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Abstract

Many reasoning task and combinatorial prob-
lems exhibit symmetries. Exploiting such sym-
metries has been proved to be very important
in reducing search efforts. Breaking symme-
tries using additional constraints is currently
one of the most used approaches. Extending
such symmetry breaking techniques to quanti-
fied boolean formulae (QBF) is a very challeng-
ing task. In this paper, an approach to break
symmetries in quantified boolean formulae is
proposed. It makes an original use of univer-
sally quantified auxiliary variables to generate
new symmetry breaking predicates and a new
ordering of the QBF prefix is then computed
leading to a new equivalent QBF formula with
respect to validity. Experimental evaluation of
the state-of-the-art QBF solver semprop shows
significant improvements (up to several orders
of magnitude) on many QBFs instances.

1 Introduction

Solving Quantified Boolean Formulae (QBF) has become
an attractive and important research area over the last
years. Such increasing interest might be related to differ-
ent factors, including the fact that many important ar-
tificial intelligence (AI) problems (planning, non mono-
tonic reasoning, formal verification, etc.) can be reduced
to QBF which is considered as the canonical problem of
the PSPACE complexity class. Another important rea-
son comes from the recent impressive progress achieved
in the practical resolution of the satisfiability problem.
Many solvers for QBFs have been proposed recently
(e.g. [Giunchiglia et al., 2001b; Zhang and Malik, 2002;
Letz, 2002; Benedetti, 2005]), most of them are obtained
by extending satisfiability results. This is not surpris-
ing, since QBFs is a natural extension of the satisfia-
bility problem (deciding whether a boolean formula in
conjunctive normal form is satisfiable or not), where the
variables are universally or existentially quantified.
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Some classes of QBFs encoding real-world application
and/or AI problems contain many symmetries. Exploit-
ing such structures might lead to dramatically reducing
the search space. Symmetries are widely investigated
and considered as an important task to deal with the
intractability of many combinatorial problems such as
constraint satisfaction problems (CSP) and satisfiability
of boolean formula (SAT).

A previous work on symmetry breaking predicates for
QBF was proposed by [Audemard et al., 2004]. The au-
thors use an hybrid QBF-SAT approach where the set
of generated breaking predicates is separated from the
QBF formula. Consequently, this approach is solver de-
pendent. Indeed, to solve the hybrid QBF-SAT formula,
DPLL-based QBF solvers need to be adapted, whereas,
other kind of solvers (e.g. Skizzo) can not be used in this
context.

In this paper, we propose a preprocessing approach
which is solver independent. Taking as input a QBF
with symmetries, we generate a new QBF formula
without symmetries equivalent to the original one wrt.
validity. To break such symmetries we extend the
SAT approach proposed by Crawford [Crawford, 1992;
Aloul et al., 2002].

The paper is organized as follows. After some prelimi-
nary definitions on quantified boolean formulae, symme-
try framework in QBFs is presented. Then a symmetry
breaking approach for QBF is described. An experimen-
tal validation of our approach is given, showing signifi-
cant improvements over a wide range of QBF instances.
Finally, promising paths for future research are discussed
in the conclusion.

2 Technical Background

2.1 Quantified boolean formulae

Let P be a finite set of propositional variables. Then, LP

is the language of quantified Boolean formulae built over
P using ordinary boolean formulae (including proposi-
tional constants ⊤ and ⊥) plus the additional quantifi-
cation (∃ and ∀) over propositional variables.
In this paper, we consider quantified boolean formula Φ
in the prenex clausal form Φ = QkXk, . . . , Q1X1Ψ (in
short QXΨ, QX is called a prefix and Ψ a matrix) where



Qi ∈ {∃, ∀}, Xk, . . . , X1 are disjoint sets of variables and
Ψ a boolean formula in conjunctive normal form. Con-
secutive variables with the same quantifier are grouped.
We define V ar(Φ) =

⋃
i∈{1,...,k} Xi the set of variables

of Φ and V arU(Φ) = {x|x ∈ V ar(Φ), x is universal}.
A literal is the occurrence of propositional variable in
either positive (l) or negative form (¬l). Lit(Φ) =⋃

i∈{1,...,k} Lit(Xi) the set of complete literals of Φ,

where Lit(Xi) = {xi,¬xi|xi ∈ Xi}. The set of liter-
als are encoded using integer numbers i.e. the positive
(resp. negative) literal l (resp. ¬l) is associated to a
positive number α (resp. −α). Then, we define |l| as the
absolute value of l.

For a given variable x ∈ V ar(Φ) st. x ∈ Xk, we define
rank(x) = k. Variables appearing in the same quantifier
group are equally ranked.

2.2 Symmetries in Quantified Boolean
Formulae

Let Φ = Q1X1, . . . , QmXmΨ be a QBF and σ a permu-
tation over the literals of Φ i.e. σ : Lit(Φ) 7→ Lit(Φ).
The permutation σ on Φ is then defined as follows:
σ(Φ) = Q1σ(X1), . . . , Qmσ(Xm)σ(Ψ). For example, if
Ψ is in clausal form then σ(Ψ) = {σ(c)|c ∈ Ψ} and
σ(c) = {σ(l)|l ∈ c}.

Definition 1 Let Φ = Q1X1, . . . , QmXmΨ be a quanti-
fied boolean formula and σ a permutation over the literals
of Φ. σ is a symmetry of Φ iff

1. ∀x ∈ Lit(Φ), σ(¬x) = ¬σ(x)

2. σ(Φ) = Φ i.e σ(Ψ) = Ψ and ∀i ∈
{1, . . . , m} σ(Xi) = Xi.

Let us note that each symmetry σ of a QBF Φ is also
a symmetry of the boolean formula Ψ. The converse is
not true. So the set of symmetries of Φ is a subset of the
set of symmetries of Ψ.

A symmetry σ can be seen as a list of cycles (c1 . . . cn)
where each cycle ci is a list of literals (li1 . . . lini

) st.

∀1 ≤ k < ni, σi(lik
) = lik+1

and σi(lini
) = li1 . We define

|σ| =
∑

ci∈σ |ci| where |ci| is the number of literals in ci.
It is well known that breaking all symmetries might

lead in the general case to an exponential number of
clauses [Crawford et al., 1996]. In this paper, for effi-
ciency and clarity reasons, we only consider symmetries
with binary cycles. Our approach can be extended to
symmetries with cycles of arbitrary size.

Detecting symmetries of a boolean formula is equiva-
lent to the graph isomorphism problem [Crawford, 1992;
Crawford et al., 1996] (i.e. problem of finding a one
to one mapping between two graphs G and H). This
problem is not yet proved to be NP-Complete, and no
polynomial algorithm is known. In our context, we deal
with graph automorphism problem (i.e. finding a one
to one mapping between G and G) which is a particular
case of graph isomorphism. Many programs have been
proposed to compute graph automorphism. Let us men-
tion Nauty [McKay, 1990], one of the most efficient in
practice.

Recently, Aloul et al. [Aloul et al., 2002] proposed an
interesting technique that transforms CNF formula Ψ
into a graph GΨ where vertices are labeled with colors.
Such colored vertices are considered when searching for
automorphism on the graph (i.e. vertices with different
colors can not be mapped with each others).

In [Audemard et al., 2004], a simple extension to QBFs
formulae is given. Such extension is simply obtained
by introducing a different color for each set of vertices
whose literals belong to the same quantifier group. In
this way, literals from different quantifier groups can not
be mapped with each others (see the second condition
of the definition 1). Then, to detect such symmetries,
Nauty is applied on the graph representation of the
QBF.

3 Breaking symmetries in QBFs

Symmetry breaking has been extensively investigated
in the context of constraint satisfaction and satisfia-
bility problems. The different approaches proposed to
break symmetries can be conveniently classified as dy-
namic and static schemes. Dynamic breaking gener-
ally search and break symmetries using breaking predi-
cates or not [Benhamou and Sais, 1994; Gent and Smith,
2000]. Static breaking schemes refer to techniques that
detect and break symmetries in a preprocessing step.
For SAT, symmetries are generally broken by generating
additional constraints, called symmetry breaking predi-
cates (SBP) [Crawford, 1992; Aloul et al., 2002]. Such
SBP eliminates all models from each equivalence class
of symmetric models, except one. However, in the gen-
eral case, the set of symmetry predicates might be of
exponential size. In [Aloul et al., 2002], Aloul et al ex-
tend the approach of Crawford [Crawford, 1992] by using
group theory and the concept of non-redundant gener-
ators, leading to a considerable reduction in the SBP
size.

We briefly recall the symmetry breaking technique in-
troduced by Crawford in [Crawford et al., 1996]. Let
Ψ be a CNF formula and σ = {(x1, y1) . . . (xn, yn)} a
symmetry of Ψ. The SBP associated to σ is defined as
follows:
x1 ≤ y1

(x1 = y1) → x2 ≤ y2

. . .
(x1 = y1) . . . (xn−1 = yn−1) → xn ≤ yn

The SBP defined above expresses that, when for all
i ∈ {1 . . . k − 1} xi and yi are equivalent (get the same
truth value) and xk is true, then yk must be assigned to
true. This reasoning can be extended to QBF provided
that the symmetry follows the prefix ordering.

3.1 Motivation

In the following example, we show the main difficulty be-
hind the extension of SAT symmetry breaking predicates
(SBP) to QBFs.



Example 1 Let Φ = ∀x1y1∃x2y2 Ψ1 be a QBF where
Ψ = (x1 ∨¬x2)∧ (y1 ∨¬y2)∧ (¬x1 ∨¬y1 ∨x2 ∨ y2). The
permutation σ1 = {(x1, y1)(x2, y2)} is a symmetry of Φ.
Breaking the symmetry σ1 using the traditional approach,
induces the following SBP : (¬x1∨y1)∧(¬x1∨¬x2∨y2)∧
(y1 ∨ ¬x2 ∨ y2). As the clause (¬x1 ∨ y1) is universally
quantified, the new obtained QBF by adding the SBP to
the original QBF leads to an invalid QBF formula.

To overcome this main drawback, in addition to the clas-
sical SBP , new breaking predicates (called QSBP ) are
generated for symmetries containing at least one univer-
sal cycle (see definition 3). In such a case, some variables
become existentially quantified. These variables will be
associated to new additional universally quantified vari-
ables. There relationships are expressed in the generated
QSBP . To safely add such QSBP to the original QBF
formula, a new prefix ordering is computed.

After a formal presentation of our approach for a sin-
gle symmetry, a generalization to arbitrary set of sym-
metries is then described.

3.2 Breaking a single symmetry

Now, we formally introduce our approach for breaking
symmetries in QBF.

Definition 2 Let Φ = Q1X1 . . .QiXi . . . QmXm Ψ be
a QBF and σ a symmetry of Φ. We define σ ↑ Xi

as the sub-sequence of the symmetry σ restricted to the
cycles involving variables from Xi. Then, the symme-
try σ can be rewriten following the prefix ordering as
{σ1 . . . σi . . . σm} such that σi = σ ↑ Xi. When σ respect
the prefix ordering, it is called p-ordered.

In the sequel, symmetries are considered to be p-
ordered.

Example 2 Let Φ = ∃x2y2∀x1y1∃x3y3 (¬x1∨y1∨x3)∧
(x1∨¬x2∨y3)(x1∨x2∨x3)∧(¬x3∨¬y3)∧(x1∨x2)(x1∨
y2) ∧ (¬x1 ∨ ¬y1 ∨ ¬x2 ∨ ¬y2) Φ has a symmetry σ =
{(x1, y1)(x2, y2)(x3, y3)}. Reordering σ with respect to
the prefix leads to σ = {σ1, σ2, σ3} st. σ1 = σ ↑ X1 =
(x2, y2), σ2 = σ ↑ X2 = (x1, y1), σ3 = σ ↑ X3 = (x3, y3).

Definition 3 Let Φ be a QBF, σ a symmetry of Φ and
c = (x, y) is a cycle of σ. We define x (resp. y) as an
in-literal (resp. out-literal). A cycle c is called universal
if x and y are universally quantified. A symmetry σ is
called universal if it contains at least one universal cycle,
otherwise it is called existential.

For existential symmetries of a QBF, classical SBP
[Crawford et al., 1996] can be translated linearly to a
CNF formula thanks to new additional variables. The
obtained set of clauses can be added to the QBF matrix
while preserving its validity. The main problem arises
when breaking universal symmetries (see example 1). In-
deed, to safely break universal symmetries while keeping
the classical SBP, we first reorder the symmetry vari-
ables belonging to the same universal quantifier group.
This new ordering allows us to determine literals to be
likely implied from the SBP. Secondly, as implied univer-
sal literals lead to the invalidity of the QBF, an original

approach is then proposed to deal with such literals. In
the following, the problem behind universal implied lit-
erals is illustrated and our approach is then motivated.
Let σ = {(x1, y1), . . . , (xk, yk), . . . } be a universal sym-
metry of a given QBF Φ where (xk, yk) is a universal
cycle. As mentioned above, σ is ordered according to
the prefix of Φ. Suppose xi and yi for 1 ≤ i ≤ k − 1 are
assigned the same truth value, if xk is assigned to true
then the universal literal yk is implied from the SBP. To
avoid such a case, the universal quantifier of yk is sub-
stituted with an existential quantifier. However, when
xi and yi are assigned to different truth values or xk is
assigned to false, yk must remain universally quantified.
To manage these two cases, a new universal variable y′

k

is then introduced. This variable plays the same role
as yk in the second case whereas in the first case it be-
comes useless. The relation between the two variables is
expressed using new predicates (called qsbp(σ(yk))).

Definition 4 Let σ = {c1 . . . ck . . . cn} st. ck = (xk, yk),
1 ≤ k ≤ n be a universal symmetry. We
define QSBP (σ) = ∪{qsbp(σ(yk)), 1 ≤ k ≤
n st. yk is universal} as the QSBP associated to
σ. QSBP (σ) is built using the two following steps:

1. Adding auxiliary variables : For each universal cy-
cle ck = (xk, yk) ∈ σ, we associate a new univer-
sal variable y′

k to the out-literal yk and the univer-
sal quantifier of yk is substituted with an existential
quantifier.

2. Generating new predicates :

• if (x1, y1) is a universal cycle st. |x1| 6= |y1|
then qsb(σ(y1)) = {¬x1 → (y1 ↔ y′

1)}

• ∀k > 1, if (xk, yk) is a universal cycle then
qsbp(σ(yk)) is made of the following constraints

– ¬xk → (yk ↔ y′
k) when |xk| 6= |yk|

– ((¬xj ∧ yj) → (yk ↔ y′
k)), ∀j st. 1 ≤ j < k

Example 3 Let us consider the QBF Φ given in ex-
ample 1. The symmetry σ of Φ contains one univer-
sal cycle (x1, y1). Using definition 4, a new variable
y′
1 is associated to the variable y1 which becomes ex-

istentially quantified. Then QSBP(σ)= qsbp(σ(y1))=
(¬x1 → (y1 ↔ y′

1))

As described above, to generate the QSBP new vari-
ables are introduced. In the sequel, we describe how such
variables are integrated in the QBF prefix.

Definition 5 Let Φ = Q1X1 . . .QmXm Ψ be a QBF,
and σ = {σ1 . . . σj . . . σm} be a universal symmetry. Let
j st. Qj = ∀ and σj = σ ↑ Xj = {(x1, y1) . . . (xn, yn)}
and Y ′ = {y′

1 . . . y′
n} the set of new variables associated

to {y1 . . . yn} respectively. We define the new ordering
of V ar(σj) ∪ Y ′ as follows : rank(xk) < rank(y′

k) <
rank(yk) st. 1 ≤ k ≤ n.

We define Gσj
(V ,A) as the precedence graph asso-

ciated to σj with V =
⋃

1≤k≤n{xk, yk, y′
k} and A =

{
⋃

1≤k≤n{(xk, y′
k), (y′

k, yk)}}.



To rewrite the quantifier group QjXj of the QBF for-
mula (see definition 6), a new ordering is derived by
applying topological sort algorithm on the precedence
graph. Let us note that such a graph is acyclic. In
figure 1, the graph representation of σj = σ ↑ Xj is illus-
trated. The ordering x1 . . . xn y′

1 . . . y′
ny1 . . . yn is then

considered.
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Figure 1: Graph representation of σj

Definition 6 Let Φ = Q1X1 . . .QmXm Ψ be a QBF,
σ = {σ1 . . . σm} a universal symmetry and for j ∈
{1 . . .m} σj = σ ↑ Xj = {(x1, y1), . . . (xn, yn)}. Every
quantifier group QjXj of Φ is rewritten :

• if Qj = ∀ and σ ↑ Xj 6= ∅ then
Q

p
jX

p
j = ∀(Xj\V ar(σj))x1 . . . xn∃α∀y′

1 . . . y′
n∃y1 . . . yn

(see figure 1) st. X
p
j = Xj ∪ {y′

1 . . . y′
n} and α is a

new variable.

• otherwise Q
p
jX

p
j = QjXj

Φ is then rewritten as
ΦS = Q

p
1X

p
1 . . . Q

p
i X

p
i . . . Qp

mXp
m Ψ ∧ SBP ∧ QSBP

Remark 1 In definition 6, a new variable α is intro-
duced to constrain the set of variables {x1, . . . xn} to be
assigned before {y′

1, . . . , y
′
n}.

Property 1 Let Φ be a QBF and σ a symmetry of Φ,
then Φ is valid iff ΦS is valid.

To sketch the proof of property 1, we consider the QBF
given in the example 1. Applying our approach on Φ,
we obtain the QBF :

Φs = ∀x1∃α∀y′
1∃y1x2y2 Ψ1∧(¬x1 ∨y1)∧(¬x1 ∨¬x2 ∨

y2) ∧ (y1 ∨ ¬x2¬y2) ∧ (x1 ∨ y1 ∨ ¬y′
1) ∧ (x1 ∨ ¬y1 ∨ y′

1)
When x1 is assigned to the value true, from the clause
(¬x1∨y1) we deduce that y1 is true. If x1 is assigned the
value false, the original universal variable y1 is deduced
by substitution (y′

1 and y1 are equivalent) thanks to the
added constraint ¬x1 → (y1 ↔ y′

1). As rank(y′
1) <

rank(y1), we only need to substitute all occurrences of
y1 by y′

1.

3.3 Breaking all symmetries

Generating QSBP

When considering several symmetries, we can not elimi-
nate them independently by processing each single sym-
metry using the single symmetry breaking approach de-
scribed in section 3.2. One needs to consider the interac-
tions between the different symmetries. Indeed, consid-
ering an universal out-literal yk and its associated new
variable y′

k, the qsbp(σ(yk)) express the conditions under
which such literals yk and y′

k are equivalent. As only one
variable y′

k is introduced for each universal out-literal yk,
when yk appears in several symmetries, the different con-
ditions leading to such equivalence need to be combined.

Definition 7 Let Φ be a QBF, and σ =
{(x1, y1) . . . (xi, y) . . . }. σ′ = {(z1, w1) . . . (zj , y) . . . }
two symmetries of Φ with y an universal out-literal.
The qsbp’s associated to y with respect to σ and σ′ can
be written in the following form (see definition 4) :

• qsbp(σ(y)) = {α1 → (y ↔ y′)) . . . αN → (y ↔ y′)}

• qsbp(σ′(y)) = {β1 → (y ↔ y′) . . . βM → (y ↔ y′)}.

We define a binary correlation operator η between σ and
σ′ as follows :
η(σ(y), σ′(y)) = {(α1 ∧ β1) → (y ↔ y′) . . . (α1 ∧ βM ) →
(y ↔ y′) . . . (αN ∧β1) → (y ↔ y′) . . . (αN ∧βM ) → (y ↔
y′)}.

Definition 8 Let S = {σ1 . . . σn} be a set of symmetries
of a given QBF and y is universal literal. We define,

• S[y] = {σj |∃(x, y) ∈ σj} = {σ′1 . . . σ′|S[y]|}.

• qsbp(S[y]) = η(η . . . η(σ′1, σ′2) . . . , σ′|S[y]|) . . . ).

Definition 9 Let S = {σ1 . . . σn} be the set of symme-
tries of a given QBF Φ = QX Ψ. The new QBF matrix
ΨS is defined as follows:

Ψ ∧ (
∧

1≤i≤n

SBP (σi)) ∧ (
∧

x∈V arU(Φ)

qsbp(S[x]))

Prefix ordering

Let us now show how a new QBF prefix is built when
considering a set of symmetries (for a single symmetry
see definition 6). For a set of symmetries {σ1, . . . , σn},
we consider for each universal quantifier group QkXk,
all the projections σi ↑ Xk for each symmetry σi. The
new quantifier group Q

p
kX

p
k is obtained from the prece-

dence graph representation of all these projections. Let
us recall that each symmetry σi is considered p-ordered.
Additionally, to avoid cycles from the graph representa-
tion of {σi ↑ Xk|1 ≤ i ≤ n}, each projection σi ↑ Xk is
considered lexicographically ordered.

Definition 10 Let σ = {(x1, y1), . . . , (xn, yn)} be a set
of cycles. σ is called lexicographically ordered (lex-
ordered in short), iff xi > 0, xi ≤ |yi| 1 ≤ i ≤ n and
xi < xi+1 1 ≤ i < n

Example 4 Let Φ = Q1X1 . . . QmXm Ψ be a
QBF, σ and σ′ two symmetries of Φ st. σ ↑
X1 = {(x2, x1)(¬x3,¬x4)(x5, x6)}, σ′ ↑ X1 =
{(x3, x1)(x2,¬x6)} and Q1 = ∀. With respect to lex-
icographical order, σ ↑ X1 = {(x1, x2)(x3, x4)(x5, x6)}
and σ′ ↑ X1 = {(x1, x3)(x2,¬x6)} Figure 2 shows
the precedence graph representation of both σ ↑ X1

and σ′ ↑ X1. Applying topological sort algorithm,
the quantifier QP

1 XP
1 is then rewritten as QP

1 XP
1 =

∀x1x5∃α∀x′
2x

′
3∃x2x3∀x′

4x
′
6∃x4x6

Dealing with universal cycles of the form (y, x)
and (z,¬x)
To preserve the equivalence (wrt. validity) between the
original QBF and the new generated one, let us now ad-
dress the last problem arising from the interactions be-
tween the different symmetries. As illustrated in the fol-
lowing example, the problem arises for symmetries where



��
��

��
��

��
��

��
��

��
��

��
��

��
����

��

��
��

��
��

--

-

�
�

��>

Z
Z

ZZ~

-
?

-

x
′

2

x
′

3

x1

x5

x2

x3 x
′

4

x
′

6
x6

x4
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a universally quantified out-literal x appears both posi-
tively (x) and negatively (¬x).

Example 5 Let Φ = Q1X1 . . .QiXi . . . QmXmΨ be a
QBF, σ and σ′ two symmetries of Φ st. σ ↑ Xi =
{(x1, y2)} and σ′ ↑ Xi = {(x2,¬y2)}, Qi = ∀.

Using our approach the quantifier group QiXi is
rewritten as ∀(Xi\V ar(σ, σ′))∀x1x2∃α∀y′

2∃y2. The gen-
erated SBP for σ contains the clause c = (¬x1 ∨ x4).
For σ′ its corresponding SBP contains the clause c′ =
(¬x2 ∨ ¬y2). As the universal variable x4 is substituted
with an existential one, applying the Q-resolution rule
[Kleine-Büning et al., 1995] on c and c′ leads to a univer-
sally quantified resolvent r = (¬x1∨¬x2). Consequently,
the new obtained QBF is invalid. Finding a new ordering
which avoid this problem is a very challenging task. In
example 5, such a problem can be avoided by considering
the new ordering x1 < y2 < x2 instead of the used lex-
ordering. Another possible solution, actually under in-
vestigation is to apply composition between symmetries.
More precisely, if we consider σ ◦ σ′ ◦ σ we obtain a new
symmetry σ′′ = (x1,¬x2). If in addition to σ and σ′, we
also consider σ′′, then the previous resolvent generated
using Q-resolution is now not universally quantified. In-
deed, as x2 is an out-literal, its universal quantifier is
substituted with an existential one. Then the resolvent
r contains a literal ¬x2 whose associated variable is ex-
istentially quantified. Finally, the quantifier group QiXi

can be rewritten as Q
p
i X

p
i = ∀x1∃α∀x′

2∃x2∀y′
2∃y2.

The above discussion gives us an idea on how to solve
in the general case, the problem arising from symmetries
with universal cycles of the form (y, x) and (z,¬x). In
this paper, such a problem is simply avoided using the
following restriction :

Definition 11 Let Φ = Q1X1 . . . QmXmΨ be a QBF,
y ∈ V arU(Φ) and S the set of symmetries of Φ.
We define S[y] ↓ y = {σ ↓ y|σ ∈ S[y]}. For
σ = {(x1, y1), . . . , (xk, yk) . . . , (xn, yn)}, we define σ↓
yk = {(x1, y1), . . . , (xk−1, yk−1)}. The restriction of
S wrt. y is defined as rt(S, y) = {σ|σ ∈ S, σ[y] =
∅, σ[¬y] = ∅} ∪ S[y] ∪ S[¬y]↓{¬y}. For the set of
variables V arU(Φ) = {v1, . . . , v|V arU(Φ)|}, we define
rt(S, V arU(Φ)) = rt(. . . rt(S, v1), v2) . . . v|V arU(Φ)|) . . . )

Note that if S[y] = ∅ or S[¬y] = ∅, then rt(S, y) = S.
Naturally, for a given set of symmetries S, the new QBF
formula is generated using rt(S, V arU(Φ)). In this way
the obtained formula is equivalent wrt. validity to the
original one.

Complexity

Let σ be a symmetry of a QBF and CNF (QSBP (σ)) the
CNF representation of QSBP (σ). The worst case spa-
cial complexity of CNF (QSBP (σ)) is in O(|σ|2). Con-
sidering σ = {σ1, . . . , σn} with σi = (xi, yi), 1 ≤ i ≤ n,
the worst case is reached when all cycles of σ are uni-
versal. In this case, QSBP (σ) =

⋃
1≤i≤n qsbp(σi(yi)).

|QSBP (σ)| =
∑

1≤i≤n |qsbp(σ(yi))|. |qsbp(σ(yi))| is

equal to 2(i − 1) + 2 = 2i (see definition 4). Then,
|QSBP (σ)| =

∑
1≤i≤n 2i which is equal to n(n + 1).

More interestingly, using the same new variables intro-
duced for CNF (SBP ), the size of QSBP (σ) becomes
linear. Unfortunately, because of the correlations be-
tween different symmetries, the QSBP associated to a
set of symmetries is exponential in the worst case. In
practice, on all the considered QBF instances, the num-
ber of applied correlations (definition 7) does not exceed
3. Consequently, the QSBP is most often of reasonable
size.

4 Experiments

The experimental results reported in this section are ob-
tained on a Xeon 3.2 GHz (2 GB RAM) and performed
on a large panel of symmetric instances (619) available
from [Giunchiglia et al., 2001a]. This set of QBF in-
stances contains different families like toilet, k *, FPGA,
qshifter. As a comparison, we run the state-of-the-
art DPLL-like solver semprop [Letz, 2002] on QBF in-
stances with and without breaking symmetries. The
time limit is fixed to 900 seconds. Results are reported
in seconds. The symmetry computation time (including
detection and QSBP generation) is not reported (less
than one second in most cases).
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Figure 3: semprop comparison

The scatter plot (in log scale) given in figure 3 illus-
trate the comprative results of semprop [Letz, 2002]
on each QBF instance Φ and ΦS respectively. The x-
axis (resp. y-axis) corresponds to the cpu time tx (resp.
ty) obtained by semprop on Φ (resp. ΦS). Each dot
with (tx, ty) coordinates, corresponds to a QBF instance.
Dots above (resp. below) the diagonal indicate instances
where the original formula Φ is solved faster i.e. tx < ty
(resp. slower i.e. tx > ty) than the QBF formula ΦS .



Figure 3 clearly shows the computational gain ob-
tained using symmetry breaking predicates (about 167
instances are solved more efficiently). In some cases the
gain is up to 2 orders of magnitude. Of course, there ex-
ists some instances where breaking symmetries decreases
the performances of semprop(about 50 instances). On
the remaining instances, the performance of the solver
remains the same with or without breaking symmetries.

Table 1 provides more detailed results on the different
QBF families. The second column (NB) represents the
number of instances in each family. The third column
(U) indicates if the instances contain universal symme-
tries (Y ) or not (N). For each family, S and TT repre-
sents the total number of solved instances and the total
run-time needed for solving all the instances (900 sec-
onds are added for each unsolved one) respectively.

Φ ΦS

family NB U S TT S TT

fpga 8 Y 6 1834 7 921

blackbox 23 Y 1 19801 8 13668

scholl 32 Y 17 13687 18 13595

toilet c 53 Y 51 2656 53 49

k path 40 Y 28 12915 34 7999

qshifter 6 Y 6 67 6 61

tipdiam 76 Y 30 41455 30 41459

asp 104 Y 104 789 104 1909

TOILET 7 Y 6 988 6 926

term1 6 Y 6 174 6 177

strategic 100 N 86 13482 86 13477

k branch 42 N 21 20096 21 20069

k lin 21 N 5 14553 5 14551

k grz 37 N 23 15242 24 14997

k poly 42 N 42 2031 42 2068

toilet a 22 N 22 12 22 20

TOTAL 619 454 159789 472 145940

Table 1: Results on different QBF families

As we can see, table 1 gives us more comprehensive
results with respect to each family. First, breaking sym-
metries significantly improves semprop performances on
many QBF families leading to more solved instances (18
instances). Secondly, the existence of universal symme-
tries seems to be an important factor for reducing the
search time. Not surprisingly, we have also noticed that
symmetries between literals occurring in the innermost
quantifier group are useless. Indeed, such symmetries
does not lead to a great reduction in the search tree,
since their corresponding variables are assigned last i.e.
the formula is considerably reduced by the previous as-
signments. Finally, for QBF families containing only ex-
istential symmetries, breaking them do not improves the
search time. On k branch, k lin, toilet a families con-
taining only existential symmetries, no improvement is
observed. Most of these instances correspond to the dots
near the diagonal (see figure 3).

5 Conclusion

In this paper, a new approach to break symmetries in
QBF formulae is proposed. Using universally quanti-
fied auxiliary variables, new symmetry breaking predi-
cates are generated and safely added to the QBF for-
mula. Experimental results show that breaking symme-
tries leads to significant improvements of the state-of-

the-art QBF solver semprop on many classes of QBF
instances. These experimental results suggest that for
QBF instances containing universal symmetries, signif-
icant improvements are obtained. As future works, we
plan to investigate the problem arising from the pres-
ence of both positive and negative out-literal in the set
of symmetries.
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M. Karpinski, and A. Flögel. Resolution for quanti-
fied boolean formulas. Information and computation,
117(1):12–18, 1995.

[Letz, 2002] R. Letz. Lemma and model caching in de-
cision procedures for quantified boolean formulas. In
Proceedings of Tableaux, pages 160–175, 2002.

[McKay, 1990] B. McKay. nauty user’s guide (version
1.5). Technical report, 1990.

[Zhang and Malik, 2002] L. Zhang and S. Malik. To-
wards a symmetric treatment of satisfaction and con-
flicts in quantified boolean formula evaluation. In Pro-
ceedings of the CP, pages 200–215, 2002.


