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Abstract. In this paper, we deal with regulations that may exist in multi-agent
systems in order to regulate agent behaviour. More precisely, we discuss two
properties of a regulation, that are its consistency and its completeness. After
having defined what consistency and completeness mean, we propose a way to
consistently complete incomplete regulations.
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1 Introduction

In a society of agents, a regulation, also called policy, is a set of statements (or norms)
which regulate the behaviour of agents by expressing what is obligatory, permitted,
forbidden and under which conditions.

Such a regulation is for instance, the one which applies in most countries in EU
and which states that smoking is forbidden in any public area except specific places
and in such specific places, smoking is permitted. Another example of regulation is the
one which gives the permissions, prohibitions (and sometimes the obligations) of the
different users of a computer system as for file reading, file writing and file execution.

As said before, regulations are means to regulate agent behaviour so that their living
together is possible. But, in order to be useful, regulations must be consistent, and, in
most of the cases, they must also be complete.

Consistency is a property of regulations that has already been given some atten-
tion in the litterature. For instance, as for confidentiality policies, consistency allows to
avoid cases when the user has both the permission and the prohibition to know some-
thing ([1]). More generally, according to [3] which studies consistency of general kind
of regulations, a regulation is consistent if there exists no possible situation which leads
an agent to normative contradictions or dilemmas also called in [21] contradictory con-
flicts (a given behaviour is prescribed and not prescribed, or prohibited and not prohib-
ited) and contrary conflicts (a given behaviour is prescribed and prohibited). Following
this definition, consistency of security policies has then been be studied in [4].

At the opposite, completeness of regulations has received much less attention. [1]
proposes a definition of completeness between two confidentiality policies (for each



piece of information, the user must have either the permission to know it or the pro-
hibition to know it), definition which has been adapted in [5] for multilevel security
policies.

Recently, we have studied the notion of completeness for particular regulations
which are policies regulating information exchanges in a multi-agent system ([6]). A
definition of incompleteness for such policies has been given and a way to reason with
incomplete policies has been defined. The approach taken in this work has been rather
promising and convinced us to extend this work to any kind of regulations. This is the
object of the present paper.

This paper is organised as follows.
Section 2 presents the logical formalism used to express regulations, the definition

of consistency of regulations as well as the definition we give of completeness. Section
3 focuses on the problem of reasoning with an incomplete regulation. Following the
approach that has led to the CWA (Closed World Assumption) in Database area [16],
we present some rules of completion that can be used in order to complete an incomplete
regulation. In section 4, we present three examples of regulations. Finally, section 5 is
devoted to a discussion and extensions of this work will be mentioned.

2 Regulations

Before studying the properties of regulations, we need to model them. Our proposition
is to use a logical formalism so that these properties will be characterized by using the
main notions of this formalism.

Modelling general regulations in logic requires at least modelling deontic notions
(permission, prohibition, obligation) and modelling individuals and properties on indi-
viduals.1 Then, the ideal logical formalism should at least be a first order modal deontic
logic. The complexity of such formalism leads us to restrict the generality of our model.
This is why, like many other people before us ([20], [12], [13], [17], [11]...) we choose
first order logic as a compromise. More precisely the formalism we consider is a typed
first order logic with equality, in which some predicates will be used to model the de-
ontic notions according to the axioms of the simpliest deontic logic, i.e SDL ([2]). This
formalism is described below.

2.1 The language

The alphabet of L will be based on four distinct groups of symbols: constant symbols,
variable symbols, predicate symbols and function symbols. As we want to type the
language, we will distinguish different groups of symbols among those four categories.

Definition 1. We distinguish two sets of constants: ag-constants (constants for agents),
o-constants (other constants) and we distinguish two sets of variables: ag-variables
(variables for agents), o-variables (other variables).

1 It also should allow to model several dimensions of time (time of validity of norms, dead-
lines...) and different types of norms (defeasible norms, Contrary-to-duties ...)...



Definition 2. Predicate symbols are:

– d-predicates2: unary predicates O, P and F (meaning respectively Obligatory, Per-
mitted, Forbidden).

– p-predicates: predicates used to express any kind of property.

Definition 3. Functions symbols are:

– a-functions: used to represent actions of agents. These functions have, at least one
argument (say the first one) which represents the agent who performs the action.

– not(.): unary-function used to represent object level negation.

Definition 4. Terms are defined the following way :

– ag-term : ag-constant or ag-variable
– o-term : o-constant or o-variable
– d-term3 : If f is an a-function with n arguments and if x1 is a ag-term and x2...xn

are ag-terms or o-terms then f(x1, ..., xn) is a d-term. Moreover, if d is a d-term
then not(d) is a d-term too.

Definition 5. Formulas of L are defined recursively as follows:

– Let d be a d-term. Then O(d), P (d), F (d), ¬O(d), ¬P (d) and ¬F (d) are d-
literals4 and formulas of L.

– If t1, ...tn are terms (other than d-terms) and P a p-predicate then P (t1, ..., tn)
and ¬P (t1, ..., tn) are p-literals and formulas of L.

– Let F1 and F2 be formulas of L and x be a variable. Then ¬F1, F1 ∧ F2, F1 ∨ F2,
∀x F1, ∃x F1, F1 → F2 and F1 ↔ F2 are formulas of L.

2.2 Regulation modelling

Definition 6. A rule is a formula of L which is conjunction of clauses l1 ∨ l2 ∨ ... ∨ ln
such that:

– (a) ln is a positive d-literal,
– (b) ∀i ∈ {1, ..., n− 1}, li is a p-literal,
– (c) if x is a variable in ln, then ∃i ∈ {1, ..., n− 1} such that li is a negative literal

and contains the variable x.

In this definition, constraints (a) and (b) allow rules to be conditionals of the form “if
such a condition is true then something is obligatory (resp, permitted, forbidden)”. Con-
straint (c) restricts rules to Range Restricted Formulas (We recall that Range-Restricted
Formulas are a decidable subset of Domain-Independent Formulas which have been
proved to be the only first order formulas having a meaning in modelling [7]).

Definition 7. A regulation is a set of rules.
2 d-predicate stands for “deontic” predicate.
3 d-term stands for “deontic” term.
4 d-literal stands for “deontic” literal.



Let us consider an example which will help us to illustrate our purpose all allong
section 2 and 3.

Example 1. We consider a regulation which regulates the behaviour of a driver in front
of a traffic-light. The language needed is defined as follows :

– A is an ag-constant.
– T is an o-constant.
– x is an ag-variable, t is a o-variable and some other variable will be introduced

when needed
– Green, Orange and Red are o-constants.
– Car, Truck and Bike are o-constants.
– D(.) is a p-predicate indicating that an agent is a driver.
– TL(.) is a p-predicate indicating that an object is a traffic-light.
– C(., .) is a p-predicate that takes for parameters a traffic light and a color and indi-

cates the traffic-light color.
– V (., .) is a p-predicate that takes for parameters a driver and the type of vehicle he

drives.
– IFO(., .) is a p-predicate that takes for parameters an agent and a traffic light and

indicates that a driver is in front of a traffic light.
– S(., .) is an a-function that takes a driver agent and a traffic light for parameters and

that indicates whether this agent stops or not in front of the traffic light.

Let’s now take the three rules (r0): ”When a car-driver is in front of a traffic light
that is red, he has to stop”. (r1): ”When a car-driver is in front of a traffic light that is
orange, it is permitted for him to stop”. (r2): ”When a car-driver is in front of a traffic
light that is green, he must not stop”. These rules can be modelled by :

(r0) : ∀x, t TL(t) ∧ IFO(x, t) ∧ V (x,Car) ∧ C(t, Red)→ O(S(x, t)).
(r1) : ∀x, t TL(t) ∧ IFO(x, t) ∧ V (x,Car) ∧ C(t, Orange)→ P (S(x, t)).
(r2) : ∀x, t TL(t) ∧ IFO(x, t) ∧ V (x,Car) ∧ C(t, Green)→ F (S(x, t)).

2.3 Back to deontic notions

Since we use a first order logic we must express proper axioms that allow us to reason
with the deontic notions. These axioms are the following.

(D) ∀x O(not(x)) → ¬O(x)
(Ax1) ∀x F (x) ↔ O(not(x))
(Ax2) ∀x P (x) ↔ ¬O(not(x)) ∧ ¬O(x)

(NO) ∀x O(not2n(x)) ↔ O(x)

(D) corresponds to the D axiom of SDL. It says that if not performing an action is
obligatory then performing this action is not obligatory.



(Ax1) defines the prohibition from the obligation by stating that it is forbidden to
perform an action iff it is obligatory not to perform it.

(Ax2) defines the permission by stating that performing an action is permitted iff
not performing this action is not obligatory and performing this action is not obligatory
neither.

It must be noticed that our definition of permission does not correspond to the usual
definition of permission defined in SDL. According to SDL, something is permitted if
its negation is not obligatory. However, it has been shown by lawyers [10] that the cases
where permission is bilateral (permission to do and permission not to do) are the only
valid ones. If not bilateral, permission to do comes to obligation to do5. Our definition of
bilateral permission corresponds to the notion of optionality[19] (something is optional
iff neither it or its negation is obligatory).

Finally, (NO) is introduced because we represent deontic notions in a first order
logic and we represent level object negation by the function not.

Definition 8. We define A = {(D), (Ax1), (Ax2), (NO)}

NOTATION Let A1, A2, and A3 be formulas of L. We note: A1 ⊗ A2 instead of
(A1 ∨A2) ∧ ¬(A1 ∧A2) and
A1 ⊗A2 ⊗A3 instead of (A1 ∨A2 ∨A3)∧ ¬(A1 ∧A2)∧ ¬(A2 ∧A3) ∧¬(A1 ∧A3).
This notation means that one and only one of the formulas Ai is true.

Theorem 1. For all d-term d, we have

A ` O(d)⊗ P (d)⊗ F (d)

2.4 Consistency of regulations

Definition 9. A state of the world or a world, W , is modelled by a complete set of
p-literals (i.e for each p-literal l, we have l ∈W or ¬l ∈W ).

Definition 10. The set of domain constraints (i.e, constraints which are supposed to be
true in any state of the world) is denoted Dom. Dom is a set of formulas of L, written
without d-predicates.

Definition 11. A state of world W satisfies the constraints Dom iff W ∧Dom is con-
sistent.

Definition 12. Let R be a regulation, Dom the set of domain constraints and W a
world which satisfies Dom. R is consistent (according to Dom) in W if and only if
W ∧R ∧A is consistent.

Example 2. W0 = {D(A), TL(T ), IFO(A, T ), V (A,Car), C(T,Red)}.6

Dom contains two constraints : (1) a traffic light has a unique color and this color can

5 For instance, when smoking is permitted, this implies that not smoking is also permitted. If
not, that would mean that smoking would be obligatory

6 For readibility, only positive p-literals are explicitely written.



be green, orange or red, (2) a driver drives one and only one type of vehicle.
Dom = {∀t TL(t) → C(t, Green) ⊗C(t, Orange) ⊗C(t, Red), ∀x, y, z V (x, y)
∧V (x, z) → (y = z)}.
W0 is a world that satisfies Dom.
Let’s consider a regulation R0 that contains the three rules (r0), (r1) and (r2). W0 ∪
{O(not2nS(A, T ))}n∈N is a model for W0 ∧R0 ∧A. Therefore W0 ∧R0 ∧A is con-
sistent. Thus, R0 is consistent (according to Dom) in W0.

Definition 13. Let R be a regulation. Dom the set of domain constraints. R is consis-
tent (according to Dom) iff
∀W W ∧Dom consistent ⇒W ∧R ∧A consistent

Proposition 1. R is consistent according to Dom iff there is no set of formulas f of L
without d-literal such that f ∧Dom is consistent andR∧A∧f ∧Dom is inconsistent.

With this proposition, we show the equivalence between consistency defined in this
paper and consistency defined in [3]. Thus, the algorithm proposed there can still be
used.

2.5 Completeness of regulations

Informally, a regulation is totally complete as soon as it prescribes the behaviour any
agent should have in any situation. We can wonder if this definition really makes sense
(can a regulation take into account all possible situations ?). Thus, we suggest to de-
fine a partial completeness: a completeness restricted to a formula φ and a term ψ: φ
represents a proposition and ψ an action regulated. Thus, we want a regulation be com-
plete for φ and ψ iff in any situation where φ is true, it is obligatory (resp. permitted,
forbidden) for an agent to perform ψ.

In what follows, we will use X to express a n-tuple of ag − terms and o− terms.
This leads to the following definition:

Definition 14. Let R be a regulation, W a world regulated by R and consistent with
Dom, φ(X) a formula of L without d-literal and ψ(X) a d-term. R is complete in W
for `, φ(X) and ψ(X) if and only if, for all X

If W ` φ(X) Then

(W ∧R ∧A `O(ψ(X)) or

W ∧R ∧A `P (ψ(X)) or

W ∧R ∧A `F (ψ(X)))

Example 3. Let’s consider the world
W0 = {D(A), TL(T ), IFO(A, T ), V (A,Car), C(T,Red)}. Consider the regulation
R0.
Let’s take φ0(x, t) = IFO(x, t) and ψ0(x, t) = S(x, t).



W0 ` IFO(A, T ) and W0 ∧ R0 ∧ A ` O(S(A, T )). Thus, W0 ` φ0(A, T ) and
W0 ∧R0 ∧ A ` O(ψ0(A, T )) and R0 is complete in W0 for `, φ0(x, t) and ψ0(x, t).

Let’s now consider the world
W1 = {D(A), TL(T ), IFO(A, T ), V (A, Truck), C(T,Red)}. W1 is consistent with
Dom.
W1 ` IFO(A, T ) but W1∧R0∧A 0 O(ψ0(A, T )) and W1∧R0∧A 0 P (ψ0(A, T ))
and W1 ∧R0 ∧ A 0 F (ψ0(A, T )).
Thus, R0 is incomplete in W1 for `, φ0(x, t) and ψ0(x, t). In fact, no rule of the regu-
lation can be applied as the vehicle isn’t a car but a truck.

This definition can be generalized as follows :

Definition 15. LetR be a regulation.R is complete for `, φ(X) and ψ(X) if and only
if for all world W consistent with Dom, R is complete for `, φ(X) and ψ(X) in W .

Completeness is an important issue for a regulation. For a given situation, without
any behaviour stipulated, any behaviour could be observed and thus consequences could
be quite important. With an incomplete regulation, we could (1) detect the ”holes” of the
regulation and send them back to the regulation designers so that they can correct them
or (2) detect the ”holes” of the regulation and allow for those holes some completion
rules that could be applied to correct them. The first solution could be quite irksome to
be applied (the number of holes could be quite important and thus correct them one by
one quite long). Then, we put in place the second solution.

3 Reasoning with incomplete regulations

3.1 Completion rules

In this paragraph, we present a solution which extends the CWA defined by Reiter to
complete first order databases.

According to CWA, if the database is incomplete for a literal l (i.e l is not deduced
in the database), then it can be assumed that its negation (¬l) is deduced. This rule is
motivated by the assumption that a database is used to represent the real world. Since
in the real world, a fact is true or is false (i.e l ⊗ ¬l is a tautology in first order logic)
then a database must deduce a fact or its negation.

Here, given a d-term l, we are not interested in its truth value but in the fact that a
given regulation deduces that it is obligatory, forbidden or tolerated. These three cases
are the only ones because axioms A imply O(l)⊗ F (l)⊗ P (l). Thus, if the regulation
is incomplete for a literal l (i.e it does not deduce neither O(l) nor F (l) nor P (l)) then
it can only be completed by assuming that O(l) can be deduced, or P (l) or F (l). This
leads to the three completion rules which are described in the following.

Furthermore, in order to be as general as possible, we define parameterised com-
pletion rules so that the way of completing by O(l), P (l) or F (l) may depend on some
conditions on the current world.

Let R be a consistent regulation and W be a world regulated by R.



Notation. For more readibility, we will write ”R,W incomplete for X” instead
of: W ` φ(X) and R,W,A 0 O(ψ(X)) and R,W,A 0 P (ψ(X)) and R,W,A 0
F (ψ(X)).

Let EF , EP and EO be three formulas that depend on X .
The three inference rules7 are:

(REF
)

R,W incomplete for X, W ` EF (X)
F (ψ(X))

(REP
)

R,W incomplete for X, W ` EP (X)
P (ψ(X))

(REO
)

R,W incomplete for X, W ` EO(X)
O(ψ(X))

We can complete an incomplete regulation so that ψ(X) is forbidden (REF
), per-

mitted (REP
) or obligatory (REO

) depending on EF (X), EP (X) and EO(X) . We
define here a new inference that we will note `∗8 . Rules of inference for `∗ are the
same as for ` but we add REF

, REP
and REO

.
The next step is to define the conditions for which the regulation is complete and

consistent with this new inference. This will be addressed in the next section.

3.2 Consistency and completeness of the completed regulation

Extending definitions First of all, Then, we have to extend the definition of consis-
tency for the new inference.

Definition 16. Let W be a world consistent with Dom and R a regulation that is con-
sistent for ` in W 9. R is consistent for `∗ in W (according to domain Dom) if and
only if W ∧R ∧A is consistent for `∗.

Then we have to extend the definition of completeness of a regulation with the
inference `∗.

Definition 17. Let R be a regulation and W a world regulated by R and consistent
with Dom .R is complete for `∗, φ(X) and ψ(X) in W if and only if we have : for all
X

If W ` φ(X)Then

(R,W,A `∗ O(ψ(X)) or

R,W,A `∗ P (ψ(X)) or

R,W,A `∗ F (ψ(X)))

This definition can be generalized.
7 These rules should be indexed by φ and ψ but for readibility reasons, this is omitted
8 This inference should be indexed by φ and ψ but for readibility reasons, this is omitted
9 It’s not relevant to study a regulation that is not consistent in W



Definition 18. Let R be a regulation. R is complete for `∗, φ(X) and ψ(X) if and
only if for all world W consistent with Dom, R is complete in W for `∗, φ(X) and
ψ(X).

Sufficient and necessary condition

Proposition 2. Let R be a regulation and W a world regulated by R and consistent
with Dom. R is complete for `∗, φ(X) and ψ(X) in W if and only if for all X

R,W incomplete for X ⇒W ` EF (X) ∨ EP (X) ∨ EO(X)

Proposition 3. A regulation R that is complete for `∗, φ(X) and ψ(X) in a world W
consistent with Dom 10 is consistent for `∗ in W (according to Dom) if and only

∀X If R,W incomplete for X Then

W ` ¬(EF (X) ∧ EP (X)) ∧ ¬(EF (X) ∧ EO(X)) ∧ ¬(EP (X) ∧ EO(X))

Corollary 1. Let R be a regulation and W a world consistent regulated by R with
Dom. R is consistent and complete for `∗, φ(X) and ψ(X) in W if and only if for all
X

If R,W incomplete for X Then W ` EF (X)⊗ EP (X)⊗ EO(X)

Example 4. Let’s consider the world
W1 = {D(A), TL(T ), IFO(A, T ), V (A, Truck), C(T,Red)} from the last example.
R0,W1 is incomplete for (A, T ).
Let’s take EF (x, t) = V (x, Truck) ∧ C(t, Green), EP (x, t) = V (x, Truck) ∧
C(t, Orange) and
EO(x, t) = V (x, Truck) ∧ C(t, Red).
W1 ` EO(A, T ). Thus, R0 is consistent and complete for `∗, φ0(x, t) and ψ0(x, t) in
W1.

This corollary characterizes necessary and sufficient conditions for the three com-
pletion rules (REO

), (REP
) and (REF

) to consistently complete an incomplete reg-
ulation. More precisely, this corollary says that if every time the regulation does not
prescribe a behaviour one and only one Ei is true, then the three completion rules con-
sistently complete the regulation (because one and only one completion rule is applied).

Yet, even if this necessary and sufficent condition is interesting in theory, it is not
really useful for practical purposes. In fact, to verify that this condition is satisfied, we
would have to detect every “hole” in the regulation. This detection is an operation we
want to avoid. Thus, we try to find more general conditions that are still sufficient but
not necessary for the completion rules to consistently complete the regulation.

The following section addresses this point and defines some sufficient but not nec-
essary conditions.

10 More precisely, we should say that a regulation R is complete for `∗, φ(X) and ψ(X) in a
world W consistent with Dom and for the EF (X), EO(X), EP (X) formulas.



Sufficient conditions
Proposition 4. Let R be a regulation and W a world regulated by R and consistent
with Dom. If

∀X W ` φ(X) → EO(X)⊗ EF (X)⊗ EP (X)

then R is consistent and complete for `∗, φ(X) and ψ(X) in W .

Example 5. Let’s consider the worldW2 = {D(A), TL(T ), IFO(A, T ), V (A,Bike),
C(T,Red)}. W2 is consistent with Dom.
Consider the regulation R0. This time, let’s take EF (x, t) = C(t, Green), EP (x, t) =
C(t, Orange) and EO(x, t) = C(t, Red). W2 ` φ0(A, T ) → EO(A, T ). Thus, R0

is consistent and complete for `∗, φ0(X) and ψ0(X) in W2. But we have W1 `
φ0(A, T ) → EO(A, T ) too soR0 is consistent and complete for `∗, φ0(X) and ψ0(X)
in W1. Those more general Ei allow us to have a regulation complete for any type of
vehicle.

We can generalize the last proposition to all worlds consistent with Dom.

Proposition 5. Let R be a regulation. If

∀X ` Dom→ (φ(X) → EO(X)⊗ EF (X)⊗ EP (X))

then R is consistent and complete for `∗, φ(X) and ψ(X).

Corollary 2. Let R be a regulation. If

∀X ` Dom→ EO(X)⊗ EF (X)⊗ EP (X)

then R is consistent and complete for `∗, φ(X) and ψ(X).

Example 6. ∀(x, t) ` Dom → C(t, Red) ⊗ C(t, Green) ⊗ C(t, Orange). Thus, R0

is consistent and complete for `∗, φ0(X) and ψ0(X).
In fact, Dom specifies that a traffic light has one and only one color among three colors
Red, Orange and Green. If there is one Ei for each color, we are sure that whatever
the situation is, we can apply one and only one Ei if there is a “hole” in the regulation.

Another alternative would be to take fixed Ei. For example, we could take one Ei

equal to True and the two others to False.

– Let’s take for example EF = True, EP = False and EO = False. In this
case, according to completion rules, everything that is not specified as obligatory
or permitted by the regulation is forbidden. This strict behaviour could be observed
for regulations that regulate a highly secured system where each action has to be
explicitely authorized before being performed.

– Another case could beEF = False,EP = True andEO = False. We are here in
the opposite situation, meaning that everything that is not obligatory or forbidden is
permitted. This ”tolerant” behaviour could be observed for regulations for dimmed
secured systems where everything that is not forbidden or obligatory is implicitly
permitted. This case is strongly related to the “sealing legal principle” that has been
studied in [18].

– Finally, the last case is EF = False, EP = False and EO = True. In this case,
every action that is not forbidden or permitted has to be performed.



4 Examples of regulations

4.1 Information exchange policies

Consistency and completeness of information exchange policies An information
exchange policy is a regulation which prescribes the behaviour of agents in a multi-
agent system regarding information communication.

To describe such policies, we need one particular binary p-predicate Receive and
one particular ternary function tell.

Receive(x, i) means that agent x receives information i.
tell(x, i, y) represents the event created by an agent x making the action of telling

agent y a piece of information i.
The consistency of such policies is defined by definition 12.
The completeness of such policies is defined by instanciated definition 14 of section

2.4 with the following specific formula:

φ(x, i, y) = Receives(x, i) ∧Agent(y) ∧ ¬(x = y)

and the specific term

ψ(x, i, y) = tell(x, i, y)

This leads to the following definition:

Definition 19. Let P be a information exchange policy and W a world regulated by P .
P is complete for ` in W iff, for all X = (x, y, i)

If W ` Receive(x, i) ∧Agent(y) ∧ ¬(x = y) Then

P,W,A ` O(tell(X)) or

P,W,A ` F (tell(X)) or

P,W,A ` P (tell(X))

Notation introduced in section 3 is reformulated as follows:
Notation. ”P,W incomplete for (x, i, y)” is for:

W ` Receive(x, i) ∧ Agent(y) ∧ ¬(x = y) and P,W,A 0 O(tell(x, i, y)) and
P,W,A 0 P (tell(x, i, y)) and P,W,A 0 F (tell(x, i, y)).

Thus, completion rules are the following:

(REF
)

P,W incomplete for X, W ` E1(X)
F (tell(X))

(REP
)

P,W incomplete for X, W ` E2(X)
P (tell(X))

(REO
)

P,W incomplete for X, W ` E3(X)
O(tell(X))

Results proved in section 3 remain valid. In particular, we still have the three cases:



– EF = True, EP = False and EO = False.
This applies to highly secured multi-agent systems in which any communication
action should be explicitely obligatory or permitted before being performed.

– EF = False, EP = True and EO = False.
This case applies to lowly secured system in which any communication action
which is not explicitely forbidden is permitted.

– EF = False, EP = False and EO = True.
In this case, unless explicit mentioned, sending information is obligatory.

Illustration In order to illustrate this, consider the example of an enterprise in which
there is a manager and two employees. Consider a policy P0with only one rule which
states that ”Managers are required not to inform their employees about any equipment
checking information”.

(R0) ∀(x, y, i) Manager(x) ∧ Employee(y)

∧Receive(x, i) ∧ Topic(i, EqtChk) → F (tell(x, i, y))

Take Dom = {} and consider the following world:

W0 = {Agent(a), Agent(b),Manager(a), Employee(b)

Topic(i1, ExpRisk), Receive(a, i1)}.

In this situation, a is a manager, b an employee. a has received information i1 whose
topic is Explosion Risk.

(W0, Dom,P0,A) is consistent. Thus, P0 is consistent in W0.
However we have W0 ` Receive(a, i1) ∧ Agent(b) ∧ ¬(a = b) but P0,W0,A 0

O(tell(a, i1, b)) and P0,W0,A 0 T (tell(a, i1, b)) and P0,W0,A 0 F (tell(a, i1, b)).
Thus, P0 is incomplete for `.

Here, incompleteness comes from the fact that the policy prescribes the behaviour
of the boss if he/she receives an information about Equipment Verification but it does
not prescribe anything as for information about Explosion Risk. To say it differently,
the policy does not state what the boss should do when he receives information about
Risk Explosion.

In order to complete the previous policy, we could take:
EF (x, y, i) = Topic(i, EqtChk),EP (x, y, i) = False andEO(x, y, i) = Topic(i, ExpRisk).

This comes to force the boss to tell its employees about Risk Exploxion information.
We can verify that P0 is complete and consistent for `∗ in W0.

Let consider now thatDom contains a constraint “An information has one and only
one topic and this topic can be EqtChk, ExpRisk, Meeting or EqtOutOfOrder”. Take:

EF (x, y, i) = Topic(i, EqtChk) ∨ Topic(i,Meeting),
EP (x, y, i) = Topic(i, EqtOutOfOrder) and
EO(x, y, i) = Topic(i, ExpRisk)
We can apply the corollary 2 to conclude that P0 is complete and consistent for `∗.



4.2 Security policies

Security policies are regulations which regulate computer systems access. More pre-
cisely, they prescribe the behaviour of the system users concerning the files reading, or
writing or execution.

The definition of completeness given in section 2 is very general and it can be
instanciated in several ways to be applied to security policies.

For instance, we can consider:

φ1(x, y) = User(x) ∧ Permanent(x) ∧ File(y)

φ2(x, y) = User(x) ∧ Temporary(x) ∧ File(y)

ψ1(x, y) = read(x, y)

ψ2(x, y) = write(x, y)

For instance, a security policy may be complete (in a world W ) for φ1(x, y) and
ψ1(x, y), φ1(x, y) and ψ2(x, y) but may be incomplete for φ2(x, y) and ψ1(x, y),
φ2(x, y) and ψ2(x, y).

This means that the policy completely prescribes the behaviour of permanent users
regarding reading and writing files, but is incomplete as for temporary users and reading
or writing files.

5 Conclusion

In this paper, we addressed the problem of analysing consistency and completeness of
regulations which may exist in a society of agents in order to regulate their behaviour.

More specifically, we have defined a logical framework and showed how to express
a regulation within this framework. Then, consistency and completeness for a regula-
tion have been defined. The definition of completeness we gave is rather general and
we showed how to instanciate it on two particular examples. This constitutes the first
contribution of our work.

We also dealt with incomplete regulations and proposed a way for completing them
by using three inference rules. We have established several results which showed when
these rules consistently complete a regulation. This constitutes the second contribution
of our work. Let us add that this proposal, even we did not develop it here, can be
reformulated within the framework of Reiter’s defaults [14].

The notion of completeness developed here is in fact a kind of “local completeness”,
in the sense that for proposition φ(X) only, we require to have O(ψ(X)), P (ψ(X)) or
F (ψ(X)). That looks close to the notion of completeness introduced in the Database
domain by [15] and [8], who noticed that some of the integrity constraints that are ex-
pressed on a database are what the database should know (Or, to say it differently, these
are rules about what should be deduced in the database). For instance, the integrity con-
straint expressing that ”any employee has got a phone number, a fax number or a mail



adress” expresses in fact that, for any employee known by the database, the database
knows its phone number, its fax number or its mail address11. As first mentioned by Re-
iter [15], this integrity constraint expresses a kind of local completeness of the database.
Reiter’s defaults can be used in order to complete such a database in case of incomplete-
ness. For instance, one of the rules can be that if the database does contain any required
information (no phone number, no fax number, no mail address) for a given employee
but if the department that employee works in is known, then it can be assumed that its
phone number is the phone number of its department.

Studying the formal link between the notion of completeness introduced in this
paper and that notion of local completeness constitutes one interesting extension of this
work.

Furthermore, in order to deal with more general regulations, this present work must
be extended. In particular, we have to extend it by considering the notion of time. In-
deed, as it is shown in [9], this issue is very important when speaking about obligations
and we will have to consider different types of time among which, at least, the time of
validity of the norms and the deadlines beared on the obligations.

Let us say that we forsee to reformulate the work presented here by using a deon-
tic modal logic. This will allow us to deal with more general kind of regulations by
allowing us to imbricate modalities of, for instance obligation and time.
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