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Abstract. To address the needs of the EU NoAW project, in this paper we intro-
duce a new modular framework that generates viewpoints (i.e. extensions) based
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1. Introduction

Ranking-based semantics are being studied by a large amount of researchers [15, 2, 6, 4,
1, 8, 14, 16]. New semantics are being introduced, as well as the principles they should
satisfy. One of the main reasons of their popularity is that they may offer a finer evalua-
tion than extension-based semantics [12, 11, 5, 10].

There is a difference in the output format between these two approaches: when us-
ing a ranking-based semantics, the output is a ranking on the arguments; in the case of
extension based semantics, the output is a set of extensions. While the ranking and the
scores (which are present in many ranking-based semantics) allow to better assess the
acceptability degree of each individual argument, the question “what are the points of
view of the argumentation framework?” stays unanswered when using a ranking-based
semantics. The main research goal of this paper is to (ask and) answer that question.
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Figure 1. Is one highly ranked argument a stronger point of view? Are several well-ranked arguments another?

1Corresponding Author



B.Yun et al. /

a b c

d e

f

Figure 2. Is a non admissible set containing highly ranked arguments considered a point of view?

Consider the argumentation framework (AF) from Figure 1. Let us use h-categorizer
ranking semantics [7]. We obtain a� b,c� d � e. What are the possible points of view?
Clearly S1 = {a} is admissible and strong, but should we also accept S2 = {b,c,d}?
Since S2 contains three arguments, is it (even) better than S1? It seems that both S1 and
S2 are acceptable points of view, but which one is stronger: S1 having only one highly
ranked argument or S2 having three arguments of medium strength? Consider now the
AF from Figure 2. Let us use h-categorizer ranking semantics. The three strongest argu-
ments are a, b and c with scores approximately 0.76, 0.71 and 0.71, respectively. Argu-
ments d and e are much weaker with scores approximately 0.40 and 0.31, respectively. If
one looks for conflict-free sets containing highly ranked arguments, two potential candi-
dates are S1 = {a,b,c} and S2 = {d,e}. Should one accept S1, which contains the three
strongest arguments but is not admissible (it is attacked by a self-attacking argument)?
The two previous examples show that the question “how to generate points of view when
arguments are evaluated by a ranking-based semantics?” is not easy. In particular, the
strongest arguments with respect to the ranking-based semantics do not always form an
admissible (or not even a conflict-free) set. This question is of direct practical applica-
bility. Within the EU H2020 Project NoAW different stakeholders are debating the best
manner of reducing viticol and vinicol waste. We address this problem by construct-
ing an argumentation graph of the different viewpoints. While classic semantics are not
selecting “useful” consensual arguments (the grounded semantics or skeptic ones usu-
ally return arguments more or less agreed upon), ranking semantics return a finer result.
However, if we want to select a whole viewpoint we need to lift this ranking to sets of
arguments.

We do not claim that there is a unique answer to the aforementioned question. In-
stead, we propose to define a general and modular framework able to suit different needs.
Our framework is based on three layers.

1. First, a selection function selects a set of subsets of arguments. This can be any
function; some popular choices would probably be all maximal conflict-free sets
or all admissible sets.

2. Second, a ranking-based semantics is used to calculate the ranking on the set of
arguments. In the previous example we mentioned h-categorizer, but any function
returning an order on the set of arguments can be used.

3. Third, we need a lifting operator, i.e. a function that compares the set of argu-
ments returned by the selection function and produces a ranking on those sets,
based on the individual scores of arguments. A simple criterion would be to com-
pare the strongest arguments of each set. A generalisation of this criterion is so-
called leximax, which in case that the best arguments are equally strong proceeds
to compare the second best argument of each set, and so on. If a ranking-based
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semantics returns numerical scores, one could also compare the sums of scores
of all arguments.

Out of all sets returned by the selection function, only the best ones (w.r.t. the ranking
function and the lifting operator) are kept and they represent the output of our framework.

Let us give a quick preview of the kind of results our framework can return. In this
example we assume the reader is familiar with many argumentation notions including the
definitions of several ranking semantics. If this is not the case please refer to Section 2
for the full definitions. In the example from Figure 1 the scores of arguments with respect
to h-categorizer ranking semantics are approximately 0.67 for a, 0.60 for b and c, 0.50
for d and 0.35 for e. Let us select all maximal conflict-free sets; we obtain S1 = {a},
S2 = {b,c,d} and S3 = {e}. Now, if we use leximax or max as lifting, we will obtain
S1 as the output of our framework. If we use the sum of arguments’ scores as the lifting
function, we obtain S2. So, according to the user’s choice of the lifting function, one of
the two results is obtained.

Consider now the example from Figure 2. If admissibility is important for the user,
they will select only (a subset of) admissible sets, thus {a,b,c} will not be a part of
the output. On the contrary, if we select all the maximal conflict-free sets, we obtain
S1 = {a,b,c} and S2 = {d,e}. For all reasonable lifting operators S1 is preferred to S2,
thus the output of the framework is S1 in this case.

Please note that there is no universally correct answer at the question of “What is
the best viewpoint?”. Such question heavily relies on its context: what is an argument as-
sumed to be, what is the application at hand, how are the argumentation graphs obtained,
how are the attacks obtained, who is the user and what is their profile etc. Such dilemma
does not mean that we cannot advance the state of the art. Indeed, we can propose a mod-
ular framework that is generic enough to be able to accommodate various application
scenarios. In this case, one important property of the framework lies in its versatility and
its capacity to yield different results according to various instantiations.

After defining this general framework in a formal way, we propose and study some
of its instantiations. We show that some of the instantiations are comparable in terms of
set inclusion and that the vast majority of them return distinct results. We evaluate our
framework via a set of postulates and prove their satisfaction for certain instantiations.
Furthermore, we also exhibit its non trivial behaviour when instantiated with logical AFs.

The importance of that part of the work is to show that the three layers work inde-
pendently and that the reasoning machinery does provide, accordingly, different outputs
(more details are provided in Section 3). Since not all applications have the same needs,
such versatility ensures the significance of our result.

The paper is organised as follows: in Section 2, we introduce our new framework
aimed at calculating the possible points of views (“extensions”) when using ranking-
based semantics. In Section 3, we show the usages of this framework and highlight the
general inclusion, equality and difference results with respect to several possible inputs.
In Section 4, we propose several new postulates for the ranking-based selection frame-
work and prove the satisfaction of these postulates for some instantiations of the frame-
work. Finally we show how the use of our framework in a logically instantiated setting
yields intuitive results.
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2. Ranking-based selection RSF

An AF is a pair M=(A ,C ) where A is a finite set of arguments and the binary relation
C ⊆ A ×A is the set of attacks (conflicts) between arguments. The set of all possible
arguments is denoted by A and the set of all possible AFs is denoted by K . The proposed
ranking-based selection framework RSF, given an AF and three input parameters, returns
a set of arguments with particular properties. It consists of three steps:

1. First, a selection function S : K → 22A selects a set of subsets of A ⊆ A from
M= (A ,C ) ∈K .

2. Second, a ranking semantics R : K → 2A×A computes a total order on A ⊆ A
from M= (A ,C ) ∈K .

3. Third, a lifting function L : 2A×A×K → 22A×2A takes as input M=(A ,C )∈K
and a total order on A ⊆ A and returns a total order on the subsets of A .

Definition 1. A ranking-based selection framework RSF is a tuple (S,R,L) where S is a
selection function, R is a ranking semantics and L is a lifting function. The top result of
a RSF = (S,R,L) on an AF M is OS,R,L(M) = {E ∈ S(M) | for all E ′ ∈ S(M),(E,E ′) ∈
L(R(M),M)}. If the graph is obvious, we denote the result by OS,R,L.

2.1. The RSF selection

Given an AF, a selection function returns a set of sets of arguments. Before presenting
the several selection functions considered in the paper we need some additional notions.

Given a subset of nodes X of A , we denote by X+, the set of arguments attacked by
X , i.e. X+ = {a ∈ A | there is x ∈ X such that (x,a) ∈ C }. Likewise, the set of nodes
that attack at least one node of X is denoted by X− = {a ∈ A | there exists x ∈ X such
that (a,x)∈ C }. An argument a ∈A is defended by a set X ⊆A in M if for each b ∈A
with (b,a) ∈ C , there exists x ∈ X s.t. (x,b) ∈ C .

The selection functions investigated by this paper are:

• conflict-free sets of M: c f (M) = {X ⊆A | for every x1,x2 ∈ X ,(x1,x2) /∈ C }.
• maximal for set inclusion conflict-free sets of M : c fmax(M) = {X ⊆ A | X ∈

c f (M) and there is no X ′ s.t. X ⊂ X ′ and X ′ ∈ c f (M)}.
• maximal for set cardinality conflict-free sets of M: c f card

max (M) = {X ⊆ A | X ∈
c f (M) and there is no X ′ s.t. |X |< |X ′| and X ′ ∈ c f (M)}.

• admissible extensions of M: ad(M) = {X ⊆A | X ∈ c f (M) and for each a ∈ X ,
a is defended by X}.

• preferred extensions of M: pr(M) = {X ⊆ A | X ∈ ad(M) with no X ′s.t. X ⊂
X ′ and X ′ ∈ ad(M)}.

• stable extensions of M: st(M)= {X ⊆A |X ∈ c f (M), for every a∈A \X ,∃c∈X
s.t. (c,a) ∈ C }.

• complete extensions of M: co(M) = {X ⊆ A | X ∈ ad(M), for each a ∈ A de-
fended by X ,a ∈ X}.

• grounded extension of M: gr(M) = {X ⊆ A | X ∈ co(M) and for each X ′ ∈
co(M),X ′ 6⊂ X}.

Example 1. Let M=(A ,C ) with A = {a,b,c,d,e} and C = {(a,e),(b,a),(b,c),(c,e),
(d,a),(e,d)}. We have {a,c}+ = {e}, {a,c}− = {d,b} and e is defended by {d,b}.
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The set of conflict-free sets is c f (M) = { /0,{a}, {b}, {c}, {a,c}, {d}, {b,d}, {c,d},
{e}, {b,e}}. Amongst those sets, we have c fmax(M) = c f card

max (M) = {{a,c}, {b,d},
{c,d}, {b,e}}. However, the only admissible set amongst these maximal sets is {b,e}.
Furthermore, we also have pr(M) = st(M) = co(M) = gr(M) = {{b,e}}.

2.2. The RSF ranking

A ranking semantics is a function R that returns a total order on the set of arguments.
We chose to use two well-known ranking semantics to illustrate our framework: burden-
based semantics [1] and h-categorizer semantics [7] reminded below. Please refer to the
original papers for the full definitions, here we only give a quick overview.

The score of each argument at a given step with respect to burden-based semantics
is calculated as follows. Let M= (A ,C ) be an AF, a ∈A and i ∈ {1,2, . . . ,n}, then:

Buri(a) =
{

1 if i = 1
1+∑(b,a)∈C

1
Buri−1(b)

otherwise

Please note that an equality-ensuring threshold exists for the burden-based semantics
[4]. This ensures an exact computation of the ranking, despite the fact that the number
of steps is infinite. The ranking obtained with this semantics on an AF M is computed
using the lexicographical order and will be denoted by RBBS(M).

The h-categorizer semantics is computed as follows. Each argument a is attached a
score Cat(a)> 0 such that:

Cat(a) =

{
1 if {a}− = /0

1
1+∑(b,a)∈C Cat(b) otherwise

It has been proved that h-categorizer is well-defined, i.e. that for every AF, the score
Cat(.) of each argument is unique. The ranking obtained with this semantics on an AF
M will be denoted RCAT (M).

Example 2. [Ex. 1 cont.] The ranking obtained using the burden-based semantics is
RBBS(M) = b� d � c� e� a whereas the ranking obtained throughout the h-categorizer
semantics is RCAT (M) = b� d � e� c� a.

2.3. The RSF lifting

A lifting function L (also referred to as lifting operator, or lifting) compares sets of argu-
ments given their individual order and returns a total order on the sets.

Let us first introduce the sort function that will be used in order to define the Lleximax
notion below. Given a set of elements X = {x1,x2, . . . ,xn} and a total, reflexive and tran-
sitive binary relation � on X , sort(X ,�) returns a sorted vector (x1,x2, . . . ,xn) such
that for every xi,x j, we have that xi � x j iff i≤ j. The element at position i in the vector
sort(X ,�) is denoted by sorti(X ,�). Note that the returned vector is not necessarily
unique due to the fact that some elements might be equivalent, i.e. xi ∼ x j.

In this paper we consider several possible instantiations of the lifting operator L:
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• The Lmax lifting operator compares the subsets with respect to their maximal ele-
ments.

• The Lleximax lifting operator compares the elements after sorting them in decreas-
ing order.

• The LPST lifting operator compares the subsets on whether or not they are pre-
ferred sub-theories (PST) [9]. We recall the reader that a PST of a stratification
T� = (T1, . . . ,Tn) induced by an order � (i.e. a sorted sequence where Ti ∈ X/∼
where ∼ is the equivalence relation induced by �) is a set S = S1 ∪ S2 ∪ ·· · ∪ Sn
such that for every k ∈ {1, . . . ,n}, S1 ∪ ·· · ∪ Sk is a maximal (with respect to ⊆)
conflict-free subset of T1∪·· ·∪Tk.

Let M = (A ,C ) be an AF, � a total order on A , E,E ′ ∈ S(M), sort(E,�) =
(x1,x2, . . . ,xn) and sort(E ′,�) = (x′1,x

′
2, . . . ,x

′
m). We say that:

• (E,E ′) ∈ Lmax(�,M) iff max(E)� max(E ′), where max(X) = sort1(X ,�).
• (E,E ′) ∈ Lleximax(�,M) iff one of the following holds:

∗ m = n and for every i ∈ {1, . . . ,n},xi ∼ x′i
∗ there exists i ∈ {1, . . . ,min(m,n)} s.t. xi � x′i and for every j ∈ {1, . . . , i−

1},x j ∼ x′j
∗ n > m and for every i ∈ {1, . . . ,m}, xi ∼ x′i

• (E,E ′) ∈ LPST (�,M) iff E is a preferred sub-theory of the stratification T�.

Example 3. [Ex 2 cont.] Let � be the order induced by the burden-based semantics.
Then: b � d � c � e � a. We have c f card

max (M) = {{a,c}, {b,d}, {c,d}, {b,e}}. We
have for every E ′ ∈ c f card

max (M), ({b,d},E ′) ∈ Lmax(�,M) and ({b,e},E ′) ∈ Lmax(�,M).
However, if we use Lleximax and LPST , only {b,d} is maximal, namely for each E ′ ∈
c f card

max (M), ({b,d},E ′) ∈ LL(�,M), L ∈ {leximax,PST}.

The ranking-based selection framework RSF is general enough to consider various
instantiation of the tuple (S,R,L). For example, Oad,RCAT ,Lmax(M) is the set of admissible
subsets of M whose strongest with respect to Cat argument is stronger or equal than the
strongest with respect to Cat argument of every other admissible set of arguments.

Example 4 (Ex. 3 cont.). We have Oc f card
max ,RBBS,Lmax

(M) = {{b,d}, {b,e}}.

In the next section we investigate how the different combinations of instantiations
of the tuple elements (S,R,L) relate to each other.

3. OS,R,L(M) instantiation landscape

This section compares the outputs of an RSF obtained when varying the selection func-
tion and the lifting operator. We show that the output is different when using different
parameters, since using a particular lifting function does not make two given semantics
coincide. Hence, RSF allows for a large amount of combinations leading to different
results. We investigate how all combinations of the (S,R,L) instantiations relate to each
other and focus on both (1) inclusion and equality results and (2) difference results.

Inclusion and equality results wrt OS,R,L(M). Obviously, for any given M, we
always have OS,R,L(M) ⊆ S(M). This is because the top result is always a subset of the
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set returned by the selection function S. The first result of this section shows that the
output corresponding to the leximax lifting refines the output corresponding to the max
lifting.

Proposition 1. Let M be an AF, R a ranking semantics and S a selection function. Then
OS,R,Lleximax(M)⊆OS,R,Lmax(M).

The next result concerns preferred sub-theories. Every preferred sub-theory is a
maximal for set inclusion conflict-free subset of A . Thus, comparing all conflict-free
subsets or only maximal conflict-free subsets of A by using LPST will yield the same
result. Formally:

Proposition 2. Let M be an AF and R a ranking semantics. Then Oc fmax,R,Lleximax(M) =
Oc f ,R,Lleximax(M) and Oc fmax,R,LPST (M) = Oc f ,R,LPST (M). For L ∈ {Lleximax,LPST} then
Oc f card

max ,R,L(M) 6⊆Oc fmax,R,L(M).

Proof. We split the proof in 3 parts:

• Sketch. We know that Oc fmax,R,Lleximax(M) ⊇ Oc f ,R,Lleximax(M). We show that
Oc fmax,R,Lleximax(M)⊆Oc f ,R,Lleximax(M) by contradiction. Suppose the existence of a
maximal conflict free set E that is in Oc fmax,R,Lleximax(M) but not in Oc f ,R,Lleximax(M).
Thus, there is a conflict free set E ′ such that (E ′,E) ∈ Lleximax(R(M),M) and
(E,E ′) /∈ Lleximax(R(M),M). Thus, there exists a maximal conflict free set E ′′ such
that E ′ ⊆ E ′′ and (E,E ′′) /∈ Lleximax(R(M),M). Therefore, E /∈Oc fmax,R,Lleximax(M).

• Sketch. We know that Oc fmax,R,LPST (M)⊇Oc f ,R,LPST (M). We show that Oc fmax,R,LPST (M)
⊆Oc f ,R,LPST (M) by contradiction by supposing that Oc fmax,R,LPST (M)⊃Oc f ,R,LPST (M).
Let E ∈Oc fmax,R,LPST (M) such that E /∈Oc f ,R,LPST (M). There are two cases: either
E is a PST of the stratification T� or there is no PST of T . In the two cases, we
have E ∈ Oc f ,R,LPST (M).

• The counter-example can be constructed using the argumentation graph of Exam-
ple 7. Indeed, if the ranking is changed to a� b,c,d we have that the output with
respect to c f card

max is {{c,d}} whereas the one for c fmax is {{a}}.

Non-equality results wrt OS,R,L(M). Tables 2 and 3 show the results for different in-
stantiations (for brevity reasons a list of output abbreviations is given in Table 1). The
elements in the first column and in the first row of those tables represent the result of the
corresponding instantiation of the RSF. The entry “=” in row C and column X indicates
that C is equal to X in all cases. The entry “ 6=n” in row C and column X indicates that
C can be different than X and that the counter-example is provided in Example n. For
example 6=5 means that the counter example can be found in Example 5.

Example 5. Let us consider the AF M = (A ,C ) with A = {a,b,c,d,e, f} and C =
{(d,a), (a,d), (a, f ), (a,b), (b,c), (c,e), (e,b)}. Note that the ranking obtained with
RBBS and RCAT is the same c� a,d, f � e� b. Thus:

• Oc fmax,RBBS,Lleximax(M) = Oc f ,RBBS,Lleximax(M) = Oc f card
max ,RBBS,Lleximax

(M) =

Oc f card
max ,RBBS,LPST

(M) = {{c,d, f}}
• Oc f ,RBBS,LPST (M) = Oc fmax,RBBS,LPST (M) = {{a,c},{c,d, f}}
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O1 Oc f ,R,Lleximax

O2 Oc f ,R,LPST

O3 Oc fmax ,R,Lleximax

O4 Oc fmax ,R,LPST

O5 Oc f card
max ,R,Lleximax

O6 Oc f card
max ,R,LPST

O7 Opr,R,Lleximax

O8 Opr,R,LPST

O9 Ost,R,Lleximax

O10 Ost,R,LPST

O11 Ogr,R,Lleximax

Table 1. Nomenclature

O2 O3 O4 O5 O6

O1 6=5 = 6=5 6=7 6=7

O2 6=5 = 6=5 6=5

O3 6=5 6=7 6=7

O4 6=5 6=5

O5 6=8

O6

Table 2. (Non-)equality results in the general case, part 1

O7 O8 O9 O10 O11

O1 6=5 6=5 6=5 6=5 6=5

O2 6=5 6=5 6=5 6=5 6=5

O3 6=5 6=5 6=5 6=5 6=5

O4 6=5 6=5 6=5 6=5 6=5

O5 6=5 6=5 6=5 6=5 6=5

O6 6=5 6=5 6=5 6=5 6=5

O7 6=6 6=6 6=6 6=5

O8 6=6 6=6 6=5

O9 6=8 6=5

O10 6=5

Table 3. (Non-)equality results in the general case, part 2

• Opr,RBBS,Lleximax(M) = Opr,RBBS,LPST (M) = Ost,RBBS,Lleximax(M) = Ost,RBBS,LPST (M)
= {{a,c}}

Example 6. [Ex 5 cont.] If the ranking R is changed to d, f ,a � c,b,e for some reason
(experts evaluation, preferences, use of a new ranking, etc.), we have:

• Opr,R,Lleximax = {{d, f}}
• Opr,R,LPST = {{a,c},{d, f}}
• Ost,R,Lleximax = {{a,c}}
• Ost,R,LPST = {{a,c}}

Example 7. Let us consider the AF M = (A ,C ) with A = {a,b,c,d} and C =
{(b,a),(a,b), (b,c), (c,b), (b,d), (a,c), (a,d)}. Note that the ranking obtained with
RBBS or RCAT is a� b,c,d. Thus, we have that:

• Oc f ,RBBS,Lleximax(M) = Oc fmax,RBBS,Lleximax(M) = {{a}}
• Oc f card

max ,RBBS,Lleximax
(M) = Oc f card

max ,RBBS,LPST
(M) = {{c,d}}
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Example 8. Let us consider the AF M = (A ,C ) with A = {a,b,c,d} and C =
{(b,a),(a,b), (a,c), (c,a), (b,d), (d,b), (c,d), (d,c)}. Suppose that R is b,c,d � a:

• Oc f card
max ,R,Lleximax

(M) = Ost,R,Lleximax(M) = {{b,c}}
• Oc f card

max ,R,LPST
(M) = Ost,R,LPST (M) = {{b,c},{d,a}}

4. Framework Postulates

In the previous section, we showed how various outputs of the proposed framework relate
to each other. Now, let us introduce a set of postulates that ensure the sensible behaviour
of RSF: anonymity (i.e. the output of a RSF should be defined only on the basis of
the attacks between arguments), dummy (i.e. adding dummy 2 arguments should slightly
change the output of the RSF by adding the dummy arguments into the sets of the output)
and compositionality (i.e. the output of an RSF for an AF should be determined by
joining the output of the same RSF on its connected components). Formally, let M =
(A ,C ),M′ be two AFs and RSF= (S,R,L):

• Anonymity: RSF satisfies Anonymity if and only if for any isomorphism γ s.t.
M′ = γ(M), we have E ∈OS,R,L(M) iff γ(E) ∈OS,R,L(M′) where isomorphism is
defined in the standard way.

• Dummy: RSF satisfies Dummy if and only if for any a /∈A , we have OS,R,L(A ∪
{a},C ) = {X ∪{a} | X ∈ OS,R,L(M)}.

• Compositionality: RSF satisfies Compositionality if and only if we have
OS,R,L(M) = {

⋃
M′∈cc(M) xM′ | for every M′ ∈ cc(M),xM′ ∈ OS,R,L(M′)} where

cc(M) is the set of all connected components of M; a connected component is
a maximal set such that there is a path from each two argument of that set with
respect to C ∪C−1.

In the remainder of the section, we identify broad classes of instantiations of our
framework that satisfy the above postulates. In order to show that postulates are satisfied
by those large classes, we do not base our result on particular selections, rankings or
liftings. Instead, we introduce the principles on selections, rankings and liftings that are
sufficient so that the whole framework behaves in a rational way.

In what follows, we introduce: abstraction-S (i.e. the set of sets of arguments re-
turned by the selection function should be defined only on the basis of the attacks
between arguments), dummy-S (i.e. adding dummy arguments should update the se-
lected sets by adding the dummy arguments to every previously selected sets) and
compositionality-S (i.e. the result of the selection function on an AF should be deter-
mined by joining the output of the same selection function on its connected components).
Last, we can consider for the lifting, the corresponding abstraction-L (i.e. a lifting func-
tion should only be defined on the basis of the attacks between arguments) and dummy-
L (i.e. a lifting function should conserves its ranking after the addition of a dummy ar-
gument).

2Arguments that are not attacked and do not attack other arguments.
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Formally, let M = (A ,C ),M′ be two AFs, S a selection function and L a lifting
function:

• Abstraction-S: S satisfies Abstraction-S if and only if for any isomorphism γ s.t.
M′ = γ(M), we have E ∈ S(M) iff γ(E) ∈ S(M′)

• Dummy-S: S satisfies Dummy-S if and only if for any a /∈A , we have S((A ∪
{a},C )) = {X ∪{a} | X ∈ S(M)}

• Compositionality-S: S satisfies Compositionality-S if and only if S(M) =
{
⋃

M′∈cc(M) sM′ | for every M′ ∈ cc(M),sM′ ∈ S(M′)}
• Abstraction-L: L satisfies Abstraction-L if and only if for any isomorphism

γ such that M′ = γ(M) and any order �, we have (E,E ′) ∈ L(�,M) iff
(γ(E),γ(E ′)) ∈ L(�,M′)

• Dummy-L: L satisfies Dummy-L if and only if for any a /∈A and any order �,
we have (E,E ′) ∈ L(�,M) iff (E ∪{a},E ′∪{a}) ∈ L(�,(A ∪{a},C ))

We can now show that our framework satisfies the postulates for a large class of
instantiations.

Proposition 3. Let RSF= (S,R,L) and M be an AF:

• if L satisfies Abstraction-L, S satisfies Abstraction-S then RSF satisfies Anonymity.
• if L satisfies Dummy-L, S satisfies Dummy-S then RSF satisfies Dummy.

For the last result we recall the Independence postulate for ranking-based semantics,
introduced by [3].

• Independence: Let M = (A ,C ), if R satisfies Independence if and only if for
every M′ = (A ′,C ′) ∈ cc(M) and for every a,b ∈ A ′,(a,b) ∈ R(M′) implies
(a,b) ∈ R(M)

Proposition 4. Let RSF=(S,R,Lleximax) and M be an AF. If S satisfies Compositionality-
S and R satisfies Independence then RSF satisfies Compositionality.

5. Discussion

In this paper we gave the first principled approach to compute viewpoint(s) from a rank-
ing semantics. The proposed framework RSF was introduced formally and analysed with
respect to its modularity and to the principles it abides by. We provided a representation
of the landscape of the different outputs that the RSF can generate for general argumen-
tation graphs and identified some broad classes of instantiations of the RSF that respect
the several postulates.

Our framework generalises several notions from the state of the art. Global evalua-
tion of [13] is a special case of a RSF with S being a given Dung’s semantics, R being a
graded semantics that attaches to each argument a the number of sets in S that a belongs
to, and L being a specific lifting operator. Candidate sets [13] are obtained as another
case of a RSF with S the set of conflict-free sets, R a graded semantics that attaches to
each argument a the number of extensions w.r.t. a given Dung’s semantics that a belongs
to, and L= LPST .

There are many possible choices for selection functions, ranking semantics and lift-
ing operations. Some might not be suitable; some others might be appropriate for some
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but not all applications. This opens another research question which is to study the be-
haviour and the outputs of the framework depending on the selection / ranking / lifting
used. Since this is the first paper that opens the possibility of using this general frame-
work, those questions will be part of our future work.
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