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Abstract

In this paper a new approach for computing Strong
Backdoor sets of boolean formula in conjunctive normal
form (CNF) is proposed. It makes an original use of
local search techniques for finding an assignment lead-
ing to a largest renamable Horn sub-formula of a given
CNF. More precisely, at each step, preference is given
to variables such that when assigned to the opposite
value lead to the smallest number of remaining non-
Horn clauses. Consequently, if no positive or non Horn
clauses remain in the formula, our approach answer
the satisfiability of the original formula; otherwise, a
smallest non-Horn sub-formula is used to extract the
set of variables (Strong Backdoor) such that when as-
signed leads to a tractable sub-formula. Branching on
the variables of the Strong Backdoor set leads to signif-
icant improvements of Zchaff SAT solver with respect
to many real worlds SAT instances.

1. Introduction

Propositional satisfiability (SAT) is the problem of
deciding whether a boolean formula in conjunctive nor-
mal form (CNF) is satisfiable. SAT is one of the most
studied NP-Complete problems because of its theoret-
ical and practical importance. Encouraged by the im-
pressive progress in practical solving of SAT, various
applications ranging from formal verification to plan-
ning are encoded and solved using SAT. Such improve-
ments in SAT solving are obtained using two comple-
mentary approach : stochastic local search and system-
atic search based techniques. Most of the best complete
solvers are based on the backtrack search algorithm
called Davis Logemann Loveland (DPLL) procedure
[1]. Such basic algorithm is enhanced with many im-

portant pruning techniques such as learning, extended
use of boolean constraint propagation, preprocessing,
symetries, etc. The second important class of satisfia-
bility algorithms concerns the local search based meth-
ods. For these incomplete techniques, search space is
explored in a non systematic way. An initial complete
instantiation of the boolean variables is randomly gen-
erated, at each step a new instantiation is obtained by
inverting (” flipping ”) the value of a chosen variable.
Such process is repeated until a model is found or a
preset number of steps is reached. Several variants of
this basic scheme have been proposed for SAT (e.g.
[11, 6] ). These techniques have shown their impressive
performance, particularly on hard and large satisfiable
instances (e.g. difficult random instances).

Another important factor for the efficiency of SAT
solvers concerns the exploitation of the problem struc-
ture. Recently, interesting kinds of structure called
(Strong) Backdoor were proposed in [14]. Computing
Backdoor sets is an active research topic because of
its connection to problem hardness. A set of variables
forms a Backdoor for a given formula if there exists an
assignment to these variables such that the simplified
formula can be solved in polynomial time. Such a set of
variables is called a Strong Backdoor if any assignment
to these variables leads to a tractable sub-formula. Let
us remind that computing the smallest Strong Back-
door is a NP-hard problem. In practice, approximating
(in polynomial time) a Strong Backdoor set of ”reason-
able” size is an interesting and important issue. Pre-
vious works have addressed this issue [2]. Other ap-
proaches have been proposed using different techniques
such as adapted systematic search algorithm [13, 4]).
Recently, in [5] an enhanced concept of sub-optimal
reverse Horn fraction of CNF formula was introduced
and an interesting correlation is observed with the sat-
isfiability and the performances of SAT solvers on fixed
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density random 3-SAT instances.
The main goal of this paper is to design a polyno-

mial approach that leads to Strong Backdoor sets of
reasonable size. To this end, our approach first con-
sider a given CNF formula as a conjunction of two
different sub-formulas, where the first one is tractable
and the second one is made of the remaining clauses.
A Strong Backdoor set can be obtained from the vari-
ables appearing in the second sub-formula. However
such Backdoor set might be in some cases very large
i.e. most of the variables of the second formula appear
in the tractable part of the formula. To avoid this main
drawback, our approach tries to reduce the number of
variables in common between these two sub-formulas.

Considering the tractable part as the sub-formula
made of Horn clauses, to reduce the size of the Strong
Backdoor set, our approach is based on the two follow-
ing problems :

1. find a ”best” renaming of the variables that maxi-
mize (resp. minimize) the size of the (resp. non)
Horn part of the formula with respect to the num-
ber of clauses.

2. compute from the reduced non-Horn sub formula
(obtained in 1.) a minimal Horn Strong Backdoor
set i.e. a minimal set of variables B such that any
truth assignment of B leads to a simplified formula
which belong to Horn class.

Unfortunately, in the general case the above two
problems are NP-hard. Indeed, computing the max-
imal Horn sub-formulas of a given CNF is equivalent
to the MAX2SAT problem [8, 3] i.e. given a set of bi-
nary clauses, find a model which satisfy the maximum
number of clauses. The decision version of the second
problem is defined and shown to be NP-complete by
Nishimura et al in [7]. First, it belongs to NP, because
one can verify in polynomial time that a set B is a Horn
Strong Backdoor set. The NP-hardness is shown using
a reduction of Vertex-Cover to Horn Strong Backdoor’s
problem. Consequently, finding a Horn Strong Back-
door of minimal size is also NP-hard.

To circumvent the difficulty of the above two hard
problems, our approach makes an original use of local
search based techniques to approximate the maximum
Horn sub-formula (first problem). Secondly, an efficient
heuristic based approach for calculating a Strong Back-
door set (second problem) is proposed. Such heuristic
is restricted to the set of variables occurring in the non-
Horn part with positive polarity.

The paper is organized as follows. First we intro-
duce some technical backgrounds. Then we present
our local search based approach for approximating the
maximum Horn sub-formula. Next a heuristic based
approach for computing Horn Strong Backdoor set is
shown and its exploitation for satisfiability checking is

presented. Experiments of our approach on a large
class of SAT instances are reported. Finally, the scope
of these results is discussed and further promising paths
for future research are motivated.

2. Preliminary definitions

Let B be a Boolean (i.e. propositional) language of
formulas built in the standard way, using usual con-
nectives (∨, ∧, ¬, ⇒, ⇔) and a set of propositional
variables. A CNF formula Σ is a set (interpreted as
a conjunction) of clauses, where a clause is a set (in-
terpreted as a disjunction) of literals. A literal is a
positive or negated propositional variable. Let us re-
call that any boolean formula can be translated to CNF
using linear Tseitin encodings [12]. The size of CNF Σ
is defined by

∑
c∈Σ |c| where |c| is the number of lit-

erals in c. A unit (resp. binary) clause is a clause of
size 1 (resp. 2). A unit literal is the unique literal of a
unit clause. We note nbV ar(Σ) (resp. nbCla(Σ)) the
number of variables (resp. clauses) of Σ. V(Σ) (resp.
L(Σ)) is the set of variables (resp. literals) occurring in
Σ. The set L(Σ) is the union of positive literals L+(Σ)
and negative literals L−(Σ). A set of literals S ⊂ L(Σ)
is consistent iff ∀l ∈ S,¬l /∈ S. A literal l is called
monotone if ¬l /∈ L−(Σ).

An truth assignment of a Boolean formula is an as-
signment of truth values {true, false} to its variables.
A variable x is satisfied (resp. falsified) under I if
I[x] = true (resp. I[x] = false). A model of a for-
mula is a truth assignment that satisfies the formula.
Accordingly, SAT consists in determining if the formula
admits a model.

3. Approximating MRH with local search

Our approach in this paper for approximating the
Maximum Horn sub-formula is based on the exploita-
tion of the well known algorithm WalkSat [11].

To present our approach, we need to introduce some
necessary definitions.

Definition 1 Let Σ be a CNF formula, x ∈ V ar(Σ),
I a truth assignment and I ′ the truth assignment ob-
tained from I by inverting the truth value of x. We de-
fine breakCount(x, I) = |{c|I[c] = true, I ′[c] = false}|
and makeCount(x, I) = |{c|I[c] = false, I ′[c] =
true}|. We define score(x, I) = makeCount(x, I) −
breakCount(x, I) as the score of x under I

The next variable to flip is chosen in a falsified clause
with a maximum score or chosen randomly according to
a certain fixed probability. Then the chosen variable is
flipped and the counters makeCount and breakCount
are updated.
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As a renaming of a set of variables V can be defined
as an application :

Definition 2 Let Σ be a CNF formula. We define
a renaming R of V ar(Σ) as the application of V to
{false, true}.

We can remark that a renaming R can be identified
to a classical truth assignment.

Definition 3 Let Σ be a CNF formula and R a renam-
ing of V ar(Σ). We define ΣR as the formula obtained
by substituting, for all variables x st. R[x] = true, ev-
ery occurrence of x (resp. ¬x) by ¬x (resp. x). x is
said to be renamed in Σ. When ΣR is a Horn formula,
R is called a Horn-renaming of Σ.

To compute the maximum Horn sub-formula, our lo-
cal search based approach is slightly different. First the
truth assignment returned by our algorithm represents
either a Horn renaming of the formula or a best renam-
ing with respect to the size of the Horn sub-formula. In
the first case, the formula belong to a renamable Horn
class and its satisfiability can be checked in linear time.
In the second case we obtain an approximation of the
maximum Horn sub-formula.

Definition 4 Let Σ be a CNF formula, I a truth as-
signment, and c a clause of Σ. We define the number
of literals satisfying (resp. falsifying ) c under I by
nbLS(c, I) (resp. nbLU(c, I)).

Definition 5 Let Σ be a CNF formula and I a truth
assignment. A clause c ∈ Σ is called Horn-satisfied
by I (in short h sat(c, I)) if nbLU(c, I) ≤ 1 i.e c is
satisfied by at most one literal; otherwise it is called
Horn-unsatisfied by I (in short h unsat(c, I)). We de-
fine nbHorn(Σ, I) as the number of clauses of Σ Horn-
satisfied by I.

Definition 6 Let Σ be a CNF formula,
x ∈ V ar(Σ), I a truth assignment and I ′

the truth assignement obtained from I by in-
verting the truth value of x. We define
h breakCount(x, I)=|{c|h sat(c, I), h unsat(c, I ′)|
and h makeCount(x, I)=|{c|h unsat(c, I), h sat(c, I ′)}|.
We define h score(x, I) = h makeCount(x, I) −
h breakCount(x, I)

In traditional local search techniques, a clause is
considered as satisfied if at least one of its variables
is true; otherwise it is called unsatisfied. If no falsified
clause remains in the formula, these algorithms return
a model.

In our Horn local search approach, we only need to
maintain, for each clause, the number of literals as-
signed to true. Also, unsatisfied clauses in traditional
local search techniques can be identified to h unsat

clauses in our approach. Consequently, we can obtain
in a very simple way a Horn local search variant using
any local search techniques (e.g. tabu, novelty, rnov-
elty. . . ). The Algorithm 1 describes the Horn Walk-
sat version for computing maximum Horn sub-formula
(MRH in short).

Algorithm 1 WalkHorn algorithm
Function WalkHorn
Require: A CNF formula Σ
Ensure: The best renaming found for MRH of Σ
1: Initialize Rmax with all variables of Σ set to true
2: for i = 1 to MAX TRIES do
3: R = a randomly generated truth assignment
4: for j = 1 to MAX FLIPS do
5: if nbHorn(Σ, R) = nbCla(Σ) then
6: return R {Σ is renamable Horn}
7: end if
8: if (∀c ∈ Σ, nbLU(c,R) > 0) or (∀c ∈

Σ, nbLS(c,R) > 0) then
9: return R {Σ is satisfiable}

10: end if
11: {Horn Random Walk Strategy}
12: With probability p do
13: Select randomly a non Horn clause c and a

literal l in c
14: R = R− {l} ∪ {¬l}
15: done
16: With probability 1− p do
17: Let l ∈ R st. ∀l′ ∈ R with l 6= l′,

h score(l, R) > h score(l′, R)
18: R = R− {l} ∪ {¬l}
19: done
20: if nbHorn(Σ, R) > nbHorn(Σ, Rmax) then
21: Rmax = R
22: end if
23: end for
24: end for
25: return Rmax

Besides, the ending conditions of our algorithm
are slightly different from classical local search ones.
WalkHorn terminates in three different cases :

1. the maximum number of tries (MAX TRIES) is
exceeded. The best renaming found is returned
(line 25) or,

2. a Horn renaming is found (line 6). The formula Σ
is renamable Horn or,

3. a renaming R such that for each clause c in Σ,
nbLU(c,R) > 0, or such that for each clause c in
Σ, nbLS(c,R) > 0. Consequently, each clause of
ΣR contains a least one positive literal, or each
clause of ΣR contains a least one negative literal
(line 9).
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In the third case, the formula is not renamable Horn,
but a model exists for Σ. All clauses in ΣR contain at
least one positive literal, then ΣR is satisfiable. As Σ
and ΣR are equivalent for SAT, then Σ is also satisfi-
able. In this case, the Strong Backdoor of Σ is empty.

4. Computing Strong Backdoor sets

Even though SAT is NP-complete in general, in-
stances encoding real world problems often contain hid-
den structures that can be used for an efficient SAT
solving. In this section, we describe how to compute
Strong Backdoor sets using the non-Horn sub-formula
obtained by WalkHorn in 3. Backdoor sets of variables
were introduced by Williams, Gomes and Selman in
[13].

Definition 7 Let Σ be a CNF. B ⊆ L(Σ) is a Back-
door set if it exists a truth assignment of B such that
the simplified formula belongs to a tractable class.

Definition 8 Let Σ be a CNF. B ⊆ L(Σ) is a Strong
Backdoor set if for all truth assignments of B the sim-
plified formula belongs to a tractable class.

In the sequel, we consider the non-Horn sub-formula
for computing a Strong Backdoor set. The problem of
finding the best Strong Backdoor consists in finding a
set of positive literals such that when removed from
this sub-formula it becomes a Horn formula.

Finding the smallest Horn Strong Backdoor set of
a given formula Σ is an NP-hard problem [7]., That is
why we propose a greedy method to compute a good
subset of variables. The algorithm consists in choosing
the variable appearing mostly in the sub-formula and
in removing all its positive occurrences until the sub-
formula become a Horn formula.

Algorithm 2 shows how to compute a Strong Back-
door set using this greedy method.

Algorithm 2 Computing Strong Backdoor
Function Backdoor
Require: NHF : non-Horn clauses
Ensure: B : Strong Backdoor
1: init B = ∅
2: repeat
3: v=chooseVariable()
4: remove from NHF all positive occurrences of v
5: add v in B
6: until NHF become Horn
7: return B

5 Experiments

The first experimentations were carried out over
many classes of randomly generated 3-SAT instances,

containing from 150 to 450 clauses. Each class of in-
stances were generated at the threshold i.e. the ratio
between the number of clauses and the number of vari-
ables was equal to 4,25. For each class, we randomly
generated 400 instances. In average over all the classes,
the Strong Backdoor set contains 54,64% of all the
variables, and the number of non-Horn clauses (after
the renaming) represents 30,2% of the total number of
clauses. As the size of the Strong Backdoor set (about
50% of the set of original variables) is not significantly
reduced, we can not expect significant improvements in
exploiting such sets as branching sets of variables for
SAT solvers.

Then experimentations were carried out over more
than 8000 instances issued from the last sat compe-
titions (industrial, crafted)[9, 10]. After having com-
puted the Horn Strong Backdoor set for each instance,
we integrated it in the SAT solver Zchaff as the set
of branching variables. This means that the solver
is forced to branch on the variables contained in the
Strong Backdoor set. We compared the performances
of our method with the original Zchaff solver (2003 ver-
sion) without restricting its branching to the Strong
Backdoor set. We give some results of these exper-
iments in table 1. For each instance, Zchaff runs
on the original (resp. renamed) instance without
(resp. with) restricting its branching to the variables
of the Strong Backdoor set. The column Zchaff (resp.
Zchaff+Backdoor) shows their respective behavior. For
each instance, the first three columns give the name of
the instance, its number of variables (# V) and its
number of clauses (# C). The following column indi-
cates if the instance is satisfiable or not (’S’ for Satis-
fiable and ’U’ for Unsatisfiable). The following two (S.
Backdoor) give the number of variables contained in the
Strong Backdoor (|B|) and the proportion of non-Horn
clauses in the renamed problem (% NH). Then we give
the the maximum tree depth reached during the search
(MxD.), the number of nodes visited during the search
(# Node) and the cpu time in seconds (time) needed
to determine the satisfiability of the instances. These
preliminary experiments clearly show that exploiting
Strong Backdoor sets achieve significant improvements
on many real world instances. Besides, we can see that
the size of the Horn Strong Backdoor set is linked to
the difficulty of the instances, as shown with the vmp*
instances.

6. Conclusions and perspectives

In this paper, we have proposed a new approach
for approximating Strong Backdoor sets of CNF for-
mula. It originally uses an adaptation of local search
techniques for computing a best approximation of the
maximum Horn sub-formula of a given CNF. A Strong
Backdoor set is then extracted from the remaining set
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Instances # V # C S/U
S. Backdoor Zchaff Zchaff + Backdoor
|B| % NH MxD. # Node time MxD. # Node time

pret150 60 150 400 U 117 27,5 51 4643957 218,6 59 3354 0,0
pret150 75 150 400 U 117 25,5 51 4639531 219,3 56 2716 0,0
pret150 4 150 400 U 116 27,5 51 4364817 204,3 58 3805 0,1
pret150 2 150 400 U 116 27,5 51 4359886 202,7 56 2815 0,0
pret60 25 60 160 U 46 26,2 21 131394 4,7 25 654 0,0
pret60 75 60 160 U 46 26,2 21 131394 4,6 22 719 0,0
pret60 60 60 160 U 46 26,2 21 131391 4,6 25 729 0,0
dp10s10 8372 23004 S 2635 21,2 51 449994 377,1 48 50664 27,3

vda gr rcs w9 6498 130997 S 4809 < 0,1 875 3316 0.1 571 2997 0,5
urquhart2 25 60 160 U 43 26,2 21 270323 10,6 21 47455 1,7

lisa20 2 a 1201 6563 S 820 43,5 31 307127 184,3 37 91990 37,8
lisa20 0 a 1201 6563 S 824 43,6 32 214046 120,9 42 117961 55

unif-c1075-v250-s640 250 1075 U 139 30 34 533501 338,6 30 396039 164
unif-c1075-v250-s550 250 1075 U 133 30 29 532667 334,5 37 409268 194,4

rand net40-25-10 2000 5921 U 811 19,5 38 442508 235,2 38 330984 153,5
c499 gr rcs w5 2070 22470 S 885 0,01 237 194966 1,6 212 60051 2,5
apex7 gr rcs w5 1500 11695 S 740 0,01 426 701 0,0 281 561 0,0

bart11 162 684 S 132 0,1 68 183047 85,4 69 84702 22,5
vmpc 21 441 45339 ? 439 <0,01 – – – – – –
vmpc 25 625 76755 ? 603 <0,01 – – – – – –
vmpc 29 841 120147 ? 815 <0,01 – – – – – –

Table 1. Zchaff on industrials instances.

of clauses. Preliminary results are very encouraging.
On some instances, local search found a good Horn re-
naming formula. Then a good Strong Backdoor can
be set using this greedy algorithm. Moreover we be-
lieve that the study of Strong Backdoor can be essen-
tial in the understanding of the difficulty of hard SAT
instances. For example, vmpc* instances, despite their
small non Horn sub-formula, have a Strong Backdoor
set of the size of the instance and are for all solvers dif-
ficult to solve. Finally we show that the integration of
our approach in Zchaff SAT solver using the computed
Strong Backdoor set as the branching set of variables
achieve significant improvements wrt. some real world
instances. The work presented in this paper open inter-
esting perspectives. We think that, non-Horn clauses
can be used to define a new objective function that can
be grafted in local search techniques as a new strategy
to escape from local minima. Finally, considering other
tractable formulas is another path for future research.
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