a literal ℓ. In χ, the literal ℓ is necessarily relevant.

Proposition 36

Proof. The result is straightforward: by definition, as χ propagates ℓ, then χ becomes falsified if ℓ is
falsified, while it can still be satisfied if ℓ is satisfied. By Theorem 10, ℓ is thus relevant.

The different characteristics of irrelevant literals identified in this section are particularly useful,
especially if we want to detect such literals in the constraints handled by a solver.

5.2 Irrelevant Literals in Pseudo-Boolean Solvers

There are two types of constraints in which irrelevant literals may occur in a pseudo-Boolean solver:
either in the original constraints (i.e., those of the input formula), or in the constraints learned during
conflict analysis. In the latter case, irrelevant literals may be introduced by the application of cutting
planes rules, which may infer constraints containing irrelevant literals as long as they do not preserve
equivalence. This may happen even if the constraints used to produce them do not contain any such
literal, as shown below.

The weakening rule applied to weaken away the literal d from the constraint 3a + 3b + c + d ≥ 4
produces the constraint 3a+ 3b+ c ≥ 3, which does not depend on c anymore.

The division rule applied to the constraint 6a + 5b + c ≥ 6 by dividing it by 2 leads to the inference
of the same constraint as above, i.e., 3a+ 3b+ c ≥ 3, in which c is irrelevant.

The addition rule applied to the two constraints 4a + 3b + 3c ≥ 6 and 3b + 2a + 2d ≥ 3, produces
the constraint 6a+ 6b+ 3c+ 2d ≥ 9, which does not depend on d.
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The cancellation rule applied to the two constraints 4b+3ē+3c+2a ≥ 6 and 4a+3e+2b+2d ≥ 6,
to cancel e out, yields the constraint 6a+ 6b+ 3c+ 2d ≥ 9, in which d is irrelevant.

As discussed in Section 4.2, these rules are widely used by pseudo-Boolean solvers during their
conflict analysis, so solvers have to deal with constraints containing irrelevant literals (note that, for
instance, the literals f and a are irrelevant in Examples 60 and 62, respectively). In particular, the main
issue arises when cutting planes rules are applied to these constraints: these rules may cause irrelevant
literals to become relevant in the newly inferred constraint. When this occurs, we say that the literal has
become artificially relevant.

Consider the pseudo-Boolean constraints χ and χ1, . . . , χn such that, for some cutting planes
rule r, we have:

χ1 . . . χn (r)χ

A literal ℓ is artificially relevant in χ if it is relevant in χ but irrelevant in all the constraints
among χ1, . . . , χn in which it appears.

Definition 106 (Artificially Relevant Literal)

Artificially relevant literals may be produced in different circumstances by pseudo-Boolean solvers,
as they accumulate in the constraints derived during conflict analysis. The following example shows how
this may happen in a generalized resolution-based solver, such as Sat4j [LP10].

Suppose that, during the search, a conflict occurs on the constraint χ1 given by 4a+4b+3ē+
3g+3h+2i+2j ≥ 16, and suppose that ewas propagated by 6a+6b+4c+3d+3e+2f ≥ 10.
The conflict analysis is performed by applying the cancellation rule on e between these two
constraints.
Now, suppose that, to preserve the conflict, the solver needs to apply the weakening rule on the
reason for e, e.g., on c. This produces the constraint χ2 given by 6a+6b+3d+3e+2f ≥ 6,
in which f is irrelevant.
Applying the cancellation rule between the conflicting constraint χ1 and χ2 produces the con-
straint χ3 = 10a+10b+3d+3g+3h+2f+2i+2j ≥ 19, in which f has become artificially
relevant.

Example 68
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In division-based solvers, such as RoundingSat [EN18], applying the weakening and division rules
may also produce artificially relevant literals, as illustrated by the following example.

Let us consider the constraint 17a + 17b + 8c + 4d + 2e + 2f ≥ 23 in which all literals
are relevant. Suppose that, during the search performed by RoundingSat, c and f are satisfied
and all other literals are falsified by some propagations. The constraint is now conflictual: to
analyze the conflict, RoundingSat resolves it against the reason for one of its falsified literals,
e.g., the reason for d̄.
RoundingSat weakens the constraint on f , as it is not falsified and its coefficient (2) is not
divisible by the coefficient of d (4), giving the constraint χ4 = 17a+17b+8c+4d+2e ≥ 21.
Observe that e is now irrelevant.
When RoundingSat applies the division by 4, the constraint we obtain is χ5 = 5a+5b+2c+
d+ e ≥ 6, in which all literals are relevant: e has thus become artificially relevant.

Example 69

In RoundingSat, irrelevant literals produced after weakening a reason are always falsified by
the current assignment.4 Indeed, suppose that the literal ℓ it propagates has coefficient α. By
construction, all remaining satisfied and unassigned literals have a coefficient that is divisible
by α, and thus that is at least equal to α. As ℓ is propagated, it is relevant by Proposition 36,
and Proposition 35 tells us that this is also the case for these literals.

Remark 38

As irrelevant literals do not impact the semantics of a pseudo-Boolean constraint, it may seem at
first sight that they have little impact on the strength of the reasoning performed by the solver. However,
when they become artificially relevant, irrelevant literals may cause the derived constraint to be weaker
than it could be, if the irrelevant literals were not there in the first place. This becomes particularly clear
when these literals are removed.

5.3 Removing Irrelevant Literals

Given a pseudo-Boolean constraint χ, the main characteristic of any irrelevant literal ℓ that appears in χ
is that it can be removed from χ while preserving equivalence. By Definition 105, this can be achieved
in two ways: either by locally assigning ℓ to 1 (i.e., computing χ|ℓ) or to 0 (i.e., computing χ|ℓ̄).

4Many thanks to an anonymous reviewer of IJCAI 2020 who pointed out this observation.
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Let χ be the constraint 10a+ 5b+ 5c+ 2d+ e+ f ≥ 15, in which d, e and f are irrelevant.
The constraint χ is logically equivalent to:

• χ|d̄ēf̄ ≡ 10a+ 5b+ 5c ≥ 15 ≡ χ|def ≡ 10a+ 5b+ 5c ≥ 11
• χ|d̄f̄ ≡ 10a+ 5b+ 5c+ e ≥ 15 ≡ χ|df ≡ 10a+ 5b+ 5c+ e ≥ 12
• χ|d̄ē ≡ 10a+ 5b+ 5c+ f ≥ 15 ≡ χ|de ≡ 10a+ 5b+ 5c+ f ≥ 12
• χ|ēf̄ ≡ 10a+ 5b+ 5c+ 2d ≥ 15 ≡ χ|ef ≡ 10a+ 5b+ 5c+ 2d ≥ 13
• χ|d̄ ≡ 10a+ 5b+ 5c+ e+ f ≥ 15 ≡ χ|d ≡ 10a+ 5b+ 5c+ e+ f ≥ 13
• χ|f̄ ≡ 10a+ 5b+ 5c+ 2d+ e ≥ 15 ≡ χ|f ≡ 10a+ 5b+ 5c+ 2d+ e ≥ 14
• χ|ē ≡ 10a+ 5b+ 5c+ 2d+ f ≥ 15 ≡ χ|e ≡ 10a+ 5b+ 5c+ 2d+ f ≥ 14

However, observe that these constraints are not equivalent over the reals, in which case the
constraint 10a+ 5b+ 5c ≥ 15 is the strongest.

Example 70 (Example 66 cont’d)

5.3.1 Removal by Weakening

A first approach consists in locally assigning the considered irrelevant literals to 1, which is equivalent
to weakening away these irrelevant literals. The main advantage of this strategy is that it may sometimes
trigger the saturation rule, allowing to maintain small coefficients and thus making arithmetic operations
more efficient. The following example shows how this approach may allow to derive stronger constraints,
in this case in a generalized resolution-based solver.

Recall that f is irrelevant in the constraint χ2 = 6a + 6b + 3d + 3e + 2f ≥ 6. If f is
weakened away from χ2, this constraint becomes 6a + 6b + 3d + 3e ≥ 4, which can be
saturated into χ′

2 = 4a + 4b + 3d + 3e ≥ 4. If this constraint is used in place of χ2 when
applying the cancellation with χ1 = 4a + 4b + 3ē + 3g + 3h + 2i + 2j ≥ 16, one gets
χ′
3 = 8a + 8b + 3d + 3g + 3h + 2i + 2j ≥ 17, which is strictly stronger than the constraint
χ3 = 10a+10b+3d+3g+3h+2f +2i+2j ≥ 19 we obtained before, i.e., χ′

3 |= χ3. For
instance, a ∧ b is not an implicant of the constraint any longer.

Example 71 (Example 68 cont’d)

Yet, the weakening-based strategy does not always allow to infer stronger constraints, as illustrated
in the following example.

If the irrelevant literal e is weakened away from χ4 = 17a + 17b + 8c + 4d + 2e ≥ 21,
we get the constraint χ′

4 = 17a + 17b + 8c + 4d ≥ 19. When the division by 4 is applied
on this constraint, it becomes χ′

5 = 5a + 5b + 2c + d ≥ 5. Observe that c and d are now
irrelevant: the constraint is equivalent to a+b ≥ 1, which is strictly weaker than the constraint
χ5 = 5a+ 5b+ 2c+ d+ e ≥ 6 that was obtained before, i.e. χ5 |= χ′

5.

Example 72 (Example 69 cont’d)

146



5.3. Removing Irrelevant Literals

5.3.2 Simple Removal

As the weakening of irrelevant literals is not completely satisfactory, let us consider their simple removal.
The second approach is assigning irrelevant literals to 0, i.e., removing them without modifying anything
else on the constraint. This approach allows to strengthen the constraint over the reals, although it re-
mains equivalent over the Booleans. Doing so allows to fix the weaker constraint derived in Example 72,
as shown below.

From χ4 = 17a+17b+8c+4d+2e ≥ 21, removing e gives χ′′
4 = 17a+17b+8c+4d ≥ 21.

When the division by 4 is applied on this new constraint, we get the constraint χ′′
5 = 5a+5b+

2c + d ≥ 6, which is stronger than both the constraints χ5 = 5a + 5b + 2c + d + e ≥ 6 and
χ′
5 = 5a+ 5b+ 2c+ d ≥ 5, as we have χ′′

5 |= χ5 |= χ′
5.

Example 73 (Example 72 cont’d)

This approach, however, fails to infer a constraint that is as strong as that of Example 71.

When f is removed from χ2 = 6a + 6b + 3d + 3e + 2f ≥ 6, we get the constraint χ′′
2 =

6a+6b+3d+3e ≥ 6. When applying the cancellation rule between this constraint and χ1 =
4a+4b+3ē+3g+3h+2i+2j ≥ 16, one gets χ′′

3 = 10a+10b+3d+3g+3h+2i+2j ≥ 19,
which is stronger than χ3 = 10a + 10b + 3d + 3g + 3h + 2f + 2i + 2j ≥ 19, but weaker
than χ′

3 = 8a+ 8b+ 3d+ 3g + 3h+ 2i+ 2j ≥ 17, so that χ′
3 |= χ′′

3 |= χ3. In this case, the
weakening-based approach is better.

Example 74 (Example 71 cont’d)

Consequently, it appears that none of the two approaches for removing irrelevant literals is better
than the other for inferring strong constraints in all cases. We thus need a heuristic to determine, given a
pseudo-Boolean constraint, whether its irrelevant literals should be removed using the weakening or the
simple removal strategy.

5.3.3 Slack-Based Approach

The strength of a pseudo-Boolean constraint can heuristically be approached as the slack of this constraint
(see Definition 103). Thus, in the case of irrelevant literals, we may consider the slack to decide which
removal strategy should be applied. Indeed, recall that the slack is subadditive (see Proposition 32). In
this context, choosing the strategy that minimizes the slack of the constraint being considered allows to
put a tighter upper bound on the slack of the constraints that will be derived later on.

The following examples shows how to apply a case-by-case approach for removing irrelevant literals
in the different kinds of solvers we have studied above.
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Let us consider the slack of the different constraints we obtained after the removal of irrelevant
literals in Examples 71 and 74:

• The constraint χ2 = 6a+6b+3d+3e+2f ≥ 6, obtained without removing irrelevant
literals, has slack 14.
• The constraint χ′

2 = 4a + 4b + 3d + 3e ≥ 4, obtained by weakening away irrelevant
literals, has slack 10.
• The constraint χ′′

2 = 6a + 6b + 3d + 3e ≥ 6, obtained by simply removing irrelevant
literals, has slack 12.

The constraint to choose is thus χ′
2, as its slack is lower than the others.

Example 75 (Example 74 cont’d)

Let us consider the slack of the different constraints we obtained after the removal of irrelevant
literals in Examples 72 and 73:

• The constraint χ4 = 17a + 17b + 8c + 4d + 2e ≥ 21, obtained without removing
irrelevant literals, has slack 27.
• The constraint χ′

4 = 17a+17b+8c+4d ≥ 19, obtained by weakening away irrelevant
literals, has slack 27.
• The constraint χ′′

4 = 17a+17b+8c+4d ≥ 21, obtained by simply removing irrelevant
literals, has slack 25.

The constraint to choose is thus χ′′
4 , as its slack is lower than the others.

Example 76 (Example 73 cont’d)

Now that we have identified how to remove irrelevant literals to infer stronger constraints, we need
an efficient algorithm to detect these literals. Unfortunately, checking whether a literal is relevant in a
pseudo-Boolean constraint is NP-complete [CLH11, Theorem 9.26]. Still, as shown in the following
section, incomplete approaches can be used to identify some irrelevant literals produced by pseudo-
Boolean solvers.

5.4 Detecting Irrelevant Literals

To evaluate the impact of irrelevant literals in pseudo-Boolean solvers, we designed an approach for
identifying and removing them from pseudo-Boolean constraints. In practice, the NP-completeness of
the relevance check makes it unrealistic to systematically remove all irrelevant literals. We thus need
to find efficient ways for detecting these literals heuristically. This starts by carefully choosing when
irrelevant literals should be looked for, so as to make as few checks as possible.

5.4.1 When to Detect Irrelevant Literals

As relevance checks are costly, our goal is here to minimize the number of checks we need to perform.
First, an easy optimization is to take advantage of Proposition 35: only one check per coefficient is
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required, and once a relevant literal is identified, all literals having a coefficient greater than that of the
relevant literals are also relevant.

Then, we must apply the relevance check after irrelevant literals have been introduced and before
they become artificially relevant. For instance, we know that irrelevant literals may be introduced by
the weakening rule. The following proposition ensures that this rule cannot make any irrelevant literal
artificially relevant.

Let χ be a pseudo-Boolean constraint containing a literal ℓ. If ℓ is irrelevant, then ℓ is irrelevant
in any constraint χ′ obtained by weakening χ on any literal ℓ′ ̸= ℓ.

Proposition 37

Proof. Let χ be the pseudo-Boolean constraint αℓ+ α′ℓ′ +
∑n

i=1 αiℓi ≥ δ. Suppose that ℓ is irrelevant
in χ. Let χ′ be the pseudo-Boolean constraint obtained by weakening χ on ℓ′, i.e., χ′ = αℓ+

∑n
i=1 αiℓi ≥

δ − α′. Towards a contradiction, suppose that ℓ is relevant in χ′.
By Theorem 10, there exists a modelM of χ′ such that flipping the value of ℓ inM makes it a counter-

model of χ′. Observe that such a model necessarily satisfies ℓ. In other words, M |=
∑n

i=1 αiℓi ≥
δ − α′ − α and M ̸|=

∑n
i=1 αiℓi ≥ δ − α′. As ℓ′ does not appear in these constraints, we can suppose

that M satisfies ℓ′ (otherwise, we can modify M without changing the statements above).
In this case, we have that M |= α′ℓ′ +

∑n
i=1 αiℓi ≥ δ − α and M ̸|= α′ℓ′ +

∑n
i=1 αiℓi ≥ δ, i.e., M

is a model of χ for which flipping the value of ℓ makes it a counter-model of χ, which contradicts that ℓ
is irrelevant in χ.

Proposition 37 allows to detect irrelevant literals after having applied multiple weakening operations:
it allows to perform the check once all weakening operations have been performed, while ensuring that
no artificially relevant literals were introduced by these operations (otherwise, we would have needed to
perform the check each time a single literal is weakened away). This is particularly useful in generalized
resolution-based solvers, which successively apply the weakening rule. However, in this context, the
removal of irrelevant literals may lose the conflict that was restored by the application of the weakening
rule (and thus may require another weakening step), as shown in the following example.

Example 77

Consider the pseudo-Boolean constraint 11a(1@3) + 5b(0@3) + 5c(0@2) + 5d(?@?) +
2e(0@1) + 2f(?@?) ≥ 11, which has slack 7 and is the reason for a. Consider also the
constraint 7ā(0@3) + 6h(0@3) + 3i(?@?) + 2j(?@?) ≥ 9, which has slack −4, and is thus
conflicting.
If we estimate the slack of the constraint obtained when applying the cancellation rule, we get
7×7−4×11 = 5, and one can verify that this is indeed the slack of the constraint we get. As
a consequence, the conflict is not preserved, and f is weakened away from the reason, giving
the constraint 9a(1@3)+ 5b(0@3)+ 5c(0@2)+ 5d(?@?)+ 2e(0@1) ≥ 9, which has slack 5.
If we estimate the slack of the constraint we obtain now, we get the bound 5×7−4×9 = −1,
and one can verify that this is indeed the slack of the constraint we get. The cancella-
tion applied to the two constraints will thus preserve the conflict. However, observe that
e is irrelevant in the new reason, and can thus be weakened away, giving the constraint
7a(1@3) + 5b(0@3) + 5c(0@2) + 5d(?@?)+ ≥ 7, which still has slack 5.
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Now, if we estimate the slack of the constraint we obtained after having removed the irrelevant
literal, we get 5 − 4 = 1, and one can verify that this is indeed the slack of the constraint we
get. In other words, the conflict is not preserved anymore after the removal of the irrelevant
literals, so that a new literal must be weakened away to preserve the conflict.

In the case of solvers based on RoundingSat [EN18], we need to pay attention to two main properties
of the proof system regarding irrelevant literals. The first one is that the division rule always turns
irrelevant literals into artificially relevant literals when applied on the reason.

In RoundingSat-based solvers, irrelevant literals produced after weakening a reason are always
made artificially relevant by the division performed on this reason afterwards.

Proposition 38

Proof. Observe that the division applied on the reason ensures that the coefficient α of the propagated
literal ℓ is equal to 1 while preserving the propagation of ℓ. As such, by Proposition 36, ℓ remains
relevant after the application of the division. Moreover, recall that the division rounds all coefficients
that are smaller than α, including those of the irrelevant literals to 1. As a consequence, these literals are
also relevant after the application of the division by Proposition 35.

This proposition forces to run the detection of irrelevant literals in the reason after the weakening
operation, and before the division. On the conflict side, things are quite different. In particular, the
following example shows that the pivot of the cancellation may become irrelevant in the conflicting
constraint after its weakening.

Let us consider the constraint ā(?@?) + b̄(?@?) + c̄(?@?) + f(0@3) ≥ 3, which propagates
ā, b̄ and c̄ under the current partial assignment. These propagations falsify the constraint
3a(0@3) + 3b(0@3) + 2c(0@3) + d(1@1) + e(1@2) ≥ 5.
If the cancellation rule is applied on the literal c, then the literals d and e are weakened away
from the conflicting constraint, as these literals are satisfied and their coefficient (1) is not
divisible by the coefficient of c (2), giving the constraint 3a(0@3)+3b(0@3)+2c(0@3) ≥ 3.
In this new conflicting constraint, the pivot c has become irrelevant.

Example 78

When this occurs, it seems natural to abort the cancellation step that is being performed, and move
on to the next literal to cancel in the implication graph. Indeed, if the literal becomes irrelevant after
the weakening, it does not play any role in the conflict, as weakening it preserves the conflict, so that
resolving on it does not make much sense. However, as the weakening step has already been performed,
we also need to rollback the weakening operation: this operation would have been made without any
reason, while we prefer to keep the constraints as strong as possible. Moreover, the application of the
division rule does not make sense in this case, as the pivot has now a coefficient equal to 0 (it has been
removed from the constraint).
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Considering the different observations made in this subsection and the cutting planes rules used in
pseudo-Boolean solvers, the relevance check must be performed after the weakening step applied to
preserve the conflict (and before the application of the division, if any) and also after the application of
the cancellation rule. We now need to define how to perform this check.

5.4.2 SAT-Based Relevance Check

First, let us study how to identify whether a literal is relevant. For the sake of illustration, the following
pseudo-Boolean constraint χ, in which we would like to decide whether ℓ is relevant, will be used as
running example:

χ = αℓ+
n∑

i=1

αiℓi ≥ δ

Recall that ℓ is irrelevant if and only if χ|ℓ ≡ χ|ℓ̄ or, said differently:

n∑
i=1

αiℓi ≥ δ − α ≡
n∑

i=1

αiℓi ≥ δ

Note that, because δ > δ − α holds, the latter constraint trivially entails the former, so the only check to
be performed is the following:

n∑
i=1

αiℓi ≥ δ − α |=
n∑

i=1

αiℓi ≥ δ

To check whether ℓ is relevant, we thus need to check whether the statement above holds, which can be
achieved by determining the unsatisfiability of this conjunction of constraints:

n∑
i=1

αiℓi ≥ δ − α ∧ ¬

(
n∑

i=1

αiℓi ≥ δ

)
≡

n∑
i=1

αiℓi ≥ δ − α ∧
n∑

i=1

αiℓi < δ

This conjunction is equivalent (after normalization) to the following conjunction of pseudo-Boolean
constraints.

n∑
i=1

αiℓi ≥ δ − α ∧
n∑

i=1

αiℓ̄i ≥
n∑

i=1

αi − δ

This formula is unsatisfiable if and only if the literal ℓ is irrelevant. Thus, one can just use one’s favorite
pseudo-Boolean solver to detect irrelevant literals.

Note that the fact that there are only two constraints does not mean that this problem is easy
to solve (subset-sum is basically a two-normalized-constraint problem, see, e.g., [RM09a,
Section 22.4]).

Remark 39
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Let us evaluate the impact of the removal of irrelevant literals described above in the pseudo-Boolean
solver Sat4j [LP10]. In practice, there is no guarantee about the time needed to solve the pseudo-Boolean
problem used to detect irrelevant literals, especially considering the remark above. In order to remain
efficient, a timeout of 5 seconds is set to each call to the solver, so that when it cannot find an answer
within the time limit, the literal is assumed relevant. Thus, the approach remains sound while being
incomplete. Table 5.1 shows, for each family, the number of instances solved by Sat4j with the removal
of irrelevant literals turned on. Figures 5.1 and 5.2 show the number of irrelevant literals detected for
each family when using the solvers Sat4j-GeneralizedResolution and Sat4j-RoundingSat, respectively,
executed in the usual experimental setting (see Appendix B). The timeout was set to 1800 seconds and
the memory limit to 32 GB.

Number of instances Sat4j Sat4j
Family in the family GeneralizedResolution RoundingSat

Aardal_1 14 14 14
armies 12 0 0
caixa 1 1 1
d_n_k 234 156 159

d-equals-n_k 70 27 29
EC_ODD_GRIDS 25 11 12

EC_RANDOM_GRAPHS 22 5 8
FPGA_SAT05 57 34 33

heinz 4 0 0
Instances3col_OPB 26 5 6

liu 20 16 16
lopes 193 0 0
nossum 180 0 0

oliveras 4080 2646 2630
ppp-problems 6 0 0

rand6reg 33 6 11
robin 6 2 3
roussel 40 22 22
sroussel 122 0 0
subsetcard 56 56 56
SUMINEQ 24 1 3
tsp 100 0 5

uclid_pb_benchmarks 50 30 35
vertexcover-instances 107 80 82

wnqueen 100 36 98

Table 5.1: Table summarizing, for both Sat4j-GeneralizedResolution and Sat4j-RoundingSat, the number
of instances solved in each family by the solver when irrelevant literals are detected with a call to a SAT
solver.
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Figure 5.1: Boxplots of the number of irrelevant literals detected using the SAT-based algorithm in each
family in Sat4j-GeneralizedResolution, (logarithmic scale). Each family has its own box, for which
the horizontal bars represent the quartiles and the vertical bars the estimated minimum and maximum.
Points represent outlier, i.e., instances for which the number of detected irrelevant literals is either below
or above the estimated minimum or maximum, respectively.
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Figure 5.2: Boxplots of the number of irrelevant literals detected using the SAT-based algorithm in each
family in Sat4j-RoundingSat (logarithmic scale). Each family has its own box, for which the horizontal
bars represent the quartiles and the vertical bars the estimated minimum and maximum. Points represent
outlier, i.e., instances for which the number of detected irrelevant literals is either below or above the
estimated minimum or maximum, respectively.
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Figure 5.3: Boxplots of the average number of irrelevant literals detected per conflict analysis using the
SAT-based algorithm in each family in Sat4j-GeneralizedResolution (logarithmic scale). Each family has
its own box, for which the horizontal bars represent the quartiles and the vertical bars the estimated min-
imum and maximum. Points represent outlier, i.e., instances for which the number of detected irrelevant
literals is either below or above the estimated minimum or maximum, respectively.
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Figure 5.4: Boxplots of the average number of irrelevant literals detected per conflict analysis using the
SAT-based algorithm in each family in Sat4j-RoundingSat (logarithmic scale). Each family has its own
box, for which the horizontal bars represent the quartiles and the vertical bars the estimated minimum
and maximum. Points represent outlier, i.e., instances for which the number of detected irrelevant literals
is either below or above the estimated minimum or maximum, respectively.
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Figure 5.5: Scatter plot comparing the runtime (in seconds) of Sat4j-GeneralizedResolution with and
without the SAT-based removal of irrelevant literals turned on (logarithmic scale).

These boxplots not only show that the detection algorithm allows in practice to detect irrelevant
literals produced during conflict analysis by Sat4j-GeneralizedResolution and Sat4j-RoundingSat, but
also that such literals are produced by both solvers in most of the families that have been considered.
Moreover, the number of irrelevant literals being detected is quite similar in the two configurations. We
can also observe, in the boxplots given in Figures 5.3 and 5.4, that there are not so many irrelevant
literals identified per conflict analysis in average. This is because, most of the time, irrelevant literals
are not produced during all conflict analyses, but only during some of them. We can however see that,
for instance, in the oliveras family, the average number of irrelevant literals per conflict analysis
remains high. This is most likely because, in this particular family, irrelevant literals are already present
in the original constraints, and these literals are not removed once and for all for these constraints. They
thus need to be removed each time an original constraint with irrelevant literals is involved in a conflict
analysis. We chose not to remove irrelevant literals from the original constraints because their presence in
these constraints is very rare: the oliveras family is the only family of our benchmarks that originally
contains such literals.

Obviously, the detection algorithm implemented here is however too costly in practice to improve
the runtime of the solver with the removal of irrelevant literals as shown in Figures 5.5 and 5.6, and as
suggested by the number of solved instances shown in Table 5.1.

Except for some instances (especially those of the wnqueen family in the case of Sat4j-
GeneralizedResolution), the runtime of the solver is highly impacted by the cost of the detection of
irrelevant literals. In particular, most of the runtime is spent for this detection in many families, as
illustrated in Figures 5.7 and 5.8.
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Figure 5.6: Scatter plot comparing the runtime (in seconds) of Sat4j-RoundingSat with and without the
SAT-based removal of irrelevant literals turned on (logarithmic scale).
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Figure 5.7: Boxplots of the percentage of the running time spent detecting irrelevant literals in Sat4j-
GeneralizedResolution using the SAT-based algorithm, for each family. Each family has its own box,
for which the horizontal bars represent the quartiles and the vertical bars the estimated minimum and
maximum. Points represent outlier, i.e., instances for which the percentage of the running time is either
below or above the estimated minimum or maximum, respectively.
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Figure 5.8: Boxplots of the percentage of the running time spent detecting irrelevant literals in Sat4j-
RoundingSat using the SAT-based algorithm, for each family. Each family has its own box, for which
the horizontal bars represent the quartiles and the vertical bars the estimated minimum and maximum.
Points represent outlier, i.e., instances for which the percentage of the running time is either below or
above the estimated minimum or maximum, respectively.

As shown by these experiments, irrelevant literals are indeed produced by pseudo-Boolean solvers
during conflict analysis. However, the SAT-based detection algorithm is too costly in practice to detect
them efficiently enough. This has motivated the development of an ad hoc incomplete algorithm offering
runtime guarantees.

5.4.3 Relevance Check Based on Dynamic Programming

Recall that ℓ is irrelevant in χ if and only if

n∑
i=1

αiℓi ≥ δ − α |=
n∑

i=1

αiℓi ≥ δ

Observe that this statement holds if and only if there is no interpretation of
∑n

i=1 αiℓi equal to any
number between δ − α and δ − 1, as otherwise, satisfying ℓ in this interpretation will make it a model
of χ. Thus, checking that ℓ is irrelevant is equivalent to checking that there is no subset of α1, ..., αn

whose sum equals any of these numbers, i.e., solving an instance of the subset-sum problem for each of
these inputs.

It is folklore that this can be done in time O(nδ) using dynamic programming [CLRS09, Chap-
ter 34.5], that is pseudopolynomial in the encoding size. However, in our context, both n and δ may
be very large, and it would be very inefficient to solve subset-sum on such inputs. As a workaround,
we present an approach for solving subset-sum incompletely. Our detection algorithm needs to ensure
that there is no solution to the considered subset-sum instance in order to correctly detect irrelevant lit-
erals, even though some of them may be missed. To this end, we introduce a detection algorithm based
on solving subset-sum modulo a given positive integer p (fixed for all applications of this algorithm).
Since modular arithmetic is compatible with addition, one can ensure that, if there is a solution for the
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subset-sum problem with the original values, this solution is also a solution of the subset-sum problem
considered modulo p.

Take the constraint 10a+5b+5c+2d+e+f ≥ 15. If we want to check the relevance of d in
this constraint, the multiset of coefficients to be considered is {10, 5, 5, 1, 1} (as d is ignored
for the purpose of the check).
First, let us consider p = 6. The multiset of coefficients modulo p is {4, 5, 5, 1, 1}. The set
of all possible subset sums modulo 6 is thus {0, 1, 2, 3, 4, 5}, and d is wrongly detected as
relevant, since there exists a subset sum equal to 1 ≡ 13 mod 6.
If we now consider p = 5, the multiset of coefficients becomes {0, 0, 0, 1, 1}, and the possible
subset sums modulo 5 are {0, 1, 2}. It is thus impossible to find any sum equal to either 3 ≡ 13
mod 5 or 4 ≡ 14 mod 5, so e is irrelevant. As a consequence, e can also be removed, as it
has a smaller coefficient than d, and so does f , which has the same coefficient as e.
As c is relevant, it is detected as such by our algorithm, whatever the value of p, as it never
gives the wrong answer for relevant literals. All remaining literals are thus relevant, so that
there is no more literals to remove.

Example 79 (Example 70 cont’d)

By choosing a “good” value for p, we can thus use the classical dynamic programming algorithm
and perform quite efficiently the relevance check. However, as an incomplete approach, some irrelevant
literals may be wrongly detected as relevant. To limit the number of wrong answers while remaining
efficient enough, we can perform multiple relevance check with different small prime numbers, as in the
Chinese remainder theorem.5 In this case, the detection algorithm consists in applying the incomplete
subset-sum algorithm described above on the literal to check with different numbers (in practice, we
used the numbers 101, 199, 307 and 401). If, for one of these numbers, no solution to the corresponding
subset-sum problem exists, then the literal is irrelevant.

Let us now experiment this detection algorithm in different configurations of Sat4j, using the same
experimental setting as above. Figures 5.9 and 5.10 show a comparison of the number of irrelevant literals
detected by the ad hoc algorithm compared to those detected by the SAT-based approach previously
studied.

We can see that there is only little difference in the number of detected literals, except for the
wnqueen family, for which the SAT-based approach allows to detect more literals (especially in the
case of Sat4j-GeneralizedResolution). However, the main advantage of the ad hoc algorithm is that it is
much faster in practice, as illustrated by Figures 5.11 and 5.12.

Quite interestingly, the scatter plots show that, even though the ad hoc algorithm is faster in general,
the SAT-based approach performs better on the instances of the wnqueen family, which is precisely
that on which we observe a significant difference in the number of detected irrelevant literals. On this
particular family, the SAT-based approach seems to run faster, and thus allows to detect more irrelevant
literals (recall that, if the SAT-based approach is too slow, irrelevant literals may be wrongly detected as
relevant when the solver reaches the 5-second timeout).

5Many thanks to an anonymous reviewer of IJCAI 2020 who pointed this approach.
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Figure 5.9: Scatter plot comparing the number of irrelevant literals detected using the ad hoc algorithm
and the SAT-based approach in Sat4j-GeneralizedResolution (logarithmic scale).
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Figure 5.10: Scatter plot comparing the number of irrelevant literals detected using the ad hoc algorithm
and the SAT-based approach in Sat4j-RoundingSat (logarithmic scale).
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Figure 5.11: Scatter plot comparing the runtime (in seconds) of the ad hoc and SAT-based detection
algorithms integrated in Sat4j-GeneralizedResolution (logarithmic scale).
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Figure 5.12: Scatter plot comparing the runtime (in seconds) of the ad hoc and SAT-based detection
algorithms integrated in Sat4j-RoundingSat (logarithmic scale).
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Figure 5.13: Boxplots of the percentage of the running time spent detecting irrelevant literals in Sat4j-
GeneralizedResolution using the ad hoc algorithm, for each family. Each family has its own box, for
which the horizontal bars represent the quartiles and the vertical bars the estimated minimum and maxi-
mum. Points represent outlier, i.e., instances for which the percentage of the running time is either below
or above the estimated minimum or maximum, respectively.

However, the approach remains slow, and most of the runtime is still spent running the detection
algorithm, as shown in Figures 5.13 and 5.14.

Because of the high cost of the detection, it is hard to evaluate the impact of the removal of irrelevant
literals. This is why we first consider the ideal runtime of the solver to estimate this impact: Figures 5.15
and 5.16 consider the runtime of the solver as if the detection were made at no cost. More precisely,
for each solved instances, the ideal runtime is obtained by removing the time spent detecting irrelevant
literals from the total runtime. As the ideal runtime does not make sense when the solver reaches a
timeout, the ideal runtime is not computed on instances for which the solver did not give an answer
within the time limit (the timeout is left as runtime).

The scatter plots do not show a clear difference between the case in which irrelevant literals are
removed and that in which they are not, even though we can still see that the solver remains in general
faster when the removal of irrelevant literals is disabled. However, note that the ideal runtime may
be biased, as it is based on the detection time measured by the solver itself: as such, the solver can
only measure the wall clock time spent detecting such literals, while the execution environment, which
gives the overall runtime, measures the CPU time more accurately. As a workaround, we now consider,
in Figures 5.17 and 5.18 the number of cancellations applied during conflict analysis to evaluate the
performance of the solver.

At first sight, it seems that there is not a great difference between the two solvers. However, remember
that our approach is incomplete and that we may thus wrongly detect as relevant literals that are actually
irrelevant. To really evaluate the impact of irrelevant literals on the solver performance, we would need
to remove all of them. However, in practice, a complete approach is clearly unreasonable: our algorithm
manages to deal with constraints having a degree up to 10410415 which is out of reach of any complete
approach.
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Figure 5.14: Boxplots of the percentage of the running time spent detecting irrelevant literals in Sat4j-
RoundingSat using the ad hoc algorithm, for each family. Each family has its own box, for which the
horizontal bars represent the quartiles and the vertical bars the estimated minimum and maximum. Points
represent outlier, i.e., instances for which the percentage of the running time is either below or above the
estimated minimum or maximum, respectively.
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Figure 5.15: Scatter plot comparing the ideal runtime (in seconds) of the execution of Sat4j-
GeneralizedResolution with the removal of irrelevant literals activated (with the ad hoc algorithm) and
without it (logarithmic scale).
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Figure 5.16: Scatter plot comparing the ideal runtime (in seconds) of the execution of Sat4j-RoundingSat
with the removal of irrelevant literals activated (with the ad hoc algorithm) and without it (logarithmic
scale).
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Figure 5.17: Scatter plot comparing the number of cancellations performed during the execution of Sat4j-
GeneralizedResolution with the removal of irrelevant literals activated (with the ad hoc algorithm) and
without it (logarithmic scale).
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Figure 5.18: Scatter plot comparing the number of cancellations performed during the execution of Sat4j-
RoundingSat with the removal of irrelevant literals activated (with the ad hoc algorithm) and without it
(logarithmic scale).

Also, note that removing irrelevant literals impacts the heuristic used to select the variables to assign.
When irrelevant literals are removed, the associated variables are not bumped anymore, which alters
the behavior of the heuristic, and may have unexpected side effects as this heuristic is not fully under-
stood [EGG+18]. In particular, it is hard to evaluate the impact of bumping irrelevant literals. On the one
hand, one could argue that, because these literals are irrelevant, they do not play any role in the conflict.
On the other hand, if they were relevant at some point, then their assignment may have triggered some
propagations, and, in such a case, they may actually have contributed to the falsification of the constraint.

Yet, our algorithm allows to get a better understanding of irrelevant literals produced by
pseudo-Boolean solvers. First, let us observe that, besides their different proof systems, Sat4j-
GeneralizedResolution and Sat4j-RoundingSat both produce irrelevant literals. Even though Sat4j-
RoundingSat is quite different compared to the original RoundingSat (see Appendix A), we argue that
this solver also produces irrelevant literals. In Figures 5.19, 5.20 and 5.21, we show the percentage
of irrelevant literals that were detected after the weakening operation applied on the reason side, after
that on the conflict side and after the application of the cancellation rule, respectively. Observe that
the percentage of irrelevant literals detected after the application of the weakening rule is high. Since
this operation is applied exactly as specified in RoundingSat, this shows that this solver may introduce
irrelevant literals as well.

Another interesting observation regarding our experimental results is that for the vertexcover-
instances family (and more specifically, the vertexcover-completegraph family), the elim-
ination of irrelevant literals has a significant impact on the size of the proof produced by the different
configurations of Sat4j, as shown in Figures 5.17 and 5.18. The instances of this family encode that com-
plete graphs do not have small vertex covers [EGNV18]. Figures 5.22 and 5.23 show more specifically
the number of cancellations performed on this family.

164



5.4. Detecting Irrelevant Literals

0

25

50

75

100

A
a

rd
a

l_
1

a
rm

ie
s

c
a

ix
a

d
_

n
_

k

d
−

e
q

u
a

ls
−

n
_

k

E
C

_
O

D
D

_
G

R
ID

S

E
C

_
R

A
N

D
O

M
_

G
R

A
P

H
S

F
P

G
A

_
S

A
T

0
5

h
e

in
z

In
s
ta

n
c
e

s
3

c
o

l_
O

P
B

liu

lo
p

e
s

n
o

s
s
u

m

o
liv

e
ra

s

p
p

p
−

p
ro

b
le

m
s

ra
n

d
6

re
g

ro
b

in

ro
u

s
s
e

l

s
ro

u
s
s
e

l

s
u

b
s
e

tc
a

rd

S
U

M
IN

E
Q

ts
p

u
c
lid

_
p

b
_

b
e

n
c
h

m
a

rk
s

ve
rt

e
x
c
o
ve

r−
in

s
ta

n
c
e

s

w
n

q
u

e
e

n

Family

Ir
re

le
va

n
t 
lit

e
ra

ls
 d

e
te

c
te

d
 a

ft
e
r 

w
e
a
k
e
n
in

g
 a

 r
e
a
s
o
n

(i
n
 %

 o
f 
th

e
 t
o
ta

l 
n
u
m

b
e
r 

o
f 
d
e
te

c
te

d
 i
rr

e
le

va
n
t 
lit

e
ra

ls
)

Figure 5.19: Boxplots of the percentage of irrelevant literals detected in Sat4j-RoundingSat after the
application of the weakening rule on the reason side of the cancellation. Each family has its own box,
for which the horizontal bars represent the quartiles and the vertical bars the estimated minimum and
maximum. Points represent outliers, i.e., instances for which the percentage of the running time is either
below or above the estimated minimum or maximum, respectively.
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Figure 5.20: Boxplots of the percentage of irrelevant literals detected in Sat4j-RoundingSat after the
application of the weakening rule on the conflict side of the cancellation. Each family has its own box,
for which the horizontal bars represent the quartiles and the vertical bars the estimated minimum and
maximum. Points represent outlier, i.e., instances for which the percentage of the running time is either
below or above the estimated minimum or maximum, respectively.
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Figure 5.21: Boxplots of the percentage of irrelevant literals detected in Sat4j-RoundingSat after the
application of the cancellation rule. Each family has its own box, for which the horizontal bars represent
the quartiles and the vertical bars the estimated minimum and maximum. Points represent outlier, i.e.,
instances for which the percentage of the running time is either below or above the estimated minimum
or maximum, respectively.
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Figure 5.22: Scatter plot comparing the number of cancellations performed during the execution of Sat4j-
GeneralizedResolution on the vertexcover-completegraph family with the removal of irrelevant
literals activated (with the ad hoc algorithm) and without (logarithmic scale).
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Figure 5.23: Scatter plot comparing the number of cancellations performed during the execution of Sat4j-
RoundingSat on the vertexcover-completegraph family with the removal of irrelevant literals
activated (with the ad hoc algorithm) and without (logarithmic scale).

The scatter plots show that the size of the proof built by the solver is exponentially smaller after re-
moving irrelevant literals. A closer inspection of the behavior of the solver shows that only few irrelevant
literals are actually removed during the search. In particular, all these literals are detected and removed
after the first conflict analysis, which produces a constraint of the form kx1 + x2 + ...+ xk ≥ k, where
k = ⌈n2 ⌉− 1. One can observe that x2, ..., xk are all irrelevant because their coefficients sum up to k− 1
only, and that the constraint is actually equivalent to the unit clause x1 ≥ 1. In all further conflict analy-
ses, no irrelevant literals are produced: this illustrates how few irrelevant literals may have an impact on
the whole proof built by the solver, and may degrade its performance.

In RoundingSat, a simplification procedure for decision level 0 allows, in this particular case, to
infer exactly the unit clause x1 ≥ 1 that Sat4j infers only when eliminating irrelevant literals. This
avoids the problematic behavior that we observe for Sat4j. However, it is possible to modify the
vertexcover-completegraph to represent the problem of the 3-uniform complete hypergraphs,
to create the vertexcover-completehypergraph family. These instances lead to learning
constraints with irrelevant literals on a decision level higher than 0: more precisely the learned constraint
has the form kx1 + kx2 + ... + xk + xk+1 ≥ k, and contain many irrelevant literals which the
simplification procedure of RoundingSat does not eliminate since the constraint is assertive at decision
level 1. Figures 5.24 and 5.25 show that a consistent improvement on the size of the proof is brought by
the removal of irrelevant literals (even though the improvement is not exponential here).

The gain in the performance can also be observed on the ideal runtime of the solver for these in-
stances, despite the bias we mentioned above regarding how the ideal runtime is computed. This is
shown in Figures 5.26 and 5.27. Note that the ideal runtime is more relevant for the instances of this
family rather than for the vertexcover-completegraph family, as the latter is much easier than
the former (all its instances are solved in less than 4 seconds), and this is why we refrain from reporting
the plot corresponding to this family.

These experiments show how the presence of irrelevant literals may have an impact on the perfor-
mance of the solver. However, our approach for eliminating irrelevant literals is too costly in practice
to be considered as a counter-measure to their production in current pseudo-Boolean solvers. We need
to find other solutions to deal with irrelevant literals, for instance by taking advantage of the weakening
rule.
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Figure 5.24: Scatter plot comparing the number of cancellations performed during the execution of Sat4j-
GeneralizedResolution on the vertexcover-completehypergraph family with the removal of
irrelevant literals activated (with the ad hoc algorithm) and without it (logarithmic scale).
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Figure 5.25: Scatter plot comparing the number of cancellations performed during the execution of Sat4j-
RoundingSat on the vertexcover-completehypergraph family with the removal of irrelevant
literals activated (with the ad hoc algorithm) and without it (logarithmic scale).
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Figure 5.26: Scatter plot comparing the ideal runtime (in seconds) of Sat4j-GeneralizedResolution on
the vertexcover-completehypergraph family with the removal of irrelevant literals activated
(with the ad hoc algorithm) and without (logarithmic scale).
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Figure 5.27: Scatter plot comparing the ideal runtime (in seconds) of Sat4j-RoundingSat on the
vertexcover-completehypergraph family with the removal of irrelevant literals activated (with
the ad hoc algorithm) and without (logarithmic scale).
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Chapter 6

On Weakening Strategies for
Pseudo-Boolean Solvers

As explained in Subsection 4.2.2, pseudo-Boolean solvers use the weakening rule to preserve conflicts
during conflict analysis. Even though this forces the solver to weaken the constraints it derives, we
show in this section that the performance of the solver can actually benefit from this rule, depending
on how it is applied. In this context, we introduce different strategies for applying the weakening rule
when Proposition 34 cannot be applied (and thus, when the conflict is potentially not preserved). Those
strategies are designed towards reaching a tradeoff between the strength of the inferred constraints and
their size [LMW20].

6.1 Weakening Ineffective Literals for Shorter Constraints

A first weakening strategy is to focus on effective literals in the constraints encountered during conflict
analysis, and thus to weaken away all other literals from the constraint.

Given a conflicting (resp. assertive) pseudo-Boolean constraint χ, a literal ℓ of χ is said to be
effective in χ if it is falsified and satisfying it would not preserve the conflict (resp. propaga-
tion). We say that ℓ is ineffective when it is not effective.

Definition 107 (Effective Literal)

Intuitively, ineffective literals are those that do not play a role in the propagation or in the conflict
being considered. When all these ineffective literals are weakened away, the constraint is guaranteed to
be a clause.

Given a conflicting or assertive pseudo-Boolean constraint χ, the constraint derived after
weakening away all ineffective literals in χ is equivalent to the disjunction of all the literals it
contains, i.e., to a clause.

Proposition 39
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Proof. First, let χ be a conflicting pseudo-Boolean constraint
∑n

i=1 αiℓi ≥ δ, such that χ does not
contain any ineffective literals (in particular, all literals in χ are falsified). Towards a contradiction,
suppose that χ is not equivalent to a clause. There exists i0 ∈ {1, . . . , n} such that αi0 < δ, i.e.,
0 < δ − αi0 . Otherwise, observe that a saturation step can ensure that all coefficients would be equal
to δ, and the constraint would be a clause. As a consequence, if χ is weakened on ℓi0 (i.e., if ℓi0 becomes
now satisfied), we obtain the constraint

∑n
i=1,i ̸=i0

αiℓi ≥ δ − αi0 , which is clearly still conflicting as
δ − αi0 > 0, and all the literals ℓi are falsified. This contradicts the effectiveness of ℓi0 .

Let now χ be the assertive constraint αℓ +
∑n

i=1 αiℓi ≥ δ, such that χ propagates ℓ, i.e.,
α > slack(χ). Suppose that all ℓi are effective and, towards a contradiction, suppose that χ is not
equivalent to a clause. Observe that, as all ℓi are falsified (they are effective), slack(χ) = α − δ. As χ
is not conflicting, we also have that slack(χ) ≥ 0, so that α ≥ δ. As χ is assumed to not be equivalent
to a clause, there exists i0 ∈ {1, . . . , n} such that αi0 < δ. Let us now satisfy ℓi0 . We now have
slack(χ) = α + αi0 − δ. As αi0 < δ, we have that slack(χ) < α + δ − δ, i.e., slack(χ) < α. The
propagation of ℓ is thus preserved, which contradicts the effectiveness of ℓi0 .

Proposition 39 illustrates that the weakening of ineffective literals is actually equivalent to the lazy
clause inference implemented in solvers such as SATIRE [WS01] and Sat4j-Resolution [LP10] (see Sec-
tion 4.3 for more details).

Consider the constraint 5a(0@3) + 5b(?@?) + c(?@?) + d(?@?) + e(0@1) + f(1@2) ≥ 6.
This constraint propagates b under the current partial assignment. This propagation still holds
after weakening away c, d, e and f , giving after saturation a(0@3) + b(?@?) ≥ 1.
After this propagation, the constraint 2a(0@3) + b̄(0@3) + c(?@?) + e(0@1) ≥ 2 becomes
conflicting. Observe that weakening the constraint on c and applying the saturation rule on
this constraint produces a(0@3) + b̄(0@3) + e(0@1) ≥ 1, which is still conflicting.
The clause a(0@3)+e(0@1) ≥ 1 is then obtained by applying the resolution rule between the
two clauses.

Example 80 (Example 65 cont’d)

Although this approach leads to the inference of weak constraints (as only clauses can be derived), it
still has some advantages. In particular, ineffective literals can be seen as locally irrelevant, i.e., irrelevant
under the current partial assignment, as shown in the example below.

Consider again the constraint 5a(0@3)+5b(?@?)+ c(?@?)+d(?@?)+ e(0@1)+ f(1@2) ≥
6. Under the current partial assignment, this constraint may be simplified into 5b(?@?) +
c(?@?)+d(?@?) ≥ 5. In this constraint, c and d are irrelevant. However, since this constraint
only exists under the current partial assignment, we cannot say that they are globally irrelevant,
and this is why we consider them as ineffective.

Example 81 (Example 80 cont’d)

Yet, ineffective literals may help to efficiently get rid of all irrelevant literals, as such literals are
never effective.
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6.1. Weakening Ineffective Literals for Shorter Constraints

Given a conflicting or assertive pseudo-Boolean constraint χ, any literal ℓ that is irrelevant
in χ is also ineffective.

Proposition 40

Proof. We only have to prove the proposition in the case when ℓ is falsified (otherwise, it is obviously
ineffective). If χ is conflicting, then by definition flipping the value of ℓ cannot satisfy the constraint, and
thus preserves the conflict. If χ is assertive, let us suppose that it propagates a literal ℓ′. Equivalently,
this means that χ becomes conflicting if ℓ′ is falsified, and the same argument as before may be applied.

This means that we can apply this weakening strategy to eliminate all irrelevant literals efficiently,
at the price of also weakening away relevant literals. For instance, observe that, in Example 80, all
ineffective literals that are weakened away are still relevant.

It is worth noting that, because we always apply the weakening rule when removing literals
(irrelevant or not) here, the approach remains sound: the constraint that is eventually derived
is indeed entailed by the original formula. As a downside, it is not possible to apply the simple
removal of irrelevant literals when applying this strategy, as we do not know which of the
ineffective literals are actually irrelevant.

Remark 40

Recall that, if a literal is irrelevant, then all literals with the same coefficient are also irrelevant
by Proposition 35. We can thus conclude that, if a literal is ineffective but it is not possible to
weaken away all literals with the same coefficient while preserving the conflict or the propa-
gation, then this literal is not irrelevant. However, we do not exploit this property here, as we
want the weakening strategy to ensure that a clause is derived to preserve the conflict after the
application of the cancellation rule.

Remark 41

Another advantage of this strategy is that it allows to capture more precisely the reason for a conflict
being encountered, which is the main purpose of conflict analysis in CDCL solvers. Indeed, as ineffective
literals appearing in the constraints encountered during conflict analysis do not play a role in the conflict,
they do not explain it either. They may thus be weakened away to get a tighter explanation of the conflict,
as illustrated by the following example.
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Let us consider the constraint 5a(0@3)+5b(?@?)+c(?@?)+d(?@?)+e(0@1)+f(1@2) ≥ 6,
which propagates b under the current partial assignment. This constraint is equivalent to the
conjunction of the following clauses:

• a(0@3) + b(?@?) ≥ 1
• b(?@?) + c(?@?) + d(?@?) + e(0@1) + f(1@2) ≥ 1
• a(0@3) + c(?@?) + d(?@?) + e(0@1) + f(1@2) ≥ 1

Clearly, the propagation of b is triggered by the clause a(0@3) + b(?@?) ≥ 1, which is
precisely the clause we obtain after weakening away ineffective literals.
Similarly, the conflicting constraint 2a(0@3) + b̄(0@3) + c(?@?) + e(0@1) ≥ 2 is equivalent
to the conjunction of the clauses:

• a(0@3) + b̄(0@3) + c(?@?) ≥ 1
• a(0@3) + b̄(0@3) + e(0@1) ≥ 1
• a(0@3) + c(?@?) + e(0@1) ≥ 1

Once again, the clause that is falsified here is exactly a(0@3)+ b̄(0@3)+ e(0@1) ≥ 1, which
is also the clause we obtain after weakening away ineffective literals.

Example 82 (Example 81 cont’d)

However, as explained before, weakening away ineffective literals always yields a clause. On the one
hand, this means that the coefficient of the pivot on which the cancellation rule is applied during conflict
analysis will always be 1, which ensures that the conflict will be preserved (see Proposition 34). On the
other hand, this also means that, if we apply this strategy on both sides of the cancellation rule, the proof
system boils down to the weaker resolution proof system. In particular, multiple clauses represented by
the pseudo-Boolean constraint being considered may be conflicting at the same time, while this approach
can only identify one of them.

To preserve the strength of the proof system used by the solver, a possible solution is to weaken away
ineffective literals from only one side of the cancellation rule (which still guarantees by Proposition 34
that the conflict will be preserved). This is illustrated by the following example.

Let us consider again the constraint 5a(0@3) + 5b(?@?) + c(?@?) + d(?@?) + e(0@1) +
f(1@2) ≥ 6, which propagates b under the current partial assignment. The constraint
2a(0@3) + b̄(0@3) + c(?@?) + e(0@1) ≥ 2 is now conflicting. As shown in Exam-
ple 82, the weakening of ineffective literals from these two constraints yields the clauses
a(0@3) + b(1@3) ≥ 1 and a(0@3) + b̄(0@3) + e(0@1) ≥ 1 respectively.
Let us suppose that ineffective literals are only weakened away from the reason side. The
cancellation between a(0@3) + b(?@?) ≥ 1 and 2a(0@3) + b̄(0@3) + c(?@?) + e(0@1) ≥ 2
produces, after saturation, the constraint 2a(0@3) + c(?@?) + e(0@1) ≥ 2.
Note that this latter constraint is stronger than the clause a(0@3) + e(0@1) ≥ 1 derived by
applying the resolution between the two clauses derived from the original pseudo-Boolean
constraints.

Example 83 (Example 82 cont’d)
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Figure 6.1: Cactus plot of the different Weaken Ineffective strategies implemented in Sat4j, compared to
Sat4j’s state-of-the-art pseudo-Boolean solvers.

Let us now empirically evaluate the performance of the different variants of the weakening of inef-
fective literals, i.e., when it is applied on either the conflict side (Weaken Ineffective (conflict)), the reason
side (Weaken Ineffective (reason)) or both sides (Weaken Ineffective (both)) of the cancellation. These
variants have been implemented in the pseudo-Boolean solver Sat4j (see Appendix A), and executed in
the usual experimental setting (see Appendix B). The timeout was set to 1200 seconds and the memory
limit to 32 GB. The results are given in Figure 6.1.

An interesting observation from the cactus plot is that performing the weakening of ineffective literals
on the conflict side has better performance than applying it on the reason side. This is quite surprising,
because, as presented in Subsection 4.2.2, weakening operations in solvers based on cutting planes are
mainly performed on the reason side (except for RoundingSat [EN18], which applies it on both sides).
Our experiments show that it may be preferable to apply it only on the conflict side: literals introduced
there when cancelling may still be weakened away during a later weakening operation. Another key
observation is that the VBS is far better than each individual strategy, which suggests that none of them
is better than the others on all benchmarks.

In order to explain the performance of this VBS, let us make a pairwise comparison of the three
variants through the scatter plots given in Figure 6.3. A first observation is that there is no clear difference
between Weaken Ineffective (both) and Weaken Ineffective (conflict). On the contrary, there are some
interesting differences between these two variants and Weaken Ineffective (reason). In particular, this
latter strategy seems very efficient at solving instances from the families FPGA_SAT05, rand6reg
and sroussel while it exhibits poor performance on the family wnqueen.

Yet, the weakening of ineffective literals on both sides of the cancellation provides the best perfor-
mance overall. Despite being quite similar, by construction, to Sat4j-Resolution, its performance remains
however very different from the one of this solver, as shown in Figure 6.2. From this latter scatter plot, we
can make two main observations. First, many instances are solved faster by Sat4j-Resolution compared
to the Weaken Ineffective (both) strategy. Indeed, when using the former, the conflict analysis procedure
is optimized for resolution-based reasoning, while the latter is integrated in the conflict analysis based
on cutting planes, and is not “aware” that clauses are inferred in many circumstances. This is however
inevitable in this case, as the weakening operation is applied here only when Proposition 34 cannot be
applied.
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Figure 6.2: Scatter plot comparing the runtime (in seconds) of Weaken Ineffective (both) and Sat4j-
Resolution (logarithmic scale).

This means that, in some cases, the solver is still able to derive pseudo-Boolean constraints, which
leads us to the second main observation: on some families, especially vertexcover-instances,
the Weaken Ineffective (both) strategy is far better than Sat4j-Resolution. For these instances, the solver
can apply Proposition 34: the weakening of ineffective literals is not always used, which allows to infer
pseudo-Boolean constraints, which seem to be crucial for solving efficiently these problems in Sat4j.

Let us now consider the number of instances solved by the different strategies based on the results
in Table 6.1. We can see that both Weaken Ineffective (reason) and Weaken Ineffective (both) are far
better than the other solvers for different families, such as d_n_k, oliveras or tsp. It may also be
worse than all the other solvers, for instance for the family FPGA_SAT05, roussel or subsetcard.
This may be explained by the fact that, when the solvers use these two strategies, the constraints to be
learned will most likely be clauses, so that the power of the cutting planes proof system is not exploited
on families that require this strength. On the contrary, when this strength is not required, learning clauses
allows to be more efficient when detecting propagations and analyzing conflicts.
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Figure 6.4: Cactus plot comparing the current implementations of the Weaken Ineffective with those
described in [LMW20].

Note that the experimental results presented here are slightly different from those presented
in [LMW20], especially regarding the results of the Weaken Ineffective (both) strategy: as mentioned
above, this strategy now has better performance than the others, whereas, as illustrated by Figure 6.4,
the best strategy was Weaken Ineffective (conflict) in [LMW20].

The discrepancy between the results is due to a change in the default configuration of Sat4j that
occurred between the publication of [LMW20] and the writing of this thesis. In particular, an incorrect
behavior of the learned constraint deletion strategy used by default in Sat4j preventing it from actually
deleting constraints has been fixed, and the default strategy is now based on the activity of the learned
constraints to decide which constraints should be deleted. In practice, however, this strategy does not
have good performance, as further studied in Subsection 7.2.2. For the consistency of this thesis, we
have chosen to use the same configuration of Sat4j in all the experiments and thus have rerun these
experiments with the new default strategy, which has an impact on the performance of the solver. For
the same reason, the experimental results presented in the following may also be slightly different from
those from [LMW20].

Yet, similar conclusions may be drawn from both experiments. In particular, the Weaken Ineffective
(conflict) strategy remains better than the Weaken Ineffective (reason) strategy, and more importantly, all
three strategies are better than the classical generalized resolution-based approach. In both cases, we can
also see that the VBS is much faster than each individual strategy, which does not seem to have robust
performance. In particular, the RoundingSat-based approach is still faster than these strategies, and this
is why we now consider some variants of the proof system used by this solver.

6.2 Stronger Constraints in RoundingSat-Based Solvers

Despite being more efficient in practice, RoundingSat has a major downside: the constraints it infers are
in general weaker than that derived by generalized resolution-based solvers (see Examples 60 and 62).
Even though this allows to keep coefficients small, this also means that more constraints may be required
to eliminate a subpart of the search space. In order to improve the strength of the constraints inferred by
solvers based on RoundingSat’s algorithm, let us consider different variants of the proof system imple-
mented by this solver.
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Figure 6.5: Cactus plot of the different RoundingSat variants implemented in Sat4j, compared to Sat4j’s
state-of-the-art pseudo-Boolean solvers.

A first variant to consider in this direction is applying the weakening rule as proposed in the original
implementation of RoundingSat, but only on one side of the cancellation rule when Proposition 34 cannot
be applied. Doing so allows to restore the conflict when it may be lost, while it may enable the inference
of stronger constraints, as illustrated by the following example.

Let us consider the constraint 4c(0@2)+2b̄(?@?)+2d̄(?@?)+a(1@1) ≥ 4, which propagates
both b̄ and d̄ under the current partial assignment. After these propagations, the constraint
8a(1@1) + 7b(0@2) + 7c(0@2) + 2d(0@2) + 2e(0@1) + f(?@?) ≥ 11 becomes conflicting.
If the weakening and division operations are only performed on the reason side, giving the
constraint 2c(0@2) + b̄(0@2) + d̄(0@2) ≥ 2, the cancellation rule applied on b between the
weakened reason and the original conflict produces the constraint 21c(0@2) + 8a(1@1) +
5d̄(0@2)+2e(0@1)+f(?@?) ≥ 16, which is stronger than the clause derived by the classical
implementation of RoundingSat, i.e., c(0@2) + e(0@1) ≥ 1.

Example 84

Let us now empirically evaluate variants of RoundingSat in Sat4j, called RoundingSat (conflict) and
RoundingSat (reason). These strategies have been implemented in the solver Sat4j (see Appendix A),
and executed in the usual experimental setting (see Appendix B). The timeout was set to 1200 seconds
and the memory limit to 32 GB. The results are given in Figure 6.5.

The cactus plot shows that the two new variants of RoundingSat are not as good as the default Round-
ingSat. However, as illustrated by the VBS of the different RoundingSat variants (including the original
approach), there is still room for improvements, and finding a tradeoff between the three approaches
would help improve the performance of solvers based on RoundingSat.

Another interesting observation is that, as for the Weaken Ineffective strategies, the application of the
weakening operation on the conflict side leads to better performance than its application on the reason
side, which tends to confirm the observation we made before.
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Let us now consider the number of instances solved by the different RoundingSat-based strate-
gies as given in Table 6.2. This table coheres with the observations made on the cactus plot
above, in the sense that, in general, all RoundingSat-based approaches solve more instances than
Sat4j-GeneralizedResolution, and this is particularly the case for the Sat4j-RoundingSat (both) strategy.

To improve RoundingSat performance, another variant of its proof system that may be considered
is the application of the partial weakening rule, instead of the weakening rule. Let us described this
approach, which was already mentioned in [EN18, Remark 3.4]. Before cancelling a literal out during
conflict analysis, all literals that are not currently falsified and have coefficients not divisible by the
weight of the pivot are partially weakened (instead of simply weakened). This operation is applied so
that the resulting coefficient becomes a multiple of the weight of the pivot. Algorithm 13 below describes
this procedure.

Algorithm 13: partialRoundingSatReduce
Input : A pseudo-Boolean constraint χ and a literal ℓ of χ
Output: The constraint χ after reduction

1 α← coefficient(ℓ, χ)
2 foreach literal ℓ′ in χ do
3 α′ ← coefficient(ℓ′, χ)
4 if ℓ′ is not currently falsified then
5 if α′ is not divisible by α then
6 // The literal ℓ′ is partially weakened
7 µ← α′ mod α
8 degree(χ)← degree(χ)− µ
9 α′ ← α′ − µ

10 end
11 end
12 // Dividing the coefficient: α′ is always divisible by α here
13 coefficient(ℓ′, χ)← α′/α

14 end

This approach has several advantages. First, it preserves the nice properties of RoundingSat, and in
particular the fact that the constraint after the cancellation step will be conflictual (the coefficient of the
pivot will be 1), while having a cost comparable to that of RoundingSat: checking whether a coefficient
is divisible by the weight of the pivot is computed with the remainder of the division of the former by
the latter, which is the amount by which the literal must be partially weakened. Second, the constraints
it infers may be stronger than that of RoundingSat, as illustrated by the following example.

Consider again the (conflicting) constraint 8a(1@1) + 7b(0@2) + 7c(0@2) + 2d(0@2) +
2e(0@1) + f(?@?) ≥ 11 where b is the literal to be cancelled out. The above rule yields
7a(1@1)+7b(0@2)+7c(0@2)+2d(0@2)+2e(0@1) ≥ 9 which, divided by 7, gives a+b+c+
d+e ≥ 2. This constraint is stronger than the clause b(0@2)+c(0@2)+d(0@2)+e(0@1) ≥ 1
that RoundingSat would infer, as the literal a is completely weakened away in this case.

Example 85 (Example 84 cont’d)

182



6.2. Stronger Constraints in RoundingSat-Based Solvers

0

250

500

750

1000

1250

0 200 400 600

Number of non−easy instances

T
im

e
 (

s
)

VBS

Sat4j−PartialRoundingSat (both)

Sat4j−RoundingSat

Sat4j−PartialRoundingSat (conflict)

Sat4j−PartialRoundingSat (reason)

Sat4j−GeneralizedResolution

Figure 6.6: Cactus plot of the different Partial RoundingSat variants implemented in Sat4j, compared to
Sat4j’s state-of-the-art pseudo-Boolean solvers.

Let us now evaluate the performance of this approach, named PartialRoundingSat, and of its variants
obtained by applying the weakening rule on only one side of the cancellation rule. To do so, we compare
the implementation of these strategies with Sat4j’s implementation of RoundingSat. Figure 6.6 shows the
results of their implementation in Sat4j and executed in the usual experimental setting (see Appendix B).
The timeout was set to 1200 seconds and the memory limit to 32 GB.

The relative order of the different Partial RoundingSat variants is quite similar to that of RoundingSat
variants. The main observation here is that applying the weakening and division rules on both sides of
the cancellation rule improves the performance of the solver compared to that of RoundingSat.

In [EN18, Remark 3.4], it is observed that the performance of RoundingSat gets worse when
the partial weakening rule is applied instead of the weakening rule, which is not what we
observe in our implementation in Sat4j.
However, there are actually many implementation details that differ between RoundingSat
and its implementation in Sat4j, especially because the former applies the weakening rule
unconditionally, while the latter applies it only when Proposition 34 cannot be applied (see
also Appendix A for a complete overview of the difference of implementations between the
two solvers). All these differences may also have an impact on the performance of both solvers,
and thus may explain why our observations do not coincide.

Remark 42

Moreover, despite being more robust than the Weaken Ineffective strategies, we still observe that the
VBS of the different RoundingSat-based approaches is better than each individual strategy.

Let us now consider more precise results by looking at the scatter plots given in Figures 6.7 and 6.8.
From these figures, we can see that the applications of the weakening and division rules on either the
conflict or the reason side are mostly incomparable. Interestingly, applying the same rules on both sides
is clearly better than these approaches, and this is particularly clear for the instances of the wnqueen
family.
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As for the different Sat4j-RoundingSat variants, the number of instances solved by the different
Sat4j-PartialRoundingSat variants is given in Table 6.3. This table confirms the observations made on
the cactus plot, and in particular that applying the weakening and division rules on both sides of the
cancellation has better performance than the other approaches. Quite interestingly, while the approach
applying these operations on the conflict side is in general better than that applying them on the reason
side, we can observe that this latter strategy has better performance on the tsp family (as well as that
applying weakening and division on both sides).

Yet, the performance of PartialRoundingSat (both) (named Sat4j-PartialRoundingSat from now on)
is not completely satisfactory. Indeed, Sat4j-RoundingSat is still faster on some benchmarks, as illus-
trated in Figure 6.10. To a lesser extent, we also observe that even Sat4j-GeneralizedResolution remains
better on some instances, as shown by Figure 6.9.

Considering these latter observations, and the conclusions made regarding the different Weaken In-
effective strategies, it is clear that none of the strategies, and thus none of the underlying proof systems,
has the best performance on all benchmarks.
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Figure 6.9: Scatter plot comparing the runtime (in seconds) of Sat4j-GeneralizedResolution and Sat4j-
PartialRoundingSat (logarithmic scale).
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Figure 6.10: Scatter plot comparing the runtime (in seconds) of Sat4j-RoundingSat and Sat4j-
PartialRoundingSat (logarithmic scale).
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6.3 The Need for Tradeoffs

When using the Weaken Ineffective and RoundingSat-based strategies, we have observed that the weak-
ening rule may help finding short explanations for conflicts, but may also infer weaker constraints. Our
experiments have also revealed that none of these strategies is better than the others, especially when
looking at their VBS or at their pairwise comparisons (see, for instance, Figures 6.2, 6.10 and 6.9).

In order to find better tradeoffs, we need to investigate new ways of applying the weakening rule. A
possible approach for doing so is the following, that we call Multiply and Weaken. Let r be the coefficient
of the pivot used in the cancellation appearing in the reason and c that in the conflict. Find two values
µ and ν such that (ν − 1) · r < µ · c ≤ ν · r (which can be done using Euclidean division). Then,
multiply the reason by ν, and apply successively weakening operations on this constraint so as to reduce
the coefficient of the pivot to µ · c. Note that, to preserve the propagation, this coefficient cannot be
weakened directly. Instead, ineffective literals (as described above) are successively weakened away so
that the saturation rule produces the expected reduction on the coefficient (partial weakening may also
be applied to make sure that the degree has exactly the appropriate value). Since this operation does
not necessarily preserve the conflict, an additional weakening operation has to be performed, as for the
generalized resolution. Note that this approach may also derive clauses, even though this is not always
the case, as shown by the following example.

Let us consider the constraint 5a(0@1) + 5b(?@?) + 3c(?@?) + 2d(0@2) + e(1@1) ≥ 6,
which propagates b under the current partial assignment. Let us now consider the conflicting
constraint 3b̄(0@2) + 2a(0@1) + 2d(0@2) + ē(0@1) ≥ 5. Instead of using the lcm of 3
and 5 (i.e., 15), the reason of b is weakened on e and partially on c to get, after saturation,
3a(0@1) + 3b(0@1) + 2d(0@2) + c(?@?) ≥ 3. The cancellation produces then 5a(0@1) +
4d(0@2) + c(?@?) + ē(0@1) ≥ 5.

Example 86

Using the same experimental configuration as in the previous sections, let us compare the results of
this new strategy to the others studied before. The results are given in Figure 6.11.

One can observe that, unfortunately, the Multiply and Weaken strategy does not work well, even if it
still exhibits better performance than Sat4j-GeneralizedResolution. Its main interest is to illustrate how
to design new weakening schemes so as to improve the performance of pseudo-Boolean solvers.

A key observation to make from the cactus plot is that the VBS, computed here over all the strategies
appearing in the plot, clearly beats each individual strategy, confirming that identifying good tradeoffs
would allow significant improvements in pseudo-Boolean solving. This is also confirmed by the contri-
butions to the VBS, given in Table 6.4.

The table confirms that the best results are given by the PartialRoundingSat (both) variant, which
solves 144 more instances than Sat4j-GeneralizedResolution and 12 more than RoundingSat (both) (i.e.,
Sat4j-RoundingSat), even though the solved instances are not the same ones. For each strategy, none
of its variants has a strong contribution to the VBS, since these variants are very similar given a main
weakening strategy. However, if we consider the main strategies, and in particular RoundingSat, Partial-
RoundingSat and Weaken Ineffective, their state-of-the art contributions (i.e., the instances only solved
by these variants) become clearer: Generalized Resolution contributes 3 instances, Multiply and Weaken
4 instances Sat4j-RoundingSat 12 instances, Sat4j-PartialRoundingSat 17 instances, and Weaken Inef-
fective 76 instances. This confirms that choosing the right variant, even with the same main weakening
strategy, plays a key role in the performance of the solver.
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Figure 6.11: Cactus plot comparing the results of all the weakening strategies implemented in Sat4j.

The gain we observe between the different strategies has several plausible explanations. First, the
solver does not explore the same search space from one strategy to another, and thus the constraints it
learns may be completely different. In particular, they may be stronger or weaker, which has an impact
on the size of the proof built by the solver, and thus on its runtime. Second, these constraints may contain
different literals, which may have side effects on the VSIDS heuristic: different literals will be bumped
during conflict analysis. Such side effects are hard to assess, due to the tight link between the heuristic
used and the other components of the solver.
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Weakening Solved SOTA Contribution SOTA Contribution
Strategy Variant Instances of Variant of Strategy

Generalized Resolution 3711 3 3

Multiply and Weaken 3767 4 4

Partial RoundingSat both 3855 6
Partial RoundingSat conflict 3803 8 17
Partial RoundingSat reason 3766 2

RoundingSat both 3843 3
RoundingSat conflict 3793 4 12
RoundingSat reason 3778 4

Weaken Ineffective both 3815 10
Weaken Ineffective conflict 3804 6 76
Weaken Ineffective reason 3789 3

Table 6.4: Table summarizing the results of the different weakening strategies and their variants.
Columns display, from left to right, the main strategy, the variant of this strategy (if any), the number
of instances solved by this variant, the state-of-the-art contribution of this variant and the state-of-the-art
contribution of the main strategy.
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Chapter 7

Evaluating the Impact of CDCL Strategies
in Pseudo-Boolean Solvers

As described in Section 4.2, the implementation of the CDCL architecture in pseudo-Boolean solvers is
widely inspired by the development of this architecture in SAT solvers. In particular, pseudo-Boolean
solvers not only generalize the conflict analysis of classical SAT solvers, but also implement some com-
plementary strategies that are tightly linked to the CDCL algorithm, namely branching heuristics, learned
constraint deletion and restarts. However, these strategies inherited from SAT solving are most often
reused “as they are” by current pseudo-Boolean solvers, without taking into account the particular form
of the pseudo-Boolean constraints they deal with.

In this chapter, we show how these strategies may be adapted to pseudo-Boolean solvers, so as to
retrieve the properties of their implementations in SAT solvers while applied to pseudo-Boolean con-
straints. In practice, we show that doing so allows to improve, sometimes significantly, the performance
of the solvers.

7.1 Adapting (E)VSIDS for Pseudo-Boolean Constraints

Current implementations of the VSIDS heuristic in SAT solvers, and in particular the EVSIDS heuristic
(see Subsection 4.1.3), are designed to favor the selection of variables that are involved in recent con-
flicts. When only considering clauses, identifying such literals is straightforward: the literals involved
in a conflict are those appearing in the clauses encountered during conflict analysis. However, this is
no longer the case when pseudo-Boolean constraints are considered. Indeed, given a pseudo-Boolean
constraint, the literals it contains may not play the same role in the constraint, and thus may not have
the same influence in the conflicts in which this constraint is involved. In order to take into account this
asymmetry between the literals when computing VSIDS scores, we introduce different ways of bumping
the variables appearing in the constraints encountered during conflict analysis.

The main reason for the asymmetry of the literals in a pseudo-Boolean constraint is the presence
of coefficients in the constraint. To take these literals into account, pseudo-Boolean solvers such as
pbChaff [DG02, Dix04, Section 4.5] and Pueblo [SS06] have introduced different bumping strategies
(see Subsection 4.2.3 for more details). To generalize the heuristics implemented in these solvers, we
define the following bumping strategies:

• The bump-degree strategy multiplies the increment by the degree of the constraint, as a naive
generalization of pbChaff ’s approach, which only considers the degree of the original cardinality
constraints.
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• The bump-coefficient strategy multiplies the increment by the coefficient of the literal being
bumped, as a tentative measure of the importance of the corresponding variable.

• The bump-ratio-coefficient-degree strategy multiplies the increment by the ratio of the coefficient
of the literal by the degree of the constraint, as proposed in Pueblo.

• The bump-ratio-degree-coefficient strategy multiplies the increment by the ratio of the degree of
the constraint by the coefficient of the literal, as a generalization of pbChaff ’s strategy taking into
account the relative importance of the variable in the constraint.

Let us illustrate these different strategies by the following example.

When bumping the variable a from the constraint 5a+5b+ c+ d+ e+ f ≥ 6, the increment
is multiplied by:

• 6 in the case of bump-degree,
• 5 in the case of bump-coefficient,
• 5/6 in the case of bump-ratio-coefficient-degree, and
• 6/5 in the case of bump-ratio-degree-coefficient

before being added to the variable’s score.

Example 87

To compare the performance of these different bumping strategies, we implemented them in the
pseudo-Boolean solver Sat4j, and executed different configurations of this solver in the usual experimen-
tal setting (see Appendix B). The timeout was set to 1200 seconds and the memory limit to 32 GB.

Let us first study the impact of these heuristics in Sat4j-GeneralizedResolution, for which the results
are given in Figure 7.1.

The cactus plot clearly shows that the best strategy is bump-ratio-coefficient-degree (i.e., the one
implemented in Pueblo), which is also the only of the four strategies that beats the default one. We
observe a similar behavior with the implementations of these heuristics in Sat4j-RoundingSat and Sat4j-
PartialRoundingSat, for which the results are given in Figures 7.2 and 7.3, respectively.

The main difference between Sat4j-GeneralizedResolution and the RoundingSat implementations in
Sat4j is the performance of the bump-coefficient strategy. A plausible explanation for this behavior is
that, because of the use of the weakening and division rules, the coefficients and degrees of the learned
constraints get more “balanced” in these configurations, so that the coefficient of a literal in itself is a
sufficient measure of the relative importance of the corresponding variable in the constraint.

Another observation that we can make from these experiments is that, for all the solvers studied, the
strategies bump-degree and bump-ratio-degree-coefficient have poor performance. Actually, this is not so
surprising: as described in [Dix04, Section 4.5], these strategies are designed to estimate the number of
clauses that are represented by the pseudo-Boolean constraint whose literals are being bumped. However,
when a conflict occurs, not all these clauses are actually involved in the conflict, and thus some variables
get “more bumped” than they should be.
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Figure 7.1: Cactus plot of the various coefficient and degree-based bumping strategies implemented in
Sat4j-GeneralizedResolution.
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Figure 7.2: Cactus plot of the various coefficient and degree-based bumping strategies implemented in
Sat4j-RoundingSat.
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Figure 7.3: Cactus plot of the various coefficient and degree-based bumping strategies implemented in
Sat4j-PartialRoundingSat.

Recall that modern implementations of VSIDS favor variables involved in the most recent conflicts.
In this context, let us now consider another main difference between the clauses and pseudo-Boolean
constraints encountered during conflict analysis: the existence of ineffective literals in the constraints
(see Definition 107). Following this observation, we introduce five other bumping strategies, which take
into account the current variable assignment to decide which variables should be bumped.

• The bump-assigned strategy bumps only assigned variables appearing in the constraints encoun-
tered during conflict analysis.

• The bump-falsified strategy bumps only variables whose literals appear as falsified in the con-
straints encountered during conflict analysis.

• The bump-falsified-propagated strategy bumps only variables whose literals appear as falsified in
the constraints encountered during conflict analysis, and those that were propagated at the latest
decision level.

• The bump-effective strategy bumps only variables whose literals are effective in the constraints
encountered during conflict analysis.

• The bump-effective-propagated strategy bumps only variables whose literals are effective in the
constraints encountered during conflict analysis, and those that were propagated at the latest deci-
sion level.
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When bumping the variables of the constraint 5a(0@3) + 5b(1@3) + c(?@?) + d(?@?) +
e(0@1) + f(1@2) ≥ 6 at decision level 3,

• the strategy bump-assigned bumps the variables a, b, e and f ,
• the strategy bump-falsified bumps the variables a and e,
• the strategy bump-falsified-propagated bumps the variables a, b and e,
• the strategy bump-effective bumps only the variable a, and
• the strategy bump-effective-propagated bumps the variables a and b.

Example 88

As for the previous strategies, let us study the practical impact of these strategies in Sat4j-
GeneralizedResolution, using the same experimental setting as above. The results of these experiments
are given in Figure 7.4.

In the cactus plot, it is clear that considering the current assignment when bumping the literals has
a significant impact on the performance of the solver. In this case, the bump-effective strategy, which
allows to focus on the literals that are actually involved in the conflict, appears as the best one. However,
in RoundingSat-based solvers, the bump-assigned and bump-effective-propagated strategies have better
performance than the others, as shown in Figures 7.5 and 7.6.
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Figure 7.4: Cactus plot of the various assignment-based bumping strategies implemented in Sat4j-
GeneralizedResolution.

197



Chapter 7. Evaluating the Impact of CDCL Strategies in Pseudo-Boolean Solvers

0

250

500

750

1000

1250

0 200 400 600

Number of non−easy instances

T
im

e
 (

s
)

VBS

bump−assigned

bump−effective−propagated

bump−effective

bump−falsified−propagated

bump−falsified

bump−default

Figure 7.5: Cactus plot of the various assignment-based bumping strategies implemented in Sat4j-
RoundingSat.
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Figure 7.7: Cactus plot of the best bumping strategies implemented in different configurations of Sat4j.

The performance shift between the bumping strategies we study, and especially bump-assigned and
bump-effective, in Sat4j-GeneralizedResolution and the two RoundingSat variants implemented in Sat4j
may be explained by the aggressive weakening applied in the latter configurations. In a sense, this
weakening strategy allows to keep the literals that are important in the constraint (and that will be bumped
afterwards), by weakening away the other literals at each cancellation step during conflict analysis. This
may also explain why the difference between the default bumping strategy and these two strategies is
less marked in RoundingSat-based solvers than in Sat4j-GeneralizedResolution.

Let us now recapitulate the experiments we have conducted. Figure 7.7 shows, for each of the three
considered configurations of Sat4j, the performance of the best bumping strategies that we observed in
the previous experiments. From this cactus plot, we can see that the three solvers we have considered
can be improved by choosing the appropriate bumping strategy. Quite interestingly, when the bump-
effective strategy is used in Sat4j-GeneralizedResolution, this allows a significant improvement on the
performance of the solver, so that it now solves 115 more instances than with the default heuristic,
meaning that it solves only 17 less instances than Sat4j-RoundingSat. More detailed results are given in
Table 7.1.

Note that it is possible to combine the coefficient and degree-based bumping strategies with
assignment-based strategies. We performed some experiments in this direction, but in prac-
tice, doing so gives results worse than when the strategies are used independently. For more
readability, these results are omitted in the cactus plots presented in this section.

Remark 43

Let us now consider the number of instances solved by the bumping strategies for the considered
families, given in Tables 7.2, 7.3 and 7.4. Quite interestingly, one can observe that the strategy bump-
degree which overall does not have good performance, is the best strategy for solving instances of the
FPGA_SAT05 family, for any of the three solvers we considered.
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Bumping Solved SOTA 1-second 10-second
Strategy Instances Contribution Contribution Contribution

bump-assigned 3899 13 81 44
(Sat4j-PartialRoundingSat)

bump-coefficient 3889 8 61 31
(Sat4j-PartialRoundingSat)

bump-assigned 3890 11 73 36
(Sat4j-RoundingSat)

bump-coefficient 3883 8 57 24
(Sat4j-RoundingSat)

bump-all (default) 3855 6 58 22
(Sat4j-PartialRoundingSat)

bump-all (default) 3843 6 37 18
(Sat4j-RoundingSat)

bump-effective 3826 0 33 15
(Sat4j-GeneralizedResolution)

bump-ratio-coefficient-degree 3763 6 32 21
(Sat4j-GeneralizedResolution)

bump-all (default) 3711 2 18 11
(Sat4j-GeneralizedResolution)

Table 7.1: Table summarizing the results of the best bumping strategies for several configurations of
Sat4j. Columns display, from left to right the bumping strategy, the number of instances solved by this
strategy, its state-of-the-art contribution, the number of instances for which the configuration was at least
1 second faster than all the others and the number of instances for which the configuration was at least
10 seconds faster than all the others

200



7.1. Adapting (E)VSIDS for Pseudo-Boolean Constraints

N
um

be
ro

fi
ns

ta
nc

es
N

um
be

ro
fs

ol
ve

d
Fa

m
ily

in
th

e
fa

m
ily

ea
sy

in
st

an
ce

s
bu

m
p-

ef
fe

ct
iv

e
bu

m
p-

fa
ls

ifi
ed

bu
m

p-
ef

fe
ct

iv
e-

pr
op

ag
at

ed
bu

m
p-

fa
ls

ifi
ed

-p
ro

pa
ga

te
d

bu
m

p-
as

si
gn

ed
bu

m
p-

ra
tio

-c
oe

ffi
ci

en
t-

de
gr

ee
bu

m
p-

de
fa

ul
t

bu
m

p-
co

ef
fic

ie
nt

bu
m

p-
de

gr
ee

bu
m

p-
ra

tio
-d

eg
re

e-
co

ef
fic

ie
nt

A
a
r
d
a
l
_
1

14
13

1
(6

.2
9)

1
(5

.2
3)

1
(4

.5
2)

1
(4

.7
3)

1
(1

.1
9)

1
(3

.6
)

1
(2

.1
3)

1
(2

.5
1)

1
(2

.4
9)

0
(0

)
a
r
m
i
e
s

12
1

6
(8

41
.7

7)
6

(7
70

.5
)

4
(5

62
.6

8)
5

(1
34

4.
75

)
4

(1
54

.2
9)

4
(3

14
.6

9)
3

(7
74

.0
1)

3
(1

35
.4

1)
4

(9
6.

72
)

4
(3

86
.6

4)
c
a
i
x
a

1
1

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

d
_
n
_
k

23
4

14
3

25
(4

70
8.

17
)

26
(5

07
6.

87
)

25
(4

30
9.

88
)

25
(4

66
4.

6)
25

(3
33

4.
16

)
25

(4
11

8.
02

)
26

(4
53

1.
7)

16
(4

07
6.

74
)

11
(9

00
)

5
(1

37
3.

65
)

d
-
e
q
u
a
l
s
-
n
_
k

70
18

18
(2

15
6.

29
)

21
(2

91
0.

36
)

20
(1

97
2.

58
)

18
(3

06
5.

9)
23

(2
87

6.
88

)
21

(1
90

4.
82

)
22

(6
20

.2
6)

12
(2

28
2.

32
)

21
(2

35
4.

35
)

13
(2

61
2.

69
)

E
C
_
O
D
D
_
G
R
I
D
S

25
1

6
(2

67
.4

)
5

(5
4.

7)
5

(9
3.

16
)

3
(1

7.
72

)
4

(6
8.

82
)

3
(3

4.
68

)
3

(7
0.

46
)

3
(1

9.
81

)
2

(1
1.

53
)

1
(4

1.
98

)
E
C
_
R
A
N
D
O
M
_
G
R
A
P
H
S

22
3

2
(2

71
.1

2)
1

(4
.6

3)
2

(2
9.

17
)

3
(8

5.
69

)
1

(2
.0

2)
2

(1
10

.3
2)

2
(2

41
.6

9)
3

(7
50

.3
9)

2
(6

8.
74

)
2

(2
54

.6
9)

F
P
G
A
_
S
A
T
0
5

57
29

6
(1

44
5.

99
)

5
(1

22
5.

09
)

6
(8

95
.6

9)
5

(6
8.

63
)

13
(1

80
9.

74
)

13
(1

99
9.

92
)

14
(1

81
3.

52
)

9
(3

51
.2

9)
12

(2
46

4.
33

)
15

(9
68

.0
6)

h
e
i
n
z

4
1

0
(0

)
0

(0
)

1
(3

95
.2

7)
0

(0
)

0
(0

)
1

(1
16

9.
8)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

I
n
s
t
a
n
c
e
s
3
c
o
l
_
O
P
B

26
7

1
(1

18
.2

2)
1

(2
95

.0
2)

1
(4

5.
04

)
1

(3
0.

94
)

1
(4

9.
96

)
1

(1
96

.1
2)

1
(5

1.
69

)
1

(5
9.

65
)

1
(6

3.
45

)
1

(2
93

.8
2)

l
i
u

20
16

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

l
o
p
e
s

19
3

0
2

(1
01

6.
8)

3
(2

12
2.

97
)

3
(1

85
1.

95
)

2
(9

59
.3

5)
2

(6
79

.3
)

2
(2

80
.1

6)
1

(2
56

.0
1)

1
(3

12
.0

7)
1

(3
15

.5
)

0
(0

)
n
o
s
s
u
m

18
0

0
7

(1
11

9.
73

)
6

(1
62

2.
41

)
6

(1
29

1.
3)

5
(1

75
1.

14
)

6
(1

29
7.

85
)

8
(4

40
5.

32
)

2
(1

56
7.

69
)

3
(2

08
.2

7)
2

(8
91

.1
8)

5
(1

16
3.

28
)

o
l
i
v
e
r
a
s

40
80

29
53

19
7

(3
06

67
.6

7)
19

7
(3

25
70

.7
8)

21
0

(3
24

33
.4

5)
19

8
(3

22
42

.8
4)

19
7

(3
04

56
.0

1)
21

1
(3

35
97

.5
5)

18
5

(2
88

72
.8

3)
14

7
(2

91
45

.3
9)

12
7

(2
49

16
.4

)
10

3
(3

44
96

.7
4)

p
p
p
-
p
r
o
b
l
e
m
s

6
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

r
a
n
d
6
r
e
g

33
6

3
(1

17
2.

55
)

2
(3

43
.0

9)
3

(1
51

5.
03

)
2

(4
37

.6
6)

3
(1

22
.9

4)
1

(1
3.

46
)

1
(2

03
.7

6)
2

(1
68

.9
6)

1
(3

5.
7)

0
(0

)
r
o
b
i
n

6
1

2
(9

0.
62

)
2

(1
66

.9
6)

1
(8

.3
5)

1
(2

5.
71

)
2

(4
99

.1
9)

1
(2

3.
48

)
1

(8
.2

)
1

(2
4.

84
)

1
(1

5.
17

)
1

(1
39

.2
3)

r
o
u
s
s
e
l

40
20

0
(0

)
2

(4
48

.0
8)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

s
r
o
u
s
s
e
l

12
2

0
0

(0
)

2
(1

04
5.

92
)

3
(7

94
.5

8)
0

(0
)

1
(5

17
.0

5)
0

(0
)

4
(8

53
.1

8)
0

(0
)

1
(4

2.
11

)
0

(0
)

s
u
b
s
e
t
c
a
r
d

56
56

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

S
U
M
I
N
E
Q

24
0

3
(1

4.
58

)
1

(8
.3

3)
3

(1
01

.6
7)

1
(2

.7
8)

1
(1

73
.9

4)
2

(7
4.

94
)

1
(5

.7
2)

1
(2

.7
1)

0
(0

)
0

(0
)

t
s
p

10
0

0
40

(6
17

0.
71

)
39

(3
34

3.
67

)
40

(6
60

1.
86

)
38

(4
29

9.
49

)
38

(5
17

0.
55

)
34

(2
45

0.
36

)
14

(5
75

6.
76

)
32

(6
39

3.
93

)
24

(8
20

8.
48

)
27

(1
38

55
.1

9)
u
c
l
i
d
_
p
b
_
b
e
n
c
h
m
a
r
k
s

50
28

11
(3

92
.8

2)
12

(7
60

.2
5)

11
(3

22
.4

9)
12

(2
02

2.
1)

10
(1

34
3)

15
(1

54
7.

87
)

6
(8

15
.2

)
10

(1
05

9.
8)

5
(2

27
8.

72
)

4
(1

14
1.

26
)

v
e
r
t
e
x
c
o
v
e
r
-
i
n
s
t
a
n
c
e
s

10
7

66
37

(2
07

1.
71

)
38

(7
10

.8
3)

37
(3

60
4.

58
)

34
(3

60
1.

99
)

32
(3

57
6.

36
)

26
(2

28
6.

06
)

22
(1

78
0.

05
)

18
(8

68
.9

8)
13

(1
36

1.
93

)
1

(6
94

.8
8)

w
n
q
u
e
e
n

10
0

2
95

(1
56

5.
63

)
93

(6
22

0.
92

)
73

(4
35

4.
94

)
90

(4
46

9.
18

)
65

(2
34

9.
3)

30
(2

57
6.

3)
38

(5
05

9.
07

)
42

(6
36

3.
49

)
30

(5
45

4.
26

)
21

(4
99

9.
84

)

Ta
bl

e
7.

2:
Ta

bl
e

su
m

m
ar

iz
in

g,
fo

re
ac

h
of

th
e

co
ns

id
er

ed
he

ur
is

tic
s,

th
e

nu
m

be
ro

fn
on

-e
as

y
in

st
an

ce
s

so
lv

ed
by

Sa
t4

j-
G

en
er

al
iz

ed
R

es
ol

ut
io

n
w

he
n

us
in

g
th

is
he

ur
is

tic
fo

re
ac

h
of

th
e

co
ns

id
er

ed
fa

m
ili

es
.T

he
nu

m
be

rs
in

pa
re

nt
he

se
s

co
rr

es
po

nd
to

th
e

to
ta

lr
un

tim
e

(i
n

se
co

nd
s)

ne
ed

ed
to

so
lv

e
th

e
in

st
an

ce
s.

B
ol

d
nu

m
be

rs
hi

gh
lig

ht
st

ra
te

gi
es

th
at

pe
rf

or
m

w
el

lo
n

a
gi

ve
n

fa
m

ily
co

m
pa

re
d

to
th

e
ot

he
rs

.

201



Chapter 7. Evaluating the Impact of CDCL Strategies in Pseudo-Boolean Solvers

N
um

be
ro

fi
ns

ta
nc

es
N

um
be

ro
fs

ol
ve

d
Fa

m
ily

in
th

e
fa

m
ily

ea
sy

in
st

an
ce

s
bu

m
p-

as
si

gn
ed

bu
m

p-
ef

fe
ct

iv
e-

pr
op

ag
at

ed
bu

m
p-

co
ef

fic
ie

nt
bu

m
p-

ra
tio

-c
oe

ffi
ci

en
t-

de
gr

ee
bu

m
p-

ef
fe

ct
iv

e
bu

m
p-

fa
ls

ifi
ed

-p
ro

pa
ga

te
d

bu
m

p-
fa

ls
ifi

ed
bu

m
p-

de
fa

ul
t

bu
m

p-
de

gr
ee

bu
m

p-
ra

tio
-d

eg
re

e-
co

ef
fic

ie
nt

A
a
r
d
a
l
_
1

14
11

3
(6

)
3

(5
.5

3)
3

(2
.9

7)
3

(2
.4

3)
3

(4
.0

7)
3

(1
4)

3
(2

1.
11

)
3

(3
.2

3)
3

(3
.8

2)
0

(0
)

a
r
m
i
e
s

12
2

5
(1

58
6.

59
)

6
(1

32
0.

42
)

3
(1

25
3.

99
)

4
(1

64
7.

15
)

4
(1

36
5.

66
)

2
(1

23
8.

28
)

4
(5

01
.5

8)
3

(6
7)

3
(2

69
.6

7)
5

(1
47

8.
02

)
c
a
i
x
a

1
1

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

d
_
n
_
k

23
4

15
2

20
(4

77
9.

79
)

20
(5

13
7.

54
)

18
(5

25
4.

8)
19

(4
18

4.
29

)
19

(4
51

4.
05

)
19

(4
69

0.
34

)
19

(4
11

4.
75

)
21

(6
21

3.
29

)
18

(4
01

0.
79

)
13

(3
86

9.
43

)
d
-
e
q
u
a
l
s
-
n
_
k

70
23

17
(1

79
2.

14
)

16
(1

84
3)

17
(7

54
.8

3)
16

(2
97

9.
99

)
17

(5
01

0.
58

)
15

(2
46

9.
14

)
16

(2
01

2.
58

)
19

(3
25

8.
66

)
18

(2
27

4.
92

)
16

(3
92

3.
42

)
E
C
_
O
D
D
_
G
R
I
D
S

25
3

5
(1

85
.4

5)
5

(2
20

.9
6)

5
(3

89
.9

6)
4

(3
46

.5
6)

5
(5

63
.6

4)
4

(7
7.

25
)

6
(4

49
.4

8)
4

(6
53

.7
8)

1
(0

.7
6)

2
(1

05
1.

5)
E
C
_
R
A
N
D
O
M
_
G
R
A
P
H
S

22
3

5
(5

9.
14

)
4

(3
35

.9
2)

16
(1

21
6.

14
)

3
(3

52
.8

)
4

(2
84

.1
6)

7
(1

61
.4

8)
4

(1
03

9.
41

)
5

(9
09

.5
2)

14
(1

85
6.

55
)

6
(2

64
.9

8)
F
P
G
A
_
S
A
T
0
5

57
32

11
(1

51
3.

18
)

8
(1

06
4.

12
)

10
(1

06
0.

66
)

8
(4

13
.3

3)
6

(1
00

5.
77

)
4

(4
6)

6
(2

15
3.

16
)

9
(2

23
3.

1)
15

(1
71

0.
83

)
12

(4
49

.7
4)

h
e
i
n
z

4
1

0
(0

)
1

(4
6.

87
)

1
(8

27
.5

8)
0

(0
)

1
(1

16
3.

44
)

1
(8

7.
97

)
0

(0
)

0
(0

)
0

(0
)

1
(7

3.
57

)
I
n
s
t
a
n
c
e
s
3
c
o
l
_
O
P
B

26
7

1
(3

3.
3)

1
(3

9.
74

)
1

(2
02

.1
9)

1
(2

4.
24

)
1

(3
3.

72
)

1
(2

0.
54

)
1

(1
17

.2
3)

1
(2

0.
23

)
1

(4
5.

37
)

1
(4

5.
27

)
l
i
u

20
16

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

l
o
p
e
s

19
3

0
3

(1
87

5.
42

)
3

(7
63

.3
9)

1
(4

12
.3

5)
4

(2
31

7.
81

)
3

(8
13

.8
5)

3
(1

12
8.

52
)

2
(1

15
3.

69
)

2
(1

21
0.

13
)

2
(4

33
.1

6)
0

(0
)

n
o
s
s
u
m

18
0

0
12

(6
04

8.
48

)
11

(3
78

5.
5)

5
(2

12
0.

49
)

13
(5

25
9.

79
)

11
(6

10
3.

59
)

10
(4

22
1.

42
)

8
(2

31
8.

46
)

10
(3

37
8.

61
)

3
(2

03
4.

69
)

1
(2

72
.3

5)
o
l
i
v
e
r
a
s

40
80

29
15

25
5

(3
41

56
.2

8)
26

4
(3

40
85

.5
4)

23
3

(2
79

06
.3

4)
26

3
(3

48
62

.0
9)

25
9

(3
71

11
.8

8)
25

0
(3

11
81

.5
6)

25
2

(3
52

66
.1

8)
25

3
(3

62
21

.7
)

18
7

(3
09

75
.6

5)
61

(1
60

30
.9

5)
p
p
p
-
p
r
o
b
l
e
m
s

6
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

r
a
n
d
6
r
e
g

33
9

2
(2

05
.2

)
2

(4
2.

69
)

15
(1

80
9.

86
)

1
(9

91
.9

5)
1

(6
.4

2)
1

(7
.4

3)
1

(0
.4

7)
2

(1
8.

16
)

11
(1

75
.6

)
4

(3
79

.9
3)

r
o
b
i
n

6
2

2
(1

47
4.

1)
1

(1
83

.0
2)

0
(0

)
1

(2
80

.8
9)

0
(0

)
1

(7
73

.7
4)

1
(1

36
.0

7)
0

(0
)

1
(4

59
.6

1)
0

(0
)

r
o
u
s
s
e
l

40
20

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

2
(3

99
.9

4)
0

(0
)

0
(0

)
0

(0
)

s
r
o
u
s
s
e
l

12
2

0
2

(5
86

.9
3)

1
(2

37
.1

)
2

(1
82

9.
78

)
0

(0
)

4
(1

63
9.

68
)

1
(2

16
.6

5)
2

(6
26

.6
6)

2
(3

26
.7

6)
2

(1
88

.8
4)

0
(0

)
s
u
b
s
e
t
c
a
r
d

56
56

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

S
U
M
I
N
E
Q

24
0

3
(1

20
4.

77
)

6
(2

52
9.

12
)

11
(1

08
3.

4)
5

(1
34

9.
07

)
2

(7
.8

)
2

(2
00

.9
1)

1
(1

4.
58

)
3

(8
47

.4
7)

1
(5

8.
04

)
1

(9
98

.9
)

t
s
p

10
0

0
47

(6
61

8.
32

)
43

(4
38

6.
11

)
48

(2
81

2.
3)

40
(3

96
7.

67
)

41
(3

41
5.

01
)

42
(6

63
0.

65
)

39
(3

40
9.

6)
14

(2
15

1.
31

)
9

(1
90

7.
96

)
3

(2
27

4.
59

)
u
c
l
i
d
_
p
b
_
b
e
n
c
h
m
a
r
k
s

50
26

13
(3

35
.1

6)
13

(3
66

.5
6)

15
(8

53
)

14
(5

92
.2

6)
15

(1
62

9.
64

)
14

(1
50

5.
88

)
13

(5
85

.4
8)

13
(2

27
0.

43
)

4
(5

20
.6

9)
5

(1
17

4.
16

)
v
e
r
t
e
x
c
o
v
e
r
-
i
n
s
t
a
n
c
e
s

10
7

68
38

(4
47

4.
99

)
35

(2
26

7.
89

)
34

(1
53

8.
22

)
37

(2
94

7.
41

)
36

(2
46

1.
49

)
36

(3
37

8.
95

)
38

(1
85

1.
58

)
34

(3
26

8.
84

)
27

(2
73

2.
62

)
3

(6
96

.1
9)

w
n
q
u
e
e
n

10
0

62
38

(3
59

.6
6)

38
(3

59
.1

7)
38

(1
69

5.
72

)
38

(4
41

.8
6)

38
(2

58
.5

1)
38

(2
68

.0
7)

38
(3

03
.1

1)
38

(5
33

.0
7)

38
(8

82
0.

38
)

36
(6

20
6.

3)

Ta
bl

e
7.

3:
Ta

bl
e

su
m

m
ar

iz
in

g,
fo

re
ac

h
of

th
e

co
ns

id
er

ed
he

ur
is

tic
s,

th
e

nu
m

be
ro

fn
on

-e
as

y
in

st
an

ce
s

so
lv

ed
by

Sa
t4

j-
R

ou
nd

in
gS

at
w

he
n

us
in

g
th

is
he

ur
is

tic
fo

re
ac

h
of

th
e

co
ns

id
er

ed
fa

m
ili

es
.T

he
nu

m
be

rs
in

pa
re

nt
he

se
s

co
rr

es
po

nd
to

th
e

to
ta

lr
un

tim
e

(i
n

se
co

nd
s)

ne
ed

ed
to

so
lv

e
th

e
in

st
an

ce
s.

B
ol

d
nu

m
be

rs
hi

gh
lig

ht
st

ra
te

gi
es

th
at

pe
rf

or
m

w
el

lo
n

a
gi

ve
n

fa
m

ily
co

m
pa

re
d

to
th

e
ot

he
rs

.

202



7.1. Adapting (E)VSIDS for Pseudo-Boolean Constraints

N
um

be
ro

fi
ns

ta
nc

es
N

um
be

ro
fs

ol
ve

d
Fa

m
ily

in
th

e
fa

m
ily

ea
sy

in
st

an
ce

s
bu

m
p-

as
si

gn
ed

bu
m

p-
co

ef
fic

ie
nt

bu
m

p-
ef

fe
ct

iv
e-

pr
op

ag
at

ed
bu

m
p-

ra
tio

-c
oe

ffi
ci

en
t-

de
gr

ee
bu

m
p-

fa
ls

ifi
ed

-p
ro

pa
ga

te
d

bu
m

p-
ef

fe
ct

iv
e

bu
m

p-
fa

ls
ifi

ed
bu

m
p-

de
fa

ul
t

bu
m

p-
de

gr
ee

bu
m

p-
ra

tio
-d

eg
re

e-
co

ef
fic

ie
nt

A
a
r
d
a
l
_
1

14
9

5
(5

.7
)

5
(4

.2
8)

5
(4

.6
9)

5
(4

.1
9)

5
(5

.1
1)

5
(6

.3
9)

5
(6

.6
7)

5
(3

.9
1)

5
(6

.4
2)

2
(4

13
.0

9)
a
r
m
i
e
s

12
2

5
(5

12
.1

3)
1

(5
99

.2
6)

3
(1

48
.3

5)
3

(1
19

7.
75

)
3

(1
86

.6
1)

2
(9

00
.6

5)
3

(2
33

.4
4)

4
(1

81
.7

5)
3

(7
53

.0
9)

4
(8

96
.0

1)
c
a
i
x
a

1
1

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

d
_
n
_
k

23
4

15
2

20
(6

77
3.

09
)

18
(4

60
1.

71
)

20
(5

65
6.

64
)

21
(6

69
0.

5)
19

(5
57

7.
56

)
20

(5
15

6.
68

)
21

(6
22

9.
61

)
20

(5
09

9.
91

)
20

(7
08

2.
36

)
12

(4
99

8.
27

)
d
-
e
q
u
a
l
s
-
n
_
k

70
23

18
(1

42
2.

62
)

18
(1

59
7.

12
)

17
(3

62
1.

62
)

19
(2

85
8.

79
)

14
(1

88
3.

65
)

14
(7

60
.9

7)
16

(2
09

6.
05

)
18

(1
33

7.
56

)
19

(2
11

2.
49

)
14

(2
58

3.
39

)
E
C
_
O
D
D
_
G
R
I
D
S

25
3

6
(2

05
8.

67
)

6
(8

44
.3

2)
5

(3
35

.2
2)

6
(1

70
4.

36
)

4
(5

3.
3)

6
(3

19
.8

4)
6

(6
39

.6
)

3
(1

08
.7

9)
2

(9
.5

)
1

(3
4.

55
)

E
C
_
R
A
N
D
O
M
_
G
R
A
P
H
S

22
4

6
(1

04
1.

86
)

14
(5

84
.3

4)
3

(4
2.

47
)

3
(1

8.
59

)
7

(1
32

2.
05

)
2

(9
1.

75
)

4
(5

64
.4

9)
4

(3
4.

34
)

14
(5

51
.3

5)
7

(1
27

1.
36

)
F
P
G
A
_
S
A
T
0
5

57
31

11
(1

87
9.

16
)

12
(1

85
6.

08
)

9
(1

82
2.

46
)

10
(4

37
.0

6)
7

(2
62

8.
76

)
5

(8
34

.5
5)

3
(2

5.
48

)
10

(6
18

.6
1)

15
(8

33
.9

2)
15

(1
77

9.
39

)
h
e
i
n
z

4
1

1
(8

0.
89

)
0

(0
)

1
(8

0.
61

)
1

(8
88

.3
3)

1
(1

69
.3

4)
1

(2
3.

9)
0

(0
)

0
(0

)
0

(0
)

1
(4

5.
22

)
I
n
s
t
a
n
c
e
s
3
c
o
l
_
O
P
B

26
7

1
(3

8.
71

)
1

(5
9.

68
)

1
(3

0.
59

)
1

(1
7.

32
)

1
(2

1.
69

)
1

(2
5.

37
)

1
(1

32
.9

1)
1

(3
1.

3)
1

(4
8.

28
)

1
(4

6.
18

)
l
i
u

20
16

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

l
o
p
e
s

19
3

0
3

(1
67

5.
75

)
2

(6
83

.0
2)

3
(1

59
9.

55
)

2
(9

51
.3

3)
3

(1
36

2.
88

)
3

(1
00

7.
61

)
3

(1
10

0.
08

)
2

(1
42

2.
57

)
1

(4
00

.6
8)

2
(1

57
2.

28
)

n
o
s
s
u
m

18
0

0
16

(6
66

1.
7)

4
(1

54
9.

83
)

13
(7

01
4.

46
)

10
(2

76
0.

78
)

13
(5

04
7.

33
)

13
(4

87
7.

84
)

8
(2

04
6.

31
)

6
(3

93
2.

72
)

2
(2

92
.6

1)
2

(6
37

.5
4)

o
l
i
v
e
r
a
s

40
80

29
29

24
5

(3
40

88
.4

5)
22

4
(3

00
36

.2
3)

24
8

(3
19

89
.8

4)
24

4
(3

38
70

.6
7)

24
0

(3
53

31
.5

3)
23

7
(3

40
03

.6
7)

23
3

(2
97

37
.9

)
23

3
(3

39
33

.1
)

17
2

(2
79

39
.8

1)
74

(2
31

66
.2

3)
p
p
p
-
p
r
o
b
l
e
m
s

6
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

r
a
n
d
6
r
e
g

33
9

4
(1

18
.8

9)
14

(6
24

.2
6)

0
(0

)
2

(5
38

.0
9)

3
(6

2.
45

)
1

(1
4.

16
)

1
(0

.4
6)

1
(0

.4
7)

8
(8

97
.5

5)
4

(2
83

.4
2)

r
o
b
i
n

6
2

1
(6

90
.5

6)
0

(0
)

1
(2

49
.4

6)
0

(0
)

0
(0

)
1

(1
19

.0
8)

0
(0

)
1

(1
19

0.
61

)
0

(0
)

0
(0

)
r
o
u
s
s
e
l

40
20

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

2
(4

05
.0

8)
0

(0
)

0
(0

)
0

(0
)

s
r
o
u
s
s
e
l

12
2

0
2

(8
63

.1
1)

1
(3

90
.2

5)
3

(1
67

7.
26

)
3

(7
73

.8
6)

2
(9

56
.6

)
4

(2
42

4.
16

)
1

(1
82

.4
4)

2
(6

28
.5

9)
1

(4
24

.5
8)

0
(0

)
s
u
b
s
e
t
c
a
r
d

56
56

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

S
U
M
I
N
E
Q

24
0

3
(1

70
.2

3)
11

(7
22

.6
6)

5
(1

25
2.

21
)

4
(1

19
9.

46
)

4
(1

16
5)

4
(5

4.
16

)
3

(1
41

4.
04

)
3

(1
00

3.
93

)
1

(1
79

.9
4)

0
(0

)
t
s
p

10
0

0
48

(4
61

2.
54

)
49

(2
37

3.
03

)
41

(5
41

4.
25

)
39

(2
85

1.
31

)
42

(3
42

6.
18

)
41

(3
52

1.
45

)
42

(3
33

1.
81

)
35

(2
71

7.
07

)
20

(6
88

2.
95

)
0

(0
)

u
c
l
i
d
_
p
b
_
b
e
n
c
h
m
a
r
k
s

50
26

12
(7

36
.1

2)
16

(1
65

3.
32

)
14

(1
73

6.
14

)
13

(3
41

.5
8)

12
(4

56
.3

8)
14

(8
80

.4
2)

14
(7

73
.5

7)
13

(2
27

0.
02

)
3

(1
17

.2
6)

5
(1

51
5.

7)
v
e
r
t
e
x
c
o
v
e
r
-
i
n
s
t
a
n
c
e
s

10
7

66
38

(4
63

6.
63

)
36

(1
38

4.
64

)
38

(2
28

0.
35

)
39

(3
70

7.
02

)
36

(1
91

4.
29

)
39

(3
75

8.
16

)
39

(1
24

7.
57

)
37

(2
72

0.
3)

29
(3

31
1.

48
)

2
(2

51
.2

8)
w
n
q
u
e
e
n

10
0

66
34

(3
61

.9
9)

34
(9

99
.0

2)
34

(3
12

.0
1)

34
(5

15
.6

5)
34

(2
61

.3
6)

34
(2

68
.4

8)
34

(2
78

.1
5)

34
(5

39
.7

6)
34

(4
83

0.
24

)
33

(6
46

1.
29

)

Ta
bl

e
7.

4:
Ta

bl
e

su
m

m
ar

iz
in

g,
fo

r
ea

ch
of

th
e

co
ns

id
er

ed
he

ur
is

tic
s,

th
e

nu
m

be
r

of
no

n-
ea

sy
in

st
an

ce
s

so
lv

ed
by

Sa
t4

j-
Pa

rt
ia

lR
ou

nd
in

gS
at

w
he

n
us

in
g

th
is

he
ur

is
tic

fo
re

ac
h

of
th

e
co

ns
id

er
ed

fa
m

ili
es

.T
he

nu
m

be
rs

in
pa

re
nt

he
se

s
co

rr
es

po
nd

to
th

e
to

ta
lr

un
tim

e
(i

n
se

co
nd

s)
ne

ed
ed

to
so

lv
e

th
e

in
st

an
ce

s.
B

ol
d

nu
m

be
rs

hi
gh

lig
ht

st
ra

te
gi

es
th

at
pe

rf
or

m
w

el
lo

n
a

gi
ve

n
fa

m
ily

co
m

pa
re

d
to

th
e

ot
he

rs
.

203



Chapter 7. Evaluating the Impact of CDCL Strategies in Pseudo-Boolean Solvers

The bumping strategies studied in this section showed that carefully taking into account the partic-
ular form of pseudo-Boolean constraints (either through their coefficients and degrees or through their
properties under the current partial assignment) in the branching heuristic of the solver may drastically
improve its performance. Let us now study how similar improvements may be brought by considering
these criteria when measuring the quality of learned constraints.

7.2 Measuring the Quality of Learned Pseudo-Boolean Constraints

In order to evaluate the quality of the reasoning of the solver during its execution, a common approach
is evaluating the quality of the constraints that are learned during conflict analysis. To do so, current
pseudo-Boolean solvers rely on measures used in classical SAT solvers, and thus on measures designed
to evaluate the quality of learned clauses (see Subsection 4.1.3). As pseudo-Boolean solvers may infer
general pseudo-Boolean constraints, we study new quality measures for assessing the quality of these
constraints, and show how they can be used to improve the performance of the solver.

7.2.1 Introducing New Quality Measures

Many quality measures have been designed to evaluate the quality of learned clauses in SAT solvers.
Some of them can be reused as they are, as they do not take into account the representation nor the
semantics of the constraints they evaluate. This is the case of the age-based and activity-based measures
(see Subsection 4.1.3). However, for other evaluation schemes, paying attention to the particular form of
pseudo-Boolean constraints may be more relevant to properly evaluate the quality of the constraints.

This is the case, for example, of the size-based measure, which deletes large clauses, containing
many literals. The intuition behind this evaluation scheme is that large clauses are weak, especially
from a propagation viewpoint: a propagation can only be triggered after many literals have become
falsified. When considering pseudo-Boolean constraints, this is not the case anymore. Indeed, recall
that pseudo-Boolean constraints may propagate literals while some other literals remain unassigned,
and that the number of literals in a pseudo-Boolean constraint does not necessarily reflect its strength.
Yet, evaluating precisely the strength of a pseudo-Boolean constraint is hard in practice: for instance,
counting the number of models of such a constraint is already NP-hard (see Proposition 13). Instead, we
can use the (absolute) slack of the pseudo-Boolean constraint as a heuristic to estimate the strength of
the constraint. Intuitively, strong constraints have a slack that is close to 0: recall that, in particular, if a
constraint has a slack equal to 0, then it propagates all its literals.

Another reason that motivated the use of size-based measures in SAT solving is that large clauses are
expensive to handle, which is also true for pseudo-Boolean constraints. In particular, in such constraints,
the size also takes into account the size of the coefficients, which is not negligible: as coefficients may
become very large during conflict analysis, arbitrary precision encoding is required to represent these
coefficients. As we already discussed, this representation slows down arithmetic operations, and thus the
conflict analysis performed by the solver. Different approaches have been studied to limit the growth of
the coefficient, such as those based on the division [EN18] or the weakening [LMW20] rules. However,
these approaches lead to the inference of weaker constraints. By using a quality measure that takes into
account the size of the coefficients, we can favor the learning of constraints with “small” coefficients.
Towards this direction, we introduce quality measures based on the degree of the learned constraints, as
described below:

• The degree quality measure evaluates the quality of a learned constraint by the value of its degree.

• The degree-size quality measure evaluates the quality of a learned constraint by the size of its
degree, measured in the minimum number of bits required to represent it.
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7.2. Measuring the Quality of Learned Pseudo-Boolean Constraints

In both cases, the smaller the degree, the better the constraint. Indeed, thanks to the saturation rule,
all coefficients are guaranteed to be upper bounded by the degree of the constraint, so that considering
only the degree is enough for the purpose of this measure.

The coefficient and degree-based quality measures for the constraint 5a+5b+c+d+e+f ≥ 6
are:

• 8 in the case of slack,
• 6 in the case of degree,
• 3 in the case of degree-size (as the binary representation of 6, i.e., 110, needs 3 bits).

Example 89

More recently, the LBD measure [AS09] has been introduced to evaluate the quality of learned
clauses in SAT solvers. Recall that the LBD of a clause is first computed when this clause is learned,
and is then updated each time the clause is used as a reason (see Subsection 4.1.3 for more details). In
this context, the notion of LBD relies on the fact that all literals in a conflicting clause are falsified,
and when the clause is used as a reason, only one literal is not falsified (the propagated literal), but its
decision level is also that of another (falsified) literal, which has triggered the propagation. When pseudo-
Boolean constraints are considered, this is not the case anymore. As such, LBD is not well-defined for
such constraints. To consider it as a quality measure for learned pseudo-Boolean constraints, we thus
need to take into account the literals that are unassigned in these constraints. To do so, we introduce five
different definitions of this measure. First, we consider a sort of default definition of LBD for pseudo-
Boolean constraints, which only takes into account assigned literals. This definition of LBD was used
for instance in the first version RoundingSat [EN18].

Consider a pseudo-Boolean constraint χ and the current assignment of its assigned literals.
Let π be a partition of these literals, such that literals are partitioned w.r.t. their decision
levels. The LBDa of χ is the number of elements in π (“a” stands for “assigned”).

Definition 108 (LBDa)

Second, unassigned literals may be considered as if they were assigned to a “dummy” decision level.
This decision level may be the same for all literals, or not.

Consider a pseudo-Boolean constraint χ and the current assignment of its assigned literals.
Let π be a partition of these literals, such that literals are partitioned w.r.t. their decision
levels. Let n be the number of elements in π. The LBDs of χ is n if all literals in χ are
assigned, and n+ 1 otherwise (“s” stands for “same”).

Definition 109 (LBDs)
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Chapter 7. Evaluating the Impact of CDCL Strategies in Pseudo-Boolean Solvers

Consider a pseudo-Boolean constraint χ and the current assignment of its assigned literals.
Let π be a partition of these literals, such that literals are partitioned w.r.t. their decision
levels. Let n be the number of elements in π. The LBDd of χ is n+u, where u is the number
of unassigned literals in χ (“d” stands for “different”).

Definition 110 (LBDd)

Another possible extension of standard LBD is to only consider falsified literals, as in the latest
version of RoundingSat:

Consider a pseudo-Boolean constraint χ and the current assignment of its falsified literals.
Let π be a partition of these literals, such that literals are partitioned w.r.t. their decision
levels. The LBDf of χ is the number of elements in π (“f” stands for “falsified”).

Definition 111 (LBDf )

The definition above is based on the observation that, when a clause is learned, all literals in this
clause are falsified. Recall that they are also effective (see Definition 107), so that we can also restrict the
computation of the LBD on such literals:

Consider a pseudo-Boolean constraint χ and the current assignment of its effective literals.
Let π be a partition of these literals, such that literals are partitioned w.r.t. their decision
levels. The LBDe of χ is the number of elements in π (“e” stands for “effective”).

Definition 112 (LBDe)

TheLBD-based quality measures for the constraint χ given by 5a(0@3)+5b(1@3)+c(?@?)+
d(?@?) + e(0@1) + f(1@2) ≥ 6 are:

• LBDa(χ) = |{{a, b}, {e}, {f}}| = 3
• LBDs(χ) = |{{a, b}, {c, d}, {e}, {f}}| = 4
• LBDd(χ) = |{{a, b}, {c}, {d}, {e}, {f}}| = 5
• LBDf (χ) = |{{a}, {e}}| = 2
• LBDe(χ) = |{{a}}| = 1

Example 90

All the definitions of LBD introduced in this section are extensions of the original definition
of LBD (as given by Definition 102), in the sense that they all coincide when learning clauses.

Remark 44
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7.2. Measuring the Quality of Learned Pseudo-Boolean Constraints

Thanks to the different quality measures we have introduced in this section, we can refine the learned
constraint deletion and restart schemes implemented in pseudo-Boolean solvers, so as to take into account
the particular form of the constraints they deal with.

7.2.2 Application to Learned Constraint Deletion

The main purpose of the quality measures is to choose, when constraint deletion is performed (see Sub-
section 4.1.3), which constraints to delete and which ones to keep. Taking advantage of the measures
described above, we define the following deletion strategies, which are considered each time the learned
clause database is reduced:

• delete-slack, which deletes the constraints with the highest slack,
• delete-degree, which deletes the constraints with the highest degree,
• delete-degree-size, which deletes the constraints with the highest degree-size,
• delete-lbd-a, which deletes the constraints with the highest LBDa,
• delete-lbd-s, which deletes the constraints with the highest LBDs,
• delete-lbd-d, which deletes the constraints with the highest LBDd,
• delete-lbd-f, which deletes the constraints with the highest LBDf , and
• delete-lbd-e, which deletes the constraints with the highest LBDe.

Let us study the practical impact of these strategies for different configurations of the pseudo-Boolean
solver Sat4j, with the same experimental setting as above. The results of these experiments are given in
Figures 7.8, 7.9 and 7.10.
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Figure 7.8: Cactus plot of the various learned constraint deletion strategies implemented in Sat4j-
GeneralizedResolution.

207



Chapter 7. Evaluating the Impact of CDCL Strategies in Pseudo-Boolean Solvers

0

250

500

750

1000

1250

0 200 400 600

Number of non−easy instances

T
im

e
 (

s
)

VBS

delete−slack

delete−degree−size

delete−degree

delete−lbd−d

delete−lbd−s

delete−lbd−e

delete−lbd−f

delete−lbd−a

no−deletion

delete−activity (default)

Figure 7.9: Cactus plot of the various learned constraint deletion strategies implemented in Sat4j-
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Figure 7.11: Cactus plot of the best learned constraint deletion strategies implemented for several con-
figurations of Sat4j.

For the three configurations studied here, the performance shift between the strategies presented
in this section is not really significant. However, a quite clear observation is that all of them perform
better than the default delete-activity strategy. In particular, even the no-deletion strategy, which does
not delete any constraint, performs better than this strategy, suggesting that the activity-based quality
measure does not work well on the considered problems. Quite interestingly, for RoundingSat-based
solvers, the size-based measures have better performance than the LBD-based measures, as also shown
in Table 7.5. In practice, these quality measures do not actually bring any significant improvement in
the speed of arithmetic operations, suggesting that this measure is good at evaluating the quality of the
learned constraints.

To summarize the experiments of this section, Figure 7.11 shows, for each of the three considered
configurations of Sat4j, the performance of the best learned constraint deletion (LCD) strategies that we
identified in the previous experiments.

The cactus plot shows that each configuration can be improved using one of the new quality measures
when performing constraint deletion, which is also confirmed by the results given in Table 7.5. However,
the improvement brought by these strategies has less impact on the performance of the solver than that
of the bumping strategies as studied before.

As observed in the cactus plots above, the number of instances solved with the learned constraint
deletion strategies is quite similar for all solvers. This is true for almost all families, as shown in Ta-
bles 7.6, 7.7 and 7.8. In the case of Sat4j-RoundingSat and Sat4j-PartialRoundingSat, we can see that the
delete-slack strategy particularly improves the performance of the solvers on the nossum and SUMINEQ
families, while the delete-degree and delete-degree-size allow such an improvement for the tsp family.
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LCD Solved SOTA 1-second 10-second
Strategy Instances Contribution Contribution Contribution

delete-degree-size 3935 26 124 98
(Sat4j-PartialRoundingSat)

delete-slack 3918 25 104 73
(Sat4j-RoundingSat)

delete-activity (default) 3855 8 49 23
(Sat4j-PartialRoundingSat)

delete-activity (default) 3843 4 37 16
(Sat4j-RoundingSat)

delete-lbd-s 3779 8 27 20
(Sat4j-GeneralizedResolution)

delete-activity (default) 3711 3 17 7
(Sat4j-GeneralizedResolution)

Table 7.5: Table summarizing the results of the best quality measures used during learned constraint
deletion in several configurations of Sat4j. Columns display, from left to right, the quality measure, the
number of instances solved by the corresponding strategy, its state-of-the-art contribution, the number of
instances for which the configuration was at least 1 second faster than all the others and the number of
instances for which the configuration was at least 10 seconds faster than all the others
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7.2. Measuring the Quality of Learned Pseudo-Boolean Constraints
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7.2.3 Application to Restarts

Another possible use of the quality measures described above is to design a restart policy similar to that
of Glucose [AS18]: when the quality of the most recently learned pseudo-Boolean constraints decreases,
a restart should be performed (see Subsection 4.1.3). We thus define the following strategies:

• restart-slack, based on the slack measure,
• restart-degree, based on the degree measure,
• restart-degree-size, based on the degree-size measure,
• restart-lbd-a, based on the LBDa measure,
• restart-lbd-s, based on the LBDs measure,
• restart-lbd-d, based on the LBDd measure,
• restart-lbd-f, based on the LBDf measure, and
• restart-lbd-e, based on the LBDe measure.

Let us study the practical impact of these strategies in different configurations of the pseudo-Boolean
solver Sat4j, with the same experimental setting as before. In Sat4j, using restart strategies based on the
quality of learned constraints is tightly linked to the learned constraint deletion strategy, especially when
considering LBD-based restarts. As such, to evaluate the impact of the restarts strategies, we had to
deactivate learned constraint deletion in the experiments. The results of these experiments are given in
Figures 7.12, 7.13 and 7.14.

From these results, we can see that the adaptive restarts based on the new quality measure do not
perform well compared to restart schemes implemented in SAT solvers. This is particularly true for
RoundingSat-based solvers, in which Picosat’s restart policy [Bie08b] has the best performance. This
suggests that the quality measures defined above are not suitable for adaptive restarts, even though the
degree-based measure has quite good performance in Sat4j-GeneralizedResolution. In practice, it is
worth noting that the degree of the constraints learned by this configuration may become very large,
while that of the constraints derived in RoundingSat based solvers remains relatively small because of
the application of the division rule, which may explain why degree-based strategies do not perform well
in these solvers.
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Figure 7.12: Cactus plot of the various restart strategies implemented in Sat4j-GeneralizedResolution
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Figure 7.15: Cactus plot of the best restart strategies implemented in several configurations of Sat4j.

The cactus plot given by Figure 7.15 shows that the improvements brought to the strategies do not
have a big impact in the configurations of Sat4j (especially compared to the improvements we observed
in previous experiments). This is also confirmed by the results of Table 7.9. Note that, in both the cactus
plot and in the table, the strategies are compared with the default configuration of Sat4j, which uses the
activity-based deletion strategy. As such, the small improvement we observe may also be due to the bad
results of this strategy.

As for learned constraint deletion strategies, and as suggested by the cactus plots, the number of in-
stances solved with the learned constraint deletion strategies is quite similar for all solvers. This is true for
almost all families, as shown in Tables 7.10, 7.11 and 7.12. In the case of Sat4j-RoundingSat and Sat4j-
PartialRoundingSat, we can see that the delete-slack strategy particularly improves the performance of
the solvers on the nossum and SUMINEQ families, while the delete-degree and delete-degree-size allow
such an improvement for the tsp family.
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Restart Solved SOTA 1-second 10-second
Strategy Instances Contribution Contribution Contribution

restart-picosat (no deletion) 3895 15 92 61
(Sat4j-PartialRoundingSat)

restart-picosat (no deletion) 3884 23 106 75
(Sat4j-RoundingSat)

restart-picosat (default) 3855 13 43 24
(Sat4j-PartialRoundingSat)

restart-picosat (default) 3843 7 30 17
(Sat4j-RoundingSat)

restart-degree 3751 7 45 20
(Sat4j-GeneralizedResolution)

restart-picosat (default) 3711 4 33 16
(Sat4j-GeneralizedResolution)

Table 7.9: Table summarizing the results of the best quality measures used by a Glucose-like restart
policy in different configurations of Sat4j. Columns display, from left to right, the quality measure, the
number of instances solved by the corresponding strategy, its state-of-the-art contribution, the number of
instances for which the configuration was at least 1 second faster than all the others and the number of
instances for which the configuration was at least 10 seconds faster than all the others
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7.3. Putting Things Together

7.3 Putting Things Together

The previous sections showed that considering the specificities of pseudo-Boolean constraints in the
branching heuristic and when evaluating the quality of learned constraints may improve the performance
of the solver. Let us now consider combinations of these strategies.

7.3.1 Combining Learned Constraint Deletion and Restarts

As we mentioned above, in Sat4j, there is a tight link between the learned constraint deletion strategy
and the restart policy, since they both use the same quality measures for learned constraints. Let us thus
consider their combined use in this solver. For the strategies introduced in this section, both the restart
and the learned constraint deletion strategies use the same measure. The results of these experiments are
given in Figures 7.16, 7.17 and 7.18.

In these cactus plots, we observe that the different quality measures, despite improving the default
configuration, do not have a strong impact on the solver (especially compared to that of the learned
constraint deletion), as also illustrated in Figure 7.19.

The cactus plot and the results in Table 7.13 tend to confirm the observation made in the previous
section regarding the impact of the quality measures in the restart policy: they do not work well for
detecting when to trigger restarts. Indeed, even though all strategies improve the performance of the
different solvers, the improvement does not reach the one achieved by the learned constraint deletion.
This suggests that the improvement is mainly due to this strategy rather than the restart policy.
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Figure 7.16: Cactus plot of the various quality measures used for learned constraint deletion and dynamic
restarts in Sat4j-GeneralizedResolution.
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Figure 7.17: Cactus plot of the various quality measures used for learned constraint deletion and dynamic
restarts in Sat4j-RoundingSat.
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Figure 7.18: Cactus plot of the various quality measures used for learned constraint deletion and dynamic
restarts in Sat4j-PartialRoundingSat.
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Figure 7.19: Cactus plot of the best learned constraint deletion strategies implemented in different Sat4j
solvers.

LCD and Restart Solved SOTA 1-second 10-second
Strategy Instances Contribution Contribution Contribution

degree 3920 36 143 90
(Sat4j-PartialRoundingSat)

lbd-d 3902 40 153 118
(Sat4j-RoundingSat)

picosat-activity (default) 3855 9 106 32
(Sat4j-PartialRoundingSat)

picosat-activity (default) 3843 8 79 28
(Sat4j-RoundingSat)

degree-size 3769 7 34 24
(Sat4j-GeneralizedResolution)

picosat-activity (default) 3711 3 29 15
(Sat4j-GeneralizedResolution)

Table 7.13: Table summarizing the results of the best quality measures used during learned constraint
deletion and restarts for several configurations of Sat4j. Columns display, from left to right, the quality
measure, the number of instances solved by the corresponding configuration, its state-of-the-art contri-
bution, the number of instances for which the configuration was at least 1 second faster than all the others
and the number of instances for which the configuration was at least 10 seconds faster than all the others
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7.3.2 Combining All “Best” Strategies

In order to take advantage of the best strategies we identified empirically, we now evaluate the perfor-
mance of Sat4j with their combination.

In the case of Sat4j-GeneralizedResolution, the best strategies are bump-effective, delete-lbd-s and
restart-degree. We thus ran the solver using this configuration in the same experimental setting as before,
and got the results given in Figures 7.20 and 7.21.
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Figure 7.20: Cactus plot of the best strategies enabled in Sat4j-GeneralizedResolution.

Clearly, the combination of the best strategies allows to improve the overall performance of the
solver, as also confirmed by the results given in Table 7.14. This suggests that combining the different
strategies allows to get improvements from all of them. However, there is still room for additional
benefits, as all configurations contribute to the VBS. Moreover, as shown in the scatter plot (Figure 7.21),
the combination of all best strategies does not improve the solver on all benchmarks, and in particular
not those of the FPGA_SAT05 family.

Enabled Solved SOTA 1-second 10-second
Strategy Instances Contribution Contribution Contribution

best-combination 3884 31 213 127
bump-effective 3826 5 130 53

delete-lbd-s 3779 8 42 28
restart-delete-degree-size 3769 11 68 42

restart-degree 3751 9 57 25
default 3711 3 14 5

Table 7.14: Table summarizing the results of the best strategies enabled in Sat4j-GeneralizedResolution.
Columns display, from left to right, the configuration of the solver, the number of instances solved by
this configuration, its state-of-the-art contribution, the number of instances for which the configuration
was at least 1 second faster than all the others and the number of instances for which the configuration
was at least 10 seconds faster than all the others.

224



7.3. Putting Things Together

1

10

100

1000

1 10 100 1000

default
(Sat4j−GeneralizedResolution)

b
e
s
t−

c
o
m

b
in

a
ti
o
n

(S
a
t4

j−
G

e
n
e
ra

liz
e
d
R

e
s
o
lu

ti
o
n
)

Family

Aardal_1

armies

caixa

d_n_k

d−equals−n_k

EC_ODD_GRIDS

EC_RANDOM_GRAPHS

FPGA_SAT05

heinz

Instances3col_OPB

liu

lopes

nossum

oliveras

ppp−problems

rand6reg

robin

roussel

sroussel

subsetcard

SUMINEQ

tsp

uclid_pb_benchmarks

vertexcover−instances

wnqueen
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In the case of Sat4j-RoundingSat, the best strategies are bump-assigned, delete-slack and restart-
picosat. We thus ran the solver using this configuration in the same experimental setting as before, and
got the results given in Figures 7.22 and 7.23.
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Figure 7.22: Cactus plot of the best strategies enabled in Sat4j-RoundingSat.

Once again, the combination of the best strategies allows to improve the overall performances of the
solver, even though the improvement is not as large as that observed with Sat4j-GeneralizedResolution.
This may be explained by the fact that the proof system used in Sat4j-RoundingSat already allows to
focus on literals that are important with respect to the conflict being analyzed, which is one of the
purposes of the strategies designed in this chapter. Yet, as may be observed in the scatter plot and in the
results given by Table 7.15, the combination of the best strategies allows to more efficiently solve a large
number of the considered instances.

Enabled Solved SOTA 1-second 10-second
Strategy Instances Contribution Contribution Contribution

best-combination 3962 30 111 76
delete-slack 3918 12 51 41

restart-delete-lbd-d 3902 17 128 94
bump-assigned 3890 6 45 22

restart-picosat (no-deletion) 3884 6 33 23
default 3843 9 20 15

Table 7.15: Table summarizing the results of the best strategies enabled in Sat4j-RoundingSat. Columns
display, from left to right, the configuration of the solver, the number of instances solved by this config-
uration, its state-of-the-art contribution, the number of instances for which the configuration was at least
1 second faster than all the others and the number of instances for which the configuration was at least
10 seconds faster than all the others.
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Figure 7.23: Scatter plot comparing the runtime (in seconds) of the default configuration of Sat4j-
RoundingSat and the combination of the best strategies of this solver (logarithmic scale).
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In the case of Sat4j-PartialRoundingSat, the best strategies are bump-assigned, delete-degree-size
and restart-picosat. We thus ran the solver using this configuration in the same experimental setting as
before, and got the results given in Figures 7.24 and 7.25.
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Figure 7.24: Cactus plot of the best strategies enabled in Sat4j-PartialRoundingSat.

From these figures and the results given in Table 7.16, we can make similar observations as the ones
made with Sat4j-RoundingSat. In particular, the combination of the different strategies allows to improve
the performance of the solver. However, as for Sat4j-GeneralizedResolution, the family FPGA_SAT05
is solved faster with the default configuration of Sat4j-PartialRoundingSat.

Enabled Solved SOTA 1-second 10-second
Strategy Instances Contribution Contribution Contribution

best-combination 3969 20 112 81
delete-degree-size 3935 8 52 44

restart-delete-degree 3920 19 125 69
bump-assigned 3899 11 48 25

restart-picosat (no-deletion) 3895 9 38 24
default 3855 7 22 13

Table 7.16: Table summarizing the results of the best strategies enabled in Sat4j-PartialRoundingSat.
Columns display, from left to right, the configuration of the solver, the number of instances solved by
this configuration, its state-of-the-art contribution, the number of instances for which the configuration
was at least 1 second faster than all the others and the number of instances for which the configuration
was at least 10 seconds faster than all the others.
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Figure 7.25: Scatter plot comparing the runtime (in seconds) of the default configuration of Sat4j-
PartialRoundingSat and the combination of the best strategies of this solver (logarithmic scale).
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Figure 7.26: Cactus plot of the combinations of the best strategies in different configurations of Sat4j.

Let us now compare all the best configurations of Sat4j studied in this section together with the
default configurations, considering the cactus plot in Figure 7.26. The cactus plot shows that all best
configurations allow a significant improvement of the solver, which is also confirmed by the results
given in Table 7.17. This is particularly true for Sat4j-GeneralizedResolution: by combining the best
strategies, the solver solves now more instances than the default configuration of Sat4j-RoundingSat and
Sat4j-PartialRoundingSat. This also illustrates the importance of the CDCL strategies implemented in
pseudo-Boolean solvers, and their complementarity with the proof system used by the solver.

Even if the different strategies introduced in this chapter allow a significant improvement of Sat4j
pseudo-Boolean solvers, these strategies are not enough to allow beating the original implementation of
RoundingSat, as illustrated in Figure 7.27.

However, if instead of the slack-based approach, the conservative variant of the watched literal-based
approach for detecting propagations is exploited, the performance improves significantly, as shown in
Figure 7.28.

We also implemented new variants of Sat4j-Both taking advantage of the strategies described in this
chapter. Recall that Sat4j-Both runs in parallel both Sat4j-GeneralizedResolution and Sat4j-Resolution.
The new variants we consider replace the use of Sat4j-GeneralizedResolution in this solver by one of the
best-combinations presented above. Figure 7.29 shows the results of these new variants. In this case, the
difference between the solvers is not as clear as in the previous experiments, as Sat4j-Resolution is most
of the time the fastest of the two solvers run in parallel by the different Sat4j-Both variants.

As shown in the cactus plot, Sat4j-Resolution, Sat4j-Both and even more significantly the original
implementation of RoundingSat remain more efficient in practice than the different configurations of
Sat4j studied in this chapter. However, if the improvements we observe in this solver could be brought
to RoundingSat, for instance, they would allow to significantly improve the state-of-the-art of pseudo-
Boolean solving.
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Solver Solved SOTA 1-second 10-second
Configuration Instances Contribution Contribution Contribution

best-combination 3969 26 168 110
(Sat4j-PartialRoundingSat)

best-combination 3962 25 132 81
(Sat4j-RoundingSat)

best-combination 3884 10 95 56
(Sat4j-GeneralizedResolution)

default 3855 5 66 16
(Sat4j-PartialRoundingSat)

default 3843 5 51 19
(Sat4j-RoundingSat)

default 3711 2 28 10
(Sat4j-GeneralizedResolution)

Table 7.17: Table summarizing the results of the combinations of the best strategies for several config-
urations of Sat4j. Columns display, from left to right, the configuration of the solver, the number of
instances solved by this configuration, its state-of-the-art contribution, the number of instances for which
the configuration was at least 1 second faster than all the others and the number of instances for which
the configuration was at least 10 seconds faster than all the others.
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Figure 7.27: Cactus plot comparing several configurations of Sat4j with different versions of Round-
ingSat.
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Figure 7.28: Cactus plot comparing several configurations of Sat4j with different versions of Round-
ingSat (using watched literals).
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Figure 7.29: Cactus plot comparing several configurations of Sat4j with different versions of Round-
ingSat (many core solvers).
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Conclusion

We have presented and evaluated a number of approaches aiming to improve the performance of pseudo-
Boolean solvers based on the cutting planes proof system. In particular, we have shown that such solvers
may inherently produce irrelevant literals during their conflict analysis, which in turns may lead to the
inference of weaker constraints, and thus on longer unsatisfiability proofs. We have empirically observed
this behavior on the pseudo-Boolean solver Sat4j, and shown that RoundingSat-based solvers also pro-
duce such literals. This work has been published in [LMMW20]. This result is important because it
means that none of the existing proof systems implemented in pseudo-Boolean solvers prevents from
producing irrelevant literals. An obvious perspective is thus to design a strategy for applying cutting
planes rules that prevents the creation of irrelevant literals. We have not been able to devise such a strat-
egy in the time spent for the preparation of this thesis. We provided however a way to detect irrelevant
literals when they are produced. While our approach is incomplete and slow in practice (detecting irrele-
vant literals is NP-hard), we empirically identified families of instances in which irrelevant literals make
the solver produce exponentially larger unsatisfiability proofs.

We have also designed weakening strategies that are used by the solver to guarantee the derivation
of a conflicting constraint during conflict analysis. While none of the strategies we presented is better
than all the others on all benchmarks, we empirically showed that applying partial weakening, which
produces stronger constraints, allows to improve the performance of the solver. In relation with the
previous result, we showed that one can weaken so-called ineffective literals to also remove irrelevant
literals, while doing so forces to derive clauses only, and thus weak constraints. Quite interestingly, while
the weakening rule has mostly been applied on the reason side during conflict analysis, our experiments
also suggest that applying it on the conflict side may actually be preferable. Such a result opens new
perspectives to improve the weakening process, by considering the conflicting constraint as amenable to
weakening as the reason constraint. This work has been published in [LMW20].

Finally, we designed and implemented different strategies inspired by those used in modern SAT
solvers that take into account the properties of pseudo-Boolean constraints to improve the performance
of the solver. In particular, we have shown that considering the current assignment as well as the co-
efficients appearing in the pseudo-Boolean constraints encountered by the solver allows to significantly
improve its runtime. The results of such a study allowed us to build new solvers in Sat4j with the best
available strategies for each available proof system. We believe that the data gathered during this ex-
tensive experimental evaluation can bring additional hints about the pros and cons of each strategy by
looking at the benchmark level (instead of the family level as in this document). Preliminary results
concerning this work have been presented in [Wal20].
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In this thesis, we have studied different aspects of pseudo-Boolean reasoning, both from theoretical and
practical perspectives.

First, we considered properties of pseudo-Boolean constraints as a propositional language
[LMMW18]. We have in particular shown that this language is not suitable for knowledge compilation
(checking the consistency of a pseudo-Boolean formula is not tractable). More precisely, considering the
criteria of the knowledge compilation map [DM02], pseudo-Boolean languages do not offer additional
queries compared to CNF, while some transformations offered by this language are no longer tractable
when considering pseudo-Boolean constraints instead of clauses (for instance, singleton forgetting
or closure under bounded disjunction). The main advantage of pseudo-Boolean constraints, from a
knowledge representation perspective, is thus their succinctness: a single pseudo-Boolean constraint
may represent exponentially many clauses.

As the succinctness criterion considers only equivalent formulae, it does not take into account en-
codings that allow the introduction of auxiliary variables. It is well-known that allowing the use of such
variables may drastically reduce the size of a formula. However, we have shown that, if we bound the
width of such encodings, their expressiveness may be drastically limited, restricting the formulae to those
of low communication complexity [MW19, MW20].

From a practical viewpoint, we have investigated different approaches for improving the performance
of pseudo-Boolean solvers. In particular, we have shown that irrelevant literals may be introduced by
the application of cutting planes rules, and lead to the inference of weaker constraints [LMMW20]. We
empirically showed that the unsatisfiability proof produced by the solver may be exponentially larger in
the presence of irrelevant literals, but dealing with irrelevant literals is hard in practice: detecting them
is NP-hard.

A possible counter-measure for removing efficiently irrelevant literals is to take advantage of the
weakening rule to weaken away so-called ineffective literals (even though these literals may also be
relevant). We studied different weakening strategies and showed that, despite none of the existing and
new strategies is better than the others on all considered benchmarks, the way this rule is applied may
have a significant impact on the performance of the solver [LMW20]. An interesting observation we
made is that, while most implementations apply the weakening rule on the reason side of the cancellation
rule (RoundingSat [EN18] is the first solver that applies it on both sides), it may actually be preferable
to apply it on the conflict side to get better performance.

Finally, we presented different approaches for adapting CDCL strategies to pseudo-Boolean solving.
Indeed, it is well-known that many features implemented in resolution-based SAT solvers are required
to get the best from these solvers. This is particularly true for branching heuristics, learned constraint
deletion strategies and restart policies. We presented a wide variety of adaptions to take into account
the specific form of pseudo-Boolean constraints in the counterpart of these strategies implemented in
pseudo-Boolean solvers. In particular, we showed that taking into account the current assignment and
the coefficients appearing in the constraints may allow to drastically improve the performance of the
solvers. All these strategies have been implemented in the pseudo-Boolean solver Sat4j [LP10] and are
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publicly available in its repository6.

While studying the subjects above, some questions have been raised, that will need to be investigated
further in order to improve the performance of pseudo-Boolean solvers. In particular, our approach for
detecting irrelevant literals highlighted that one can exponentially reduce the size of the unsatisfiability
proofs produced by the solver by removing irrelevant literals before they lead to the inference of weaker
constraints. However, this approach is not efficient enough to be considered as a counter-measure to the
production of irrelevant literals. Instead, the ideal solution would be to identify a strategy for applying
cutting planes rules that guarantees to derive constraints that only contain relevant literals when the input
only contains such literals.

Another avenue to explore is to consider different combinations of the strategies presented in this
thesis, regarding the application of the weakening rule, branching heuristics, learned constraint deletion
strategies and restart policies. In particular, all these strategies are often tightly linked in the solver, and
understanding and identifying their interaction is hard in practice, as they may have side effects on each
other. Moreover, the solver does not explore the same search space from one strategy to another, and it
may thus learn different constraints, making harder the comparison of the behavior of the solver in its
different configurations.

During the three years of the preparation of this thesis, we also observed some “strange” behaviors of
pseudo-Boolean solvers that we did not investigate, and can definitely lead to improvements in pseudo-
Boolean solving if they are further studied. For instance, it appears that the 1-UIP scheme inherited from
SAT solving is not always optimal when considering pseudo-Boolean constraints. More precisely, even
if an assertive constraint has already been derived, continuing conflict analysis may allow to identify a
higher backtrack level, as in the following example.

Suppose that, during the execution of the solver, a conflict is encountered with the constraint
4a(0@10) + 4b(1@30) + 3c(0@20) + 3d(0@30) + 2e(1@30) + f(0@40) + g(0@40) +
z(0@40) ≥ 8, and that the reason for f and g is 3i(0@20) + 3j(0@40) + 2f̄(1@40) +
2ḡ(1@40) + h(1@40) ≥ 5. A cancellation is applied between these two constraints to get
8a(0@10) + 8b(1@30) + 6c(0@20) + 6d(0@30) + 4e(1@30) + 2z(0@40) + 3i(0@20) +
3j(0@40) + h(1@40) ≥ 17. Observe that this constraint is assertive, and propagates b at
decision level 20. This constraint is thus learned, and the conflict analysis stops.

However, suppose now that the reason for j is 6c̄(1@20)+6d̄(1@30)+3j̄(1@40)+3k(0@40)+
3l(0@30) ≥ 15. If we apply the cancellation rule between this constraint and the constraint
that we learned, we obtain the constraint 8a(0@10) + 8b(1@30) + 4e(1@30) + 2z(0@40) +
3i(0@20)+3k(0@40)+3l(0@30)+h(1@40) ≥ 17, which is also assertive and propagates b
at decision level 10. Stopping the analysis at the first decision level was here suboptimal.

Note that continuing the analysis does not always allow to improve the backjump, as if we in-
stead resolve the learned constraint with the reason for z given by 10w(1@25)+10x(0@25)+
y(0@40) + z̄(1@40) ≥ 11, the constraint we get is 20w(1@25) + 20x(0@25) + 8a(0@10) +
8b(1@30) + 6c(0@20) + 6d(0@30) + 4e(1@30) + 3i(0@20) + 3j(0@40) + 2y(0@40) +
h(1@40) ≥ 37, which is still assertive, but now propagates b at decision level 25.

Example 91

6https://gitlab.ow2.org/sat4j/sat4j
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From this observation, several questions arise. First, what would be a criterion determining when
to stop conflict analysis in the case of pseudo-Boolean solving, so as to identify the highest possible
backtrack level? Second, is it worth computing it? Indeed, if this computation is too costly in practice,
it may be preferable to settle for the current approach, even though the backjump level is not optimal.
Also, the problem of the optimal backjump seems to be tightly linked to the order in which cancellations
are applied (see the impact of resolving with the reason of j or that of z in the example). Currently,
cancellation are applied in the reverse order of the propagations. Could we instead use a heuristic, to
identify the best order to use?

Another perspective is to find a better algorithm for detecting propagations and conflicts. Indeed,
during our experiments, we made a quite surprising observation: as pseudo-Boolean constraints can be-
come conflictual after having propagated some literals, it may happen that a reason encountered during
conflict analysis is actually conflicting. This behavior can be explained by the fact that multiple con-
straints may be conflictual at the same time, and the solver has thus to select one of them to perform
conflict analysis, and one of them may be a reason for the propagation of some literals. As such, during
conflict analysis, it may happen that the conflict is actually resolved against a conflicting reason, as in
the following example.

Example 92

Consider the following pseudo-Boolean constraints:

• χ1 ≡ a+ b̄+ c̄ ≥ 2
• χ2 ≡ 3b+ 3d+ e+ f ≥ 4
• χ3 ≡ 2c+ ē+ f̄ ≥ 2
• χ4 ≡ b+ d̄+ e+ f ≥ 1

Now, suppose that the solver decides to assign a to 0. Then, unit propagations are triggered.
In particular, χ1 propagates both b̄ and c̄, and χ2 propagates then d. Propagations continue,
and we finally get:

• χ1 ≡ a(0@1) + b̄(1@1) + c̄(1@1) ≥ 2
• χ2 ≡ 3b(0@1) + 3d(1@1) + e(0@1) + f(0@1) ≥ 4
• χ3 ≡ 2c(0@1) + ē(1@1) + f̄(1@1) ≥ 2
• χ4 ≡ b(0@1) + d̄(0@1) + e(0@1) + f(0@1) ≥ 1

Observe that both χ2 and χ4 are now conflicting, and that the reason for d, which appears
in χ4, is χ2. The solver has now to choose a conflict on which to perform the analysis. If the
chosen conflict is χ4, the conflict analysis produces the following:

χ4 χ3

b(0@1) + c(0@1) + d̄(0@1) ≥ 1 χ2

4b(0@1) + 3c(0@1) + e(0@1) + f(0@1) ≥ 4 χ1

3a(0@1) + b(0@1) + e(0@1) + f(0@1) ≥ 4

Observe that, at the second step, the conflict is resolved against the (conflicting) reason χ2,
which also reintroduces the two literals e and f that were cancelled by the first cancellation.
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Now, if we select instead χ2 as the conflict, we get instead the following conflict analysis:

χ2 χ3

3b(0@1) + 3d(1@1) + 2c(0@1) ≥ 4 χ1

3d(1@1) + 2a(0@1) + b(0@1) ≥ 4

Note that the learned constraint obtained in this latter case is incomparable with that obtained
in the previous case, so that it is not clear which of the two approaches is the best.

Currently, when a conflicting reason is encountered, the cancellation is performed silently, as if the
reason was not conflictual (actually, the solver does not know that this reason is conflictual). Is this the
best solution to handle conflictual reasons? For instance, could we simply “forget” what we have done
with the previous conflict, and use the conflicting reason as a new conflict when encountered during the
analysis?

Another way to improve pseudo-Boolean solvers is to investigate the implementation of other cut-
ting planes rules, such as the addition rule. Indeed, doing so would allow to derive pseudo-Boolean
constraints from clauses, and thus prevent the proof system internally used by the solver from degen-
erating to resolution when clauses are given as input. For instance, doing so is required to find a short
unsatisfiability proof for pigeonhole principle formulae encoded as CNF. Different approaches for de-
tecting cardinality constraints from clauses have been proposed [BLLM14, EN20]. However, none of
them use the addition rule to derive cardinality constraints.

Thanks to all the improvements we proposed in the thesis, either already implemented or mentioned
above, one may consider the use of pseudo-Boolean solvers in other settings. In particular, we focused
here on decision problems. It would be interesting to evaluate the impact of these improvements on
optimization problems, which aim to minimize or maximize the value of a given objective function
(see [BH02] for more details). Typically, multiple calls to the solver must be performed for solving
optimization problems, and each call uses the last model found to refine the solution until an optimal
solution is identified. One could take advantage of these multiple calls to try the different strategies we
presented so as to identify the most appropriate ones for solving the input. One could also extend these
strategies to better adapt them to optimization problems, and consider the intermediate models to guide
the search performed by the subsequent calls to the solver, as proposed in [Nad19] for the case of phase
selection.

Another interesting use of pseudo-Boolean solvers is to consider them as oracles in more complex
settings, for instance in knowledge compilation. Many compilers use internally a SAT solver to build,
for instance, a d-DNNF circuit that is equivalent to a CNF formula given as input [Dar04, MMBH12,
LM17]. Using a pseudo-Boolean solver would both allow to compile pseudo-Boolean formulae and to
take advantage of their succinctness to compile formulae for which the CNF input would be too big to
be compiled efficiently. This is the case, for instance, for formulae representing neural networks, and for
which queries allowing to evaluate the robustness of the model learned by the neural network would be
tractable on the compiled form [NKR+18].
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Appendix A

Description of the Solvers

Most of the solvers considered in this thesis have participated, in a certain form, to the Pseudo-Boolean
Competition 2016 [Rou16]. A more specific attention is paid to the solvers that implement cutting
planes-based reasoning, and thus we focus on RoundingSat [EN18] and Sat4j [LP10].

A.1 RoundingSat

The RoundingSat solver [EN18] is a pseudo-Boolean solver written in C++, and that supports cutting
planes-based reasoning. This solver makes an heavy use of the weakening and division rules, so as to
allow the use of fixed precision arithmetic and to be more efficient in practice. The proof system of this
solver is further studied in Section 4.2.

Recently, a new version of RoundingSat has been released, named RoundingSat2 in this document,
with many new features, especially arbitrary precision arithmetic (either using the boost or the gmp
library).

The considered version of RoundingSat is that corresponding to the commit of November 16th, 2019
(e1c97a73) while the version of RoundingSat2 is that of September 4th, 2020 (383cce49) from
RoundingSat’s repository7.

A.2 Sat4j

The Sat4j library [LP10] is both a SAT and pseudo-Boolean solver written in Java, which implements
different proof systems to solve pseudo-Boolean problems.

In particular, Sat4j-Resolution implements a resolution-based reasoning, as described in Section 4.3,
that benefits both from the succinctness of pseudo-Boolean constraints and the efficiency of modern SAT
solvers.

In Sat4j-GeneralizedResolution, the proof system is the generalized resolution one introduced
in [Hoo88] and considered in Section 4.2. In practice, this solver is much slower than Sat4j-Resolution,
as it has to deal with the complex operations related to the cutting planes proof system, and especially
those relying on arbitrary precision arithmetic. However, Sat4j-GeneralizedResolution is faster than the
resolution-based solver when dealing with problems that are hard for resolution, such as pigeonhole
principle instances.

To benefit from the performance of both Sat4j-Resolution and Sat4j-GeneralizedResolution, Sat4j-
Both runs both solvers in parallel, (so that, basically, the CPU time is equally divided between the two

7https://gitlab.com/miao_research/roundingsat
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solvers). When one of the two solvers finds a solution or an unsatisfiability proof, Sat4j-Both returns the
answer of this solver. As Sat4j-GeneralizedResolution is in practice much slower than Sat4j-Resolution,
the Sat4j-Both (sober) variant has been developed, based on the following observation: when Sat4j-
GeneralizedResolution is efficient, this is because of the strength of its underlying proof system. In this
case, the answer is given almost immediately. Sat4j-Both (sober) runs thus Sat4j-GeneralizedResolution
for 1 minute, while it runs Sat4j-Resolution for the entire runtime allocated to the solver.

Finally, Sat4j-RoundingSat is an implementation of RoundingSat’s proof system in Sat4j, which still
uses arbitrary precision arithmetic and applies more parsimoniously the weakening and division rules
(see the next section for a more detailed comparison of the two solvers).

Note that, because Sat4j is written in Java, it is basically 3 to 4 times slower than any equivalent C++
solver. In particular, Sat4j-RoundingSat is necessarily slower than RoundingSat.

During the preparation of this thesis, I participated in the development of different solvers and strate-
gies in Sat4j. In particular, I have contributed to this solver by writing about 7, 000 lines of code, in more
than 100 classes.

A.3 Implementation Details of RoundingSat vs Sat4j

The table on the following page compares the different features implemented by RoundingSat and by
different solvers of Sat4j, in their default configurations. Sat4j-Both is not mentioned, as it runs in
parallel Sat4j-Resolution and Sat4j-GeneralizedResolution in their default configurations.

A.4 Other Solvers

This thesis also mentions SAT-based pseudo-Boolean solvers, such as MiniSat+ [ES06], NaPS [SN15]
or Open-WBO [MML14]. As these solvers are based on the resolution proof system, we do not insist on
their internal implementations.

The different encodings used to encode the input pseudo-Boolean problems into a CNF instances are
further studied in Section 4.3.
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Appendix B

Description of the Experimental Settings

This appendix presents the experimental settings used throughout the thesis to evaluate the performance
of the algorithms.

B.1 Machine Configuration

All experiments have been executed on a cluster of computers equipped with quadcore bi-processors
Intel XEON X5550 (2.66 GHz, 8 MB cache) and 32 GB of memory. The nodes of this cluster run Linux
CentOS 7 (x86_64), and use GCC 4.8.5 for C/C++-based programs and the JDK 11.0.1 for Java-based
programs.

B.2 Benchmarks

Unless otherwise specified, our experiments consider the whole set of decision benchmarks containing
“small” integers used in the pseudo-Boolean competitions since the first edition [MR06] as input, for a
total of 5582 instances. From these instances, 4080 are from the oliveras family. To limit the bias of
this large number of problems from the same family, we only consider instances that are not easy, i.e., for
which at least one of the solvers took more than 1 minute to get a result. Other instances (i.e., instances
solved in less than 1 minute by all solvers) are thus removed from the plots and tables presented in this
thesis, while their number is specified in the analysis of the corresponding experiments.

Note that only instances using “small” integers are considered here. This limitation allows to execute
solvers that do not support arbitrary precision arithmetic.

B.3 Description of the Benchmark Families

In this section, we provide the description of different benchmark families that have been used, when
they are available.

B.3.1 Families EC_ODD_GRIDS and EC_RANDOM_GRAPHS

These families contain pseudo-Boolean encodings of the even-colouring problem [EGNV18]. Instances
from these families encode that, given a graph G, there exists a black-and-white colouring of the edges
of G such that every vertex is connected to the same number of black and white edges. These formulae
are satisfiable if and only if G contains an even number of edges.
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In the case of EC_ODD_GRIDS, the graphs G encoded in the formulae represent complete grids, in
which every vertex is connected to its 4 neighbors. One of the edges is split to ensure that G contains an
odd number of vertices, making the formulae unsatisfiable.

In the case of EC_RANDOM_GRAPH, the graph G encoded in the formulae is a random graph con-
taining an even number of edges, with one of them split to make G contain an odd number of edges.

B.3.2 Family liu

This family contains instances of the degree bounded spanning tree problem. This problem, described
in [Rou06], is as follows.

LetG = (V,E) be an undirected graph, and letw : V ×V → N be a function assigning non-negative
integer weights to the edges ofG. A spanning tree T = (V,E′) is a d-bounded spanning tree if, for every
vertex v ∈ V , the following holds: ∑

(v,u)∈E

w(v, u) ≤ d

The 15 instances of this problem are composed of 15 randomly generated graphs. More precisely:

• 5 graphs having 30 vertices and 350 edges with d = 15,
• 5 graphs having 40 vertices and 600 edges with d = 20, and
• 5 graphs having 50 vertices and 1000 edges with d = 25.

The weights of edges are between 1 and 9.

B.3.3 Family tsp

This family contains instances of the travelling salesperson problem. This problem, described
in [Rou06], is as follows. There are n cities that are connected to each other. Each pair of cities is
assigned a weight w, with 1 ≤ w ≤ n, which is the cost associated with the travel between them. A
satisfying assignment involves choosing the order in which the n cities are visited so that the sum of the
weights associated with each adjacent pairs of cities that are visited is less than a given weight W .

This family contains both satisfiable and unsatisfiable instances. All problems are such that n = 11
and W = 25.

B.3.4 Family vertexcover-instances

This family contains instances of the vertex cover problem, used for instance in [EGNV18]. Formulae
from this family encode that a graph G = (V,E) has a vertex cover of size s, with different values of s.
The graphs represented by these formulae are either grids or complete graphs.

B.3.5 Family wnqueen

This family contains instances of the weighted n-queens problem. This problem, described in [Rou06],
is as follows. In the weighted n-queens problem, every square of a n × n chess board is assigned a
weight w. Let wi be the weight of the square assigned to the i-th queen, where 1 ≤ i ≤ n. The n queens
must be assigned to the squares so that the sum of the weights of the assigned squares must be less than
or equal to a weight W , i.e.,

∑n
i=1wi ≤W .
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Two queens attack each other if and only if:

• they are in the same row, or
• they are in the same column, or
• they are in the same ascending diagonal, or
• they are in the same descending diagonal.

This family contains both satisfiable and unsatisfiable instances. All problems are such that n = 13
and W = 38.

B.3.6 Other Families

For the following families, we only briefly described what they encode.

• FPGA_SAT05 and uclid_pb_benchmarks are industrial instances.
• heinz are pseudo-Boolean encodings of MIPLIB2010 problems.
• ppp-problems are pseudo-Boolean encodings of the progressive party problem described

in [GH99].
• lopes are multiple constant multiplication problems.
• oliveras are pseudo-Boolean encodings of resource-constrained project scheduling problem.
• robin are pseudo-Boolean encodings of the travelling tournament problem, as described

in [ENT01].
• roussel are pigeonhole principle formulae, either encoded using cardinality constraints (20 in-

stances) or clauses (20 instances).
• sroussel are pseudo-Boolean constraints modelling visits of museums.
• subsetcard are subset cardinality formulae, as described in [EGNV18].
• SUMINEQ are linearized pebbling formulae, as described in [EGNV18].
• nossum are cryptography instances for SHA-1 made with Vegard Nossum’s generator8 with 21

to 23 rounds and 80 to 160 bits.
• quimper are pseudo-Boolean instances from [VQD16].

8https://github.com/vegard/sha1-sat
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Résumé

Cette thèse porte sur le langage des conjonctions de contraintes pseudo-booléennes, formées d’équations
ou inéquations linéaires en variables booléennes. Ce format généralise le format CNF très répandu.
Notre contribution à l’étude des contraintes pseudo-booléennes se compose de deux parties.

Dans une première partie, nous étudions les contraintes pseudo-booléennes du point de vue de la
représentation des connaissances. Nous comparons leur langage à différents formats propositionnels
largement utilisés en évaluant chacun d’eux à l’aune des critères de la carte de compilation proposée par
Darwiche et Marquis. Cette comparaison montre, d’un côté, l’un des avantages des contraintes pseudo-
booléennes par rapport aux formules CNF : elles peuvent être beaucoup plus concises. Malheureuse-
ment, d’un autre côté, les opérations qui sont NP-difficiles pour les contraintes pseudo-booléennes sont
plus nombreuses que pour les formules CNF. En conséquence, il est parfois préférable d’utiliser des en-
codages CNF (au lieu d’utiliser des représentations) de ces contraintes. De cette manière, l’efficacité en
pratique des solveurs SAT modernes peut être mise à profit pour raisonner sur de tels encodages. Nous
étudions également les propriétés de ces encodages, et montrons que borner leur largeur peut fortement
réduire leur expressivité.

L’une des raisons pour lesquelles il est intéressant d’utiliser des contraintes pseudo-booléennes en
plus des formules CNF est qu’elles permettent d’utiliser le système de preuve des plans coupes, qui est
plus puissant que celui de la résolution implanté dans les solveurs SAT classiques pour raisonner sur des
formules CNF. En particulier, des preuves d’incohérence produites par ce système de preuve peuvent
être exponentiellement plus courtes que leur équivalent dans le système de la résolution pour certains
ensembles de contraintes. Ainsi, d’un point de vue théorique, les solveurs pseudo-booléens, capables de
prendre en compte nativement les contraintes pseudo-booléennes, pourraient être plus efficaces que les
solveurs SAT. Cependant, en pratique, les solveurs pseudo-booléens ne tiennent pas cette promesse, et il
est important de comprendre pourquoi.

Comme une étape dans cette direction, la deuxième partie de cette thèse est consacrée à la ré-
solution pratique de problèmes pseudo-booléens. Nous identifions plusieurs faiblesses des solveurs
pseudo-booléens, et proposons des améliorations. En particulier, nous montrons que toutes les règles
implantées par les solveurs pseudo-booléens peuvent produire, pendant l’analyse de conflit, des littéraux
non pertinents, c’est-à-dire des littéraux dont la valeur de vérité n’influe pas sur celle des contraintes
dans lesquelles ils apparaissent. Ce comportement est problématique, puisque ces littéraux conduisent
à l’inférence de contraintes plus faibles, et donc à la production de preuves d’incohérence plus longues.
Nous proposons plusieurs approches pour corriger ces faiblesses, comme l’utilisation de nouvelles straté-
gies d’affaiblissement, visant à établir un compromis entre la taille des contraintes produites et leur force.
Ces stratégies peuvent permettre d’éliminer efficacement des littéraux non pertinents, même si elles pro-
duisent des contraintes plus faibles. Nous montrons par ailleurs qu’un affaiblissement plus parcimonieux
(mais inévitable) peut permettre d’améliorer les performances du solveur.

De plus, nous adaptons au cadre pseudo-booléen un certain nombre de variantes de stratégies im-
plantées par les solveurs SAT classiques. En particulier, nous présentons des heuristiques et des mesures
pour la qualité des contraintes apprises dédiées aux contraintes pseudo-booléennes. Nous montrons
qu’un choix avisé parmi ces stratégies peut permettre d’améliorer considérablement les performances du
solveur.

Toutes les approches pratiques décrites dans cette thèse ont été implantées dans le solveur pseudo-
booléen Sat4j et sont publiquement accessibles.
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Abstract

This thesis is about the language of pseudo-Boolean constraints, i.e., of conjunctions of linear equa-
tions or inequations over Boolean variables, that generalizes the well-known CNF format. Our contribu-
tion to the study of this language is twofold.

In the first part of the thesis, the language of pseudo-Boolean constraints is investigated from a
knowledge representation perspective. It is compared to a number of well-known propositional formats
using the criteria considered in the so-called knowledge compilation map pointed out by Darwiche and
Marquis. On the one hand, an advantage of using pseudo-Boolean constraints as a representation lan-
guage over CNF formulae is that they can be far more succinct. On the other hand, unfortunately, more
operations of interest are NP-hard when dealing with pseudo-Boolean constraints compared to CNF
formulae. As a consequence, it is sometimes preferable to consider CNF encodings (instead of CNF
representations) of such constraints. Doing so, the practical efficiency of modern SAT solvers can be
leveraged to reason with these encodings. We also investigate the properties of such encodings, and
show that bounding their width may drastically reduce their expressivity.

One reason for considering pseudo-Boolean constraints instead of CNF formulae is that they allow
the use of the cutting planes proof system, which is stronger than the resolution proof system imple-
mented in classical SAT solvers based on CNF. In particular, unsatisfiability proofs that may be ex-
ponentially shorter than their resolution counterpart can be derived for some sets of pseudo-Boolean
constraints. Thus, from the theory side, pseudo-Boolean solvers, i.e., solvers that use pseudo-Boolean
constraints natively instead of encodings, could be more efficient than SAT solvers. However, practical
solver implementations fail to keep this promise, and understanding why this is the case is an important
issue.

As a step in this direction, the second part of this thesis deals with the practical resolution of pseudo-
Boolean problems. Several weaknesses of current implementations of pseudo-Boolean solvers are identi-
fied and for some of them improvements are proposed. In particular, we show that all rules implemented
in pseudo-Boolean solvers may produce irrelevant literals during conflict analysis, i.e., literals that have
no effect on the truth value of the constraints in which they appear. This is problematic as such literals
lead to the inference of constraints that can be weaker than expected, and in turn to the production of
longer unsatisfiability proofs. We point out several approaches to deal with those weak points, such as the
use of new weakening strategies, that are designed in such a way that a tradeoff between the size of the
derived constraints and their strength is obtained. Those weakening strategies may allow to efficiently
eliminate irrelevant literals, at the price of deriving weaker constraints. In addition, we show that a more
parsimonious (but inevitable) application of the weakening rule may allow improving the performance
of the solver.

We also lift many variants of strategies that are classically implemented in SAT solvers to the pseudo-
Boolean setting. In particular, branching heuristics and quality measures for learned constraints that
are adapted to pseudo-Boolean constraints are presented. We show that a careful choice among those
strategies may drastically improve the performance of the solver.

All practical approaches described in this thesis have been implemented in the pseudo-Boolean solver
Sat4j and are publicly available.
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