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Abstract—In this paper, we deal with regulations that may exist
in multiagent systems in order to regulate agent behaviour. More
precisely, we discuss two properties of regulations, consistency
and completeness. After defining what consistency and complete-
ness mean, we propose a way to consistently complete incomplete
regulations. This contribution considers that regulations are
expressed in a first order deontic logic. We will focus on
particular regulations: information exchange policies.

Index Terms—modal logic, regulations, completeness, consis-
tency

I. INTRODUCTION

In a society of agents, a regulation is a set of statements, or
norms, which rule the behaviour of agents by expressing what
is obligatory, permitted, forbidden and under which conditions.

Such a regulation is for instance the one which applies in
most countries in EU: smoking is forbidden in any public area
except specific places and in such specific places, smoking is
permitted. Another example of regulation is an information
exchange policy: it gives the permissions, prohibitions and
obligations regarding information communication.

Regulations are means to regulate agent behaviour so that
the agents can live together. But in order to be useful,
regulations must be consistent and, in most cases, they must
also be complete.

Consistency is a property of regulations that has already
been given some attention in the literature. For instance, as
for confidentiality policies, consistency allows to avoid cases
when the user has both the permission and the prohibition to
know something [1]. More generally, according to [2] which
studies consistency of general kind of regulations, a regulation
is consistent if there is no possible situation which leads
an agent to normative contradictions or dilemmas (a given
behaviour is prescribed and not prescribed, or prohibited and
not prohibited) and contrary conflicts (a given behaviour is
prescribed and prohibited).

Completeness of regulations has received much less atten-
tion. [1] proposes a definition of completeness between two
confidentiality policies , definition which has been adapted in
[3] for multilevel security policies. More recently, we have
studied the notion of completeness for regulations in [4]. The
formal language used in those papers is classical first-order
logic (FOL) following the ideas developed in [2], although
modal logic is most of the time the formal language chosen
for modeling deontic notions.This is the reason why, in this

present paper, we aim at using first order modal logic [5] to
express regulations in a more elegant manner. Our objective is
thus to reformulate the work described in [4] in a first-order
modal framework.

This paper is organised as follows. Section II presents the
logical formalism used to express regulations, the definitions
of consistency and completeness of regulations. Section III
focuses on the problem of reasoning with an incomplete
regulation. Following the approach that has led to the default
logic [6] for default reasoning, we present defaults that can be
used in order to complete an incomplete regulation. For each
of these sections, results obtained for general regulations are
applied to information exchange policies. Finally, section IV
is devoted to a discussion and extensions of this work will be
mentioned.

II. REGULATIONS

A. Language, semantics and axiomatics

The alphabet of FOSDL (First-Order Standard Deontic
Logic) is based on the following sets of non logical symbols:
a set P of predicate symbols, a set F of function symbols
and a modality symbol O representing obligation. The set
of functions with arity 0 is called the constants set denoted
by C. We define also the following logical symbols: a set
V of variable symbols, ¬, ∨, ∀, ( and ). We call a term a
variable or the application of a function symbol to one or
several terms. We will use roman uppercase letters as predicate
symbols, roman lowercase letters as function symbols and
{x1, . . . , xi, . . .} as variable symbols.

Definition 1: The formulae of FOSDL are defined recur-
sively as follows:

• if t1, . . . , tn are terms and P a predicate symbol with
arity n, then P (t1, . . . , tn) is a formula of FOSDL.

• if ϕ is a formula of FOSDL, then Oϕ is a formula of
FOSDL.

• if ψ1 and ψ2 are formulae of FOSDL and x1 a variable
symbol, then ¬ψ1, ψ1 ∨ ψ2, ∀x1 ψ1 are formulae of
FOSDL.

2.
We define classically the ∧, → and ↔ operators from ¬, ∨

and ∀. If ψ1, ψ2 and ψ3 are FOSDL formulae, ψ1⊗ψ2⊗ψ3 ≡
(ψ1 ∧ ¬ψ2 ∧ ¬ψ3) ∨ (¬ψ1 ∧ ψ2 ∧ ¬ψ3) ∨ (¬ψ1 ∧ ¬ψ2 ∧ ψ3).



The modalities for permission, noted P , and prohibition,
noted F , are defined from O in the following way: Fϕ ≡ O¬ϕ
and Pϕ ≡ ¬Oϕ ∧ ¬O¬ϕ.

It must be noticed that our definition of permission does
not correspond to the usual definition of permission defined
in SDL, but is bilateral.

A formula of FOSDL without modality is said to be objec-
tive. Terms or formulae of FOSDL without variable symbols
are said to be ground. A formula of FOSDL without the ∨,
∧, ⊗, → nor ↔ connectives is said to be a literal.

Finally, we will call a ground substitution any function χ :
V → HU where HU is the set of all possible instantiations
of objective literals. If ϕ(x) is a FOSDL formula with free
variable x, ϕ(χ(x)) is the formula ϕ in which occurrences of
x have been replaced by χ(x).

Semantics is classically based on Kripke models
〈W,RO,D, I〉 where 〈W,RO,D〉 is a frame and I an
first-order interpretation on 〈W,RO,D〉. Details can be
found in [7]. A formal system is also detailed in [7] and it
has been proved to be sound and complete in [5].

We will define a proof of ϕ from the set of formulae Σ,
noted Σ ` ϕ, as a sequence of formulae such that each one
of them is an axiom, a formula of Σ, or produced by the
application of an inference rule on previous formula.

In the following, ⊥ will denote every formula that is
a contradiction and > will denote every formula that is a
tautology.

B. Regulation and integrity constraints modelling

In this section we define the notion of regulation. First, we
define the notion of rule, which is the basic component of
a regulation. In this definition, rules have a general form, in
particular they can be conditional.

Definition 2: A rule is a formula of FOSDL of the form
∀−→x l1 ∨ . . . ∨ ln with n ≥ 1 such that:

1) ln is of the form Oϕ or ¬Oϕ where ϕ is an objective
literal

2) ∀i ∈ {1, . . . , n − 1}, li is an objective literal or the
negation of an objective literal

3) if x is a variable in ln, then ∃i ∈ {1, . . . , n − 1} such
that li is a negative literal and contains the variable x

4) ∀−→x denotes ∀x1 . . . ∀xm where {x1, . . . , xm} is the set
of free variables appearing in l1 ∧ . . . ∧ ln−1.

2.
In this definition, constraints (1) and (2) allow rules to be

conditionals of the form “if such a condition is true then some-
thing is obligatory (resp. permitted or forbidden)”. Constraint
(3) restricts rules to range-restricted formulae. Finally, rules
are sentences, i.e. closed formulae, as expressed by constraint
(4). Notice also that we restrict in the definition of rules the
formulae that can be defined as obligatory in the regulation:
only objective literals can be obligatory or not obligatory.

We will write ∀−→x l1∨ . . .∨ ln−1∨Pϕ as a shortcut for the
two rules {∀−→x l1 ∨ . . . ∨ ln−1 ∨ ¬Oϕ,∀−→x l1 ∨ . . . ∨ ln−1 ∨
¬O¬ϕ}.

A regulation is defined as a set of rules.

Let us consider an example which will help us to illustrate
our purpose all along the paper.

Example 1: We consider information exchange policy as a
specific regulation. This policy rules the behaviour of agents
that receive pieces of information. In this particular example,
the policy rules the information exchanges between employees
in a company.

The language needed is defined in the following. A, B , I ,
EqtCheck (representing Equipment Check), ExpRisk (repre-
senting Explosion Risk), EqtOOO (representing Equipment
Out Of Order), Meeting , Quiet and Crisis are 0-arity func-
tions, i.e. constants.

Predicate symbols are: Empl(.) which indicates that a term
is an employee, Info(.) which indicates that a term is a piece
of information, Topic(., .) which takes for parameter a piece
of information and a topic and indicates what is the topic
of the piece of information, Context(.) which indicates the
current context in which pieces of information are exchanged,
Receive(., .) which takes for parameter a manager and a piece
of information and indicates that a manager receives a piece of
information, Send(., ., .) which takes for parameter a manager,
a piece of information and an employee and indicates that the
manager tells the employee the piece of information.

Let us now take the three rules (r0): “In a quiet context,
pieces of information dealing with Explosion Risk are required
to be sent to other employees”, (r1): “In a quiet context, pieces
of information dealing with Equipment Check are allowed to
be sent to other employees” and (r2): “In a quiet context,
pieces of information dealing with Equipment Out Of Order
are required not to be sent to other employees”.

(r0) ∀x∀y∀i Context(Quiet) ∧ Empl(x) ∧ Empl(y)∧
¬(x = y) ∧ Info(i) ∧ Receive(x, i)
∧ Topic(i,ExpRisk)→ OSend(x, i, y)

(r1) ∀x∀y∀i Context(Quiet) ∧ Empl(x) ∧ Empl(y)∧
¬(x = y) ∧ Info(i) ∧ Receive(x, i)
∧ Topic(i,EqtCheck)→ PSend(x, i, y)

(r2) ∀x∀y∀i Context(Quiet) ∧ Empl(x) ∧ Empl(y)∧
¬(x = y) ∧ Info(i) ∧ Receive(x, i)
∧ Topic(i,EqtOOO)→ FSend(x, i, y)1

2.

C. Consistency of regulations

We now define a first notion for regulations, consistency.
Like in [2], we will say that a regulation is consistent iff
we cannot derive dilemmas (like OStop(x, t)∧P¬Stop(x, t))
nor conflicts (like OStop(x, t) ∧ FStop(x, t)). Consistency
of a regulation is evaluated under integrity constraints, i.e. a
set of closed objective formulae which represent for instance
physical constraints or domain constraints. In the following,
we will note such an integrity constraints set IC.



First, we define consistency of a regulation in a particular
state of the world, which is a complete and consistent set
of objective ground literals. Intuitively, states of the world are
syntactic representations of classical first-order interpretations.
Will define then global consistency for a regulation.

Definition 3 (consistency): Let ρ be a regulation, IC a set
of integrity constraints and s a state of the world consistent
with IC. ρ is consistent according to IC in s iff ρ, IC, s 6` ⊥.
ρ is consistent according to IC iff for all states of the world
s such that s, IC 6` ⊥ then ρ, IC, s 6` ⊥.

2.
Example 2: Let us resume example 1. Let us consider that

IC contains two constraints: (1) a piece of information has one
and only one topic, (2) the context is either Quiet or Crisis.
Thus, IC = {∀i∀x∀y Info(i) ∧ Topic(i, x) ∧ Topic(i, y) →
(x = y), Context(Quiet)⊗ Context(Crisis)}.

Let s0 be the state of the world {Context(Quiet),
Empl(A), Empl(B), Info(I), Topic(I,ExpRisk),
Receive(A, I)}.

First, s0 is such that s0, IC 6` ⊥. Let us consider a
regulation ρ that contains the three rules (r0), (r1) and (r2).
In this case, ρ, IC, s0 6` ⊥ (because the only deontic literal
that can be deduced from ρ, IC and s0 is OSend(A, I,B)).
Thus, ρ is consistent according to IC in s0.

2.

D. Completeness of regulations

Informally, a regulation is totally complete as soon as it
prescribes the behaviour any agent should have in any situa-
tion. We can wonder if this definition really makes sense: can
or must a regulation take into account all possible situations?
Thus, we suggest to define a partial completeness restricted
to two ground formulae ϕ and ψ: ϕ represents a particular
situation in which we want to evaluate the regulation and ψ a
predicate ruled by the regulation. Thus, we want a regulation
be complete for ϕ and ψ iff in any situation where ϕ is true,
it is obligatory (resp. permitted, forbidden) that ψ.

This leads to the following definition:
Definition 4: Let IC be a set of integrity constraints, ρ

be a regulation consistent according to IC and s a state
of the world consistent with IC. Let ϕ(−→x ) and ψ(−→x ) two
objective formulae, −→x representing free variables in ϕ and
ψ(−→x ) meaning that the free variables in ψ are a subset of
−→x . ρ is (ϕ(−→x ), ψ(−→x ))-complete according to IC in s for
` iff for all ground substitutions χ such that s ` ϕ(χ(−→x ))
ρ, s ` Oψ(χ(−→x )) or ρ, s ` Fψ(χ(−→x )) or ρ, s ` Pψ(χ(−→x )).

2.
Example 3: Consider ρ, IC and s0 defined in example 2.

s0 is consistent with IC and ρ, s ` O(Send(A, I,B)).
Let’s take ϕ0(x, i, y) ≡ Empl(x) ∧ Empl(y) ∧ ¬(x =
y) ∧ Info(i) ∧ Receive(x , i) and ψ0(x, i, y) ≡ Send(x, i, y).
s0, IC ` ϕ0(A, I,B) and ρ, IC, s0 ` Oψ0(A, I,B). Thus, ρ
is (ϕ0(x, i, y), ψ0(x, i, y))-complete according to IC in s0 for
`.

Let us now consider the state of the world s1 = {Empl(A),
Empl(B), Info(I), Context(Crisis), Topic(I,ExpRisk),

Receive(A, I))}. s1 is consistent with IC. s1, IC `
ϕ0(A, I,B) but ρ, IC, s1 6` Oψ0(A, I,B), ρ, IC, s1 6`
Pψ0(A, I,B) and ρ, IC, s1 6` Fψ0(A, I,B). Thus, ρ is
(ϕ0(x, i, y), ψ0(x, i, y))-incomplete according to IC in s1 for
`. In fact, no rule can be applied as the crisis context is not
taken into consideration in the policy ρ.

2.
The previous definition is easily generalized by using all the

state of the worlds consistent with IC and by verifying that
ρ is complete in each of those states.

Completeness is an important issue for a regulation. For
a given situation, without any behaviour stipulated, any be-
haviour could be observed and thus consequences could be
quite important. In order to deal with an incomplete regulation,
we could (1) detect the ”holes” of the regulation and send
them back to the regulation designers so that they can correct
them or (2) detect the ”holes” of the regulation and apply on
those holes some completion rules to correct them. The first
solution could be quite irksome to be applied (the number of
holes could be quite important and thus correct them one by
one quite long). Therefore, we put in place the second solution.

III. REASONING WITH INCOMPLETE REGULATIONS

A. Defaults for completing regulation
Reasoning with incomplete information is a classical prob-

lem in logic and artificial intelligence: can we infer something
about an information that is not present in a belief base? Sev-
eral approaches have been defined, but we are here interested
in one: default reasoning.

Default logic is a non-monotonous extension of first-order
logic introduced by Reiter [6] in order to formalize default

reasoning. A default d is a configuration
P : J1, . . . , Jn

C
where

P, J1, . . . , Jn, C are first-order closed sentences. P is called
the prerequisite of d, J1, . . . , Jn the justification of d and
C the consequence of d. A default theory ∆ = (D,F ) is
composed of a set of objective closed formulae F (facts) and
a set of defaults. Using defaults we obtain extensions, i.e.
closed sets of formulae that are deduced monotonically and
non-monotonically from F .

Here, we are not interested in the fact that a given objective
formula ψ is believed but in the fact that a given regulation
deduces that it is obligatory, forbidden or tolerated (those cases
are the only ones due to the D axiom of O). In the following,
let IC be a set of integrity constraints, ρ be a consistent
regulation according to IC and s be a state of the world
consistent with IC. Let ϕ(−→x ) and ψ(−→x ) be two objective
formulae verifying definition 4.

Definition 5: Let EF (−→x ), EP (−→x ) and EO(−→x ) be three ob-
jective formulae such that their respective set of free variables
is in −→x . We define a set of configuration as follows:

(DFϕ,ψ)
ϕ(−→x ) ∧ EF (−→x ) : Fψ(−→x )

Fψ(−→x )

(DPϕ,ψ)
ϕ(−→x ) ∧ EP (−→x ) : Pψ(−→x )

Pψ(−→x )

(DOϕ,ψ)
ϕ(−→x ) ∧ EO(−→x ) : Oψ(−→x )

Oψ(−→x )



A (ϕ(−→x ), ψ(−→x ))-completeness default theory for ρ and s
is a default theory ∆ρ,s(ϕ(−→x ), ψ(−→x )) whose surface form is
given by ({DFϕ,ψ, DPϕ,ψ, DOϕ,ψ}, ρ ∪ s).

2.
We can complete an incomplete regulation so that ψ(−→x ) is

forbidden (DFϕ,ψ), permitted (DPϕ,ψ) or obligatory (DOϕ,ψ)
depending on EF (−→x ), EP (−→x ) and EO(−→x ). We define a new
inference relation `∗ defined as follows:

Definition 6: Let γ be a formula of FOSDL. ρ, s `∗ γ
iff γ ∈

⋃
E∆ρ,s(ϕ(−→x ),ψ(−→x )) where

⋃
E∆ρ,s(ϕ(−→x ),ψ(−→x )) is the

union of all extensions of ∆ρ,s(ϕ(−→x ), ψ(−→x )).
2.

B. Consistency and completeness of the completed regulation

In order to define consistency and completeness with `∗,
we extend the previous definitionsby using `∗ instead of ` in
those definitions. To distinguish the new notions of consistency
and completeness from the old ones, we will use ∗ as a prefix
(for instance we will write “∗-consistency”) or write explicitly
“for `∗” (for instance, we will write “consistent for `∗”).

Proposition 1: Let us consider a set of integrity constraints
IC, a regulation ρ consistent according to IC and a state of
the world s consistent with IC and such that ρ∪s is consistent.
Let ϕ(−→x ) and ψ(−→x ) be two objective formulae verifying
definition 4 and ∆ρ,s(ϕ(−→x ), ψ(−→x )) the corresponding default
theory.

The following propositions are equivalent:
1) for every vector −→a of ground terms, if s ` ϕ(−→a ), ρ, s 6`

Oψ(−→a ), ρ, s 6` Pψ(−→a ) and ρ, s 6` Fψ(−→a ) (i.e. ρ is
not (ϕ(−→a ), ψ(−→a ))-complete in s), then s ` EF (−→a ) ⊗
EP (−→a )⊗ EF (−→a ).

2) ρ is consistent and (ϕ(−→x ), ψ(−→x ))-complete for `∗ in s.
2.

The proof is given in[7].
This proposition characterizes necessary and sufficient con-

ditions for the defaults to consistently complete an incomplete
regulation. More precisely, this proposition says that if every
time the regulation does not prescribe a behaviour one and
only one Ei is true, then the defaults consistently complete
the regulation (because one and only one default is applied
for a particular ψ(−→a )).

Example 4: Consider the state of the world
s1 = {Empl(A), Empl(B), Context(Crisis),
Info(I), Topic(I,ExpRisk), Receive(A, I))} from
the last example. ρ is incomplete in s1 for
ϕ0(A, I,B) ≡ Empl(A) ∧ Empl(B) ∧ Receive(A, I)
and ψ0(A, I,B) ≡ Send(A, I ,B). Let’s take
EF (x, i, y) = Context(Crisis)∧ (Topic(I,EqtOOO) ∨
Topic(I,EqtChk) ∨ Topic(I,Meeting)), EP (x, i, y) = ⊥
and EO(x, i, y) = Context(Crisis) ∧ Topic(I,ExpRisk),
then s1 ` EO(A, I,B). Thus, ρ is consistent and
(ϕ0(x, i, y), ψ0(x, i, y))-complete for `∗ in s1.

2.
Even if this necessary and sufficient condition is interesting

in theory, it is not really useful for practical purposes. In fact,
to verify that this condition is satisfied, we would have to

detect every ”hole” in the regulation. This detection is an op-
eration we want to avoid. Finding more general conditions that
are still sufficient but not necessary for the completion rules
to consistently complete the regulation is possible, see [7].
Another alternative would be to take fixed Ei. For example,
we could take one Ei equal to > and the two others to ⊥ which
lead to either highly or dimmed secured systems depending on
the Ex chosen to be equivalent to >.

IV. CONCLUSION

In this paper, we have addressed the problem of analysing
consistency and completeness of regulations which may exist
in a society of agents in order to rule their behaviour. We
have defined a modal logical framework and showed how
to express regulations, consistency and completeness within
this framework. We also dealt with incomplete regulations
and proposed a way for completing them by using defaults.
We have established several results which show when these
defaults consistently complete a regulation. These notions have
been illustrated on an example of information exchange policy
using multiple contexts.

This framework has now to be tested on a real-world
problem. The example used in this paper is really simple,
particularly considering the number of agents and actions
involved. It may be interesting for instance to use ad hoc first-
order languages like description logics to model a domain,
to show that the framework is sufficiently expressive to be
applied on large systems. Given this objective, notice that
complexity and decidability problems remain to be tackled.
Furthermore, in order to deal with intelligent agents, we have
to extend it by considering more notions, among them time
and action.Finally, we developed a really simple model of the
deontic notions by using SDL and lots of classical problem
in deontic logic are not handled here: norms with exceptions,
contrary-to-duties, collective obligations etc. Another exten-
sion of this work will be to define a logic that can deal with
these problems.
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