
SAT based BDD solver for Quantified Boolean Formulas

Gilles Audemard and Lakhdar Saïs∗

CRIL CNRS – Université d’Artois
rue Jean Souvraz SP-18

F-62307 Lens Cedex France
{audemard,sais}@cril.univ-artois.fr

Abstract

Solving Quantified Boolean Formulas (QBF) has be-
come an attractive research area in Artificial intelligence.
Many important artificial intelligence problems (planning,
non monotonic reasoning, formal verification, etc.) can be
reduced to QBFs. In this paper, a new DLL-based method is
proposed that integrates binary decision diagram (BDD) to
set free the variable ordering heuristics that are tradition-
ally constrained by the static order of the QBF quantifiers.
BDD is used to represent in a compact form the set of mod-
els of the boolean formula. Interesting reduction operators
are proposed in order to dynamically reduce the BDD size
and to answer the validity of the QBF. Experimental results
on instances from the QBF’03 evaluation show that our ap-
proach can efficiently solve instances that are very hard for
current QBF solvers.

Keywords: Quantified boolean formula, Binary decision
diagram, Satisfiability.

1. Introduction

Solving Quantified Boolean Formulas has become an
attractive and important research area over the last years.
Such increasing interest might be related to different fac-
tors including the fact that many important artificial intel-
ligence problems (planning, non monotonic reasoning, for-
mal verification, etc.) can be reduced to QBFs which is con-
sidered as the canonical problem of the PSPACE complex-
ity class. Another important reason comes from the recent
impressive progress in the practical resolution of the satisfi-
ability problem.

Many solvers for QBFs have been proposed recently
(e.g. [10, 18, 13, 9]), most of them are obtained by extend-

∗ This work has been supported in part by the IUT de Lens, the CNRS
and the Region Nord/Pas-de-Calais under the TAC Programme

ing satisfiability results. This is not surprising since QBFs is
a natural extension of SAT where the boolean variables are
universally or existentially quantified. Most of these solvers
consider an input formula in the prenex clausal form and
are variant of Davis Logemann and Loveland procedures
(DLL) [7]. However, one of the main drawback of such pro-
posed approaches is that variables are instantiated according
to the quantifier order. Such preset ordering limits the effi-
ciency of the obtained solver. Indeed, the size of the search
tree depends heavily on the order in which the variables are
instantiated during search.

The main goal of this paper is to set free the solver from
the preset ordering of the QBF and to facilitate the exten-
sion of useful and efficient satisfiability results. To this end,
we propose an extension of binary decision diagram and
use it to represent in a compact form the set of models of
the boolean formula obtained by the satisfiability solver.
New reduction operators are proposed to reduce at least to
some extent the size of the constructed binary decision dia-
gram and to answer the validity of the QBF. Then, it is inte-
grated in a DLL like techniques providing a new QBF solver
named QBFBDD.

The paper is organized as follows. After some prelimi-
naries and technical background on quantified boolean for-
mulas and binary decision diagram, it is shown how binary
decision diagram can be naturally integrated with DLL-like
techniques to handle QBFs. Experiments on instances of the
last QBFs evaluation are presented and show that our ap-
proach is very promising since it solves for the first time
many hard QBF instances.

2. Preliminaries and technical background

Before introducing our approach, we briefly review some
necessary definitions and notation about quantified boolean
formulas and binary decision diagram.



2.1. Quantified boolean formulas

Let P be a finite set of propositional variables. Then, LP

is the language of quantified boolean formulas built over
P using ordinary boolean formulas (including propositional
constants > and ⊥) plus the additional quantification (∃ and
∀) over propositional variables.
We consider quantified boolean formula in the prenex form:
Φ = QkXk, . . . , Q1X1Ψ (in short QXΨ, QX is called the
prefix of Φ and Ψ the matrix of Φ) where Qi ∈ {∃, ∀},
Xk, . . . , X1 are disjoint sets of variables and Ψ a boolean
formula. Consecutive variables with the same quantifier are
grouped. The rank of a variable x ∈ Xi is equal to i (noted
rank(x)). Variables in the same quantifier group have the
same rank value. We define a prefix ordering of QBF for-
mula Φ = QkXk, . . . , Q1X1Ψ as the partial ordering ob-
tained according to the decreasing rank of the variables,
noted Xk < Xk−1 < · · · < X1. A QBF formula Φ is said
to be in clausal form if Φ is in prenex form and Ψ is in Con-
junctive Normal Form (CNF). Note that we can consider
QBFs with inner quantifier Q1 as existential. Indeed, when
Q1 is a universal quantifier, suppressing ∀X1 from the pre-
fix and all occurrences of x ∈ X1 from the matrix lead to
an equivalent QBF. We define V ar(Φ) =

⋃
i∈{1,...,k} Xi

the set of variables of Φ. A literal is the occurrence of
propositional variable in either positive (l) or negative form
(¬l). Lit(Φ) =

⋃
i∈{1,...,k} Lit(Xi) the set of complete

literals of Φ, where Lit(Xi) = {xi,¬xi|xi ∈ Xi}. We
note var(l) the variable associated to a literal l. A literal
l ∈ Φ is a unit literal iff l is existentially quantified and
∃c = {l, l1, . . . , li} ∈ Ψ s.t. ∀lj , 1 ≤ j ≤ i, var(lj) is uni-
versally quantified and rank(lj) < rank(l). A monotone
literal is defined in the usual way as in the pure boolean case
(i.e. l is monotone in Φ iff it appears either positively or neg-
atively).

To define the semantic of quantified boolean formulas,
let us introduce some necessary notations. Let S be the
set of assignments over the set of variables V . The Up-
projection (resp. Down-projection) of a set of assignments
S on a set of variables X ⊂ V , denoted S ↑ X (resp.
S ↓ X), is obtained by restricting each assignment to lit-
erals in X (resp. in V \X). The set of all possible assign-
ments over X is denoted by 2X . An assignment over X is
denoted by a vector of literals −→x . In the same way, Up-
projection and Down-projection also apply on vector of lit-
erals −→x . If −→y is an assignment over Y s.t. Y ∩X = ∅, then
−→y .S denotes the set of interpretations obtained by concate-
nating −→y with each interpretation of S. Finally, Ψ(−→x ) de-
notes the boolean formula Ψ simplified with the partial as-
signment −→x .
A QBF formula is valid (is true) if there exists a solution
(called a total policy) defined as follows. It is a simplified
version of the definition by Sylvie Coste-Marquis et al. [14].

Definition 1 Let Φ = QkXk, . . . , Q1X1Ψ a quantified
boolean formula and π = {−→x 1, . . . ,

−→x n} a set of models
of the boolean formula Ψ. π is a total policy of the quanti-
fied boolean formula Φ iff π recursively verifies the follow-
ing conditions:

1. k = 0, and Ψ = >

2. if Qk = ∀, then π ↑ Xk = 2Xk , and ∀−→x k ∈ 2Xk , π ↓
−→x k is a total policy of Qk−1Xk−1, . . . , Q1X1Ψ(−→x k)

3. if Qk = ∃, then π ↑ Xk = {−→x k} and π ↓ −→x k is a
total policy of Qk−1Xk−1, . . . , Q1X1Ψ(−→x k)

Remark 1 Let π be a total policy of Φ =
QkXk, . . . , Q1X1Ψ. If Qk = ∀ then we can rewrite
π as

⋃
−→x k∈2X

k
{−→x k.(π ↓ −→x k)} and if Qk = ∃,

then π ↑ Xk = {−→x k} and π can be rewritten as
{−→x k.(π ↓ −→x k)}

Example 1 Let Φ = ∃x5x6∀x2x4∃x1x3Ψ be a QBF for-
mula, where Ψ = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (¬x4 ∨ x3) ∧
(x5 ∨ x6). Φ is a valid QBF, since the set of models π =
{(¬x5, x6, x2, x4,¬x1, x3), (¬x5, x6, x2,¬x4,¬x1, x3),
(¬x5, x6,¬x2,¬x4, x1,¬x3), (¬x5, x6,¬x2, x4, x1, x3)}
is a total policy of Φ (Figure 1). The different projection op-
erations are illustrated as follow :
π ↑ {x5, x6} = {(¬x5, x6)}

π′=π ↓ {x5, x6}
={(x2, x4,¬x1, x3), (x2,¬x4,¬x1, x3),

(¬x2,¬x4, x1,¬x3), (¬x2, x4, x1, x3)}

π′ ↑ {x2, x4}={(¬x2,¬x4), (¬x2, x4), (x2,¬x4), (x2, x4)}
=2{x2,x4}

x6

¬x5

¬x4

x1 x1

x3
¬x3

x4 x4 ¬x4

x3 x3

¬x1

¬x2 x2

¬x1

Figure 1. Policy decision tree representation
(example 1)

Motivated by the impressive results obtained in practical
solving of the satisfiability problem, several QBF solvers
have been developed recently. Most of them are extensions
of the well known DLL procedure including many effective



SAT results such as learning, heuristics and constraint prop-
agation (QUBE [10], QUAFFLE [18], EVALUATE [5], DE-
CIDE[16]). For examples, QUBE [10] and QUAFFLE [18]
extend backjumping and learning techniques, EVAUATE[5]
and DECIDE [16] extend some SAT pruning techniques
such as unit propagation.

Algorithm 1 gives a general scheme of a basic DLL pro-
cedure for checking the validity of QBFs. It takes as input
variables of the QBF prefix < Xk, . . . , X1 > associated to
quantifiers Qk, . . . , Q1 and a matrix Ψ in clausal form. It re-
turns true if the QBF formula Φ = QkXk, . . . , Q1X1Ψ is
valid and false otherwise. The algorithm starts by simplify-
ing the formula by propagating unit and monotone literals.
Then, if the current simplified matrix contains the empty
clause then the current QBF is not valid (value false is re-
turned); otherwise, if the current matrix is empty then the
QBF formula is valid (value true is returned). The next step
consists in choosing the next variable to instanciate (split-
ing rule) in the most external non empty set of variables
Xk. This differ from the DLL satisfiability version, since
variables are instantiated according to their prefix order-
ing. Depending on the quantifier Qk of the chosen variable,
left and/or right branchs are generated. If Qk = ∀ (resp.
Qk = ∃) the right branch is generated only if the value re-
turned in left branch is true (resp. false). The search tree de-
velopped by the QBF DLL procedure is usually called an
and/or tree search.

Algorithm 1: DLL for QBF
Data : Ψ : set of clauses;

< Xk, . . . , X1 > the prefix set of the QBF
Result : true if the QBF is valid, false otherwise
begin

Simplify(Ψ);
if ∅ ∈ Ψ then return false;
if Ψ = ∅ then return true;
if Xk = ∅ then return
QDLL(Ψ, < Xk−1, . . . , X1 >);
choose (by heuristic) a literal l ∈ Xk;
if ((Qk = ∀) and
QDLL(Ψ ∪ {l}, < Xk − {l}, . . . , X1 >)=false)
then

return false;
if ((Qk = ∃) and
QDLL(Ψ ∪ {l}, < Xk − {l}, . . . , X1 >)=true)
then

return true;
return
QDLL(Ψ ∪ {¬l}, < Xk − {l}, . . . , X1 >);

end

One of the major drawback of the extension of the DLL
procedures to QBF concerns the imposed prefix ordering.

Such restrictive ordering might lead to performance degra-
dation of the QBF solver. Since, good ordering may be lost.
Furthermore, such limitation makes difficult the extension
of certain interesting results obtained on the satisfiability
problem (see for example [8] for random problem or [15]
for structured problems).

2.2. Binary decision diagram

A Binary Decision Diagram (BDD) [1, 3] is a rooted di-
rected acyclic graph with two terminal nodes that are re-
ferred to as the 0-terminal and the 1-terminal. Every non-
terminal node is associated with a primary input variable
such that it has two outgoing edges called the 0-edge cor-
responding to assigning the variable a false truth value, and
the 1-edge corresponding to assigning the variable a true
truth value. An Ordered Binary Decision Diagram (OBDD)
is a BDD such that the input variables appear in a fixed order
on all the paths of the graph, and no variable appears more
than once in the path. A Reduced Ordered BDD (ROBDD)
is an OBDD that results from the repeated application of the
following two rules:

1. Share all equivalent sub-graphs (Figure 2.a).

2. Eliminate all redundant nodes whose outgoing edges
point to the same node (Figure 2.b).

A (RO)BDD representing a boolean formula Ψ is noted
(RO)BDD(Ψ).

x x

y

z

y

z

x

y

x

y

a. Sharing sub-formulas b. Redundant node

Figure 2. Reduction Rules

Figure 3 illustrates the ROBDD representation of the
policy π (ROBDD(π)) shown in example 1 where the
solid edges denote the 1-edges and the dashed edges de-
note the 0-edges. The ROBDD order is the same as the pre-
fix ordering of variables ({x5, x6} < {x2, x4} < {x1, x3})
of the QBF Φ.

ROBDDs have some interesting properties. They pro-
vide compact and unique representations of boolean func-
tions, and there are efficient algorithms performing all kinds
of logical operations on ROBBDs. For example, it is possi-
ble to check in constant time whether an ROBDD is true or



1 0

x5

x2

x4

x1 x1

x3

x6

x1

x3

Figure 3. BDD representation of a policy (ex-
ample 1)

false. Let us recall that for boolean formula, such problem is
NP-complete. Despite the exponential size of the ROBDD
in the worst case, ROBDD is one of the most used data
structure in practice.

In the rest of this paper, only reduced ordered BDDs are
considered and for short we denote them as BDDs. When
Quantified boolean formulas are considered, the order used
by the ROBDD follows the prefix ordering of the QBF.

3. Solving QBF : a DLL + BDD approach

In this section, to make the QBFs solver freed from the
preset ordering of the variables (i.e. fixed by the QBF pre-
fix), we propose to combine classical SAT solver with bi-
nary decision diagram. More precisely, to check the valid-
ity of a QBF Φ = QXΨ, our approach makes use of a DLL-
like technique to search for all models of the boolean for-
mula Ψ. Such models are encoded by a BDD according to
the prefix variables ordering. To reduce the BDD size and
to answer the validity of the QBF, additional new reduction
operator is given in Figure 4. When, a node x is existentially
quantified and one of its child nodes is the 1-terminal node,
any reference to the node x is simply replaced by a reference
to its 1-terminal node. We call such reduction operation ex-
istential reduction. Interestingly enough, when x is univer-
sally quantified and its two child nodes are 1-terminal, such
node is eliminated using the classical BDD node reduction
(Figure 2.b).

In short, BDD is used to represent a set of models (fol-
lowing the prefix variables ordering of the QBF formula).

1

1
y

y

∃
x

Figure 4. Existential Reduction

During the BDD construction process, classical reduction
operation and existential reduction are applied. If set of
models represents a total policy of the QBF formula then
the BDD built from such models is reduced to a 1-terminal
node as stated by the following property :

Property 1 Let Φ = QkXk, . . . , Q1X1Ψ be a QBF for-
mula and π = {−→x 1,

−→x 2, . . . ,
−→x n} a set of models of Ψ. If

π is a total policy of Φ then the BDD(π) is reduced to the
1-terminal node.

Proof: The proof is obtained by induction on k. For k = 0,
the BDD representing the constant > is a 1-terminal node
(by definition of a total policy). Suppose that the property
holds for k−1, let us prove that it holds for k. By definition
of a total policy two case are considered :

1. if Qk = ∀, then π ↑ Xk = 2Xk , and ∀−→x k ∈
2Xk , π ↓ −→x k is a total policy of the QBF formula
Qk−1Xk−1, . . . , Q1X1Ψ(−→x k). By induction hypoth-
esis, we can deduce that BDD(π ↓ −→x k) is reduced
to 1-terminal node. Consequently all the leaf of the
BDD(2Xk ) are 1-terminal nodes. Then by repeatedly
applying the Redundant node rule on such a BDD, we
obtain a BDD reduced to a 1-terminal node.

2. if Qk = ∃, then π ↑
−→
X k = {−→x k} and

π ↓ −→x k is a total policy of the QBF formula
Qk−1Xk−1, . . . , Q1X1Ψ(−→x k). By induction hy-
pothesis BDD(π ↓ −→x k) is a 1-terminal node. Con-
sequently, the BDD({−→x k}) can be seen as a branch
ended on a 1-terminal node. Repeatedly apply-
ing the existential reduction rule, the BDD(π) is re-
duced to a 1-terminal node.

The following example shows the dynamic reduction of the
BDD associated with the set of models representing the to-
tal policy of example 1.

Example 2 Let Φ be the QBF formula of the example 1 and
π its associated policy.

• The figure 5 represents the reduction phase of the
BDD(π) representation.



• The figure 5.a is a BDD representation of the policy
π (for clarity reason, only paths with final 1-terminal
node are represented).

• The existential reduction rule allows the x3 elimina-
tion (figure 5.b) and the x1 elimination (figure 5.c).

• The redundant node reduction rule allows the x4 elim-
ination (figure 5.d) and the x2 elimination (figure 5.e).

• Finally the existential reduction rule suppresses x5 and
x6 and the bdd of the policy is restricted to the 1-
terminal node representing the true formula (figure 5.f)
and proving that π is a total policy.

The algorithm 2 represents the QBF solver obtained by a
combination of DLL procedure with BDD. As we can see,
the algorithm search for all models until the BDD represen-
tation (characterized by the global variable bdd initialized
to the 0-terminal node) is reduced to a 1-terminal node, in
that case the algorithm terminates and answers the valid-
ity of the QBF formula. If the algorithm backtrack to level
0, then the QBF formula is not valid. In other case search
continues (back is returned). The function Simplify() en-
forces the well known unit propagation process. While the
function conflictAnalysis() implements learning scheme
used by the most efficient satisfiability solvers. Finally,
modelAnalysis() is a new function that is called when a
model −→x is found. It allows us to avoid repeated search.
More precisely, if −→x is model of Ψ, a nogood ¬(−→x ↓ X1)
is added to the formula, since the variables X1 of the in-
ner quantifier group are existential. Example 3 gives a pos-
sible trace of QBFBDD algorithm.

Example 3 Let us consider the formula Φ of example 1.
Suppose the algorithm QBFBDD starts the search by as-
signing x1 and x5. At this step, one has to satisfy the clause
(¬x4 ∨ x3). Suppose, now, the choice is done on the vari-
able ¬x4. A first model (x5,¬x4, x1)) is found and is added
to the bdd. This variable is reduced to a single path to the
1-terminal node : < x5,¬x4 > (variable x1 is deleted by
existential reduction). The clause (¬x5 ∨ x4) is added to
the formula Ψ. A backtrack is done to search for other mod-
els and the assignment of x4 implies x3 using unit propaga-
tion. A second model (x5, x4, x1, x3) is added to the vari-
able bdd which becomes reduced to the 1-terminal node by
using existential and redundant reduction. So, search ends
and returns the validity of the formula Φ.

4. Empirical Evaluation

The experimental results reported in this section where
obtained on a Pentium IV 3 GHz with 1GB RAM, and per-
formed on a large panel of the QBF’03 evaluation instances
[2]. These instances are divided into three categories ac-
cording to their hardness. The first one contains easy in-

Algorithm 2: Combining BDD and DLL : QBFBDD

Data : Ψ : set of clauses;
X={Xk, . . . , X1} the prefix set of the QBF;
I a partial interpretation;
d level in the search tree, initially set to 0

Result : valid if the QBF is valid, unvalid other-
wise;
back is returned to continue the search for
other models.

begin
Simplify(Ψ);
if ∅ ∈ Ψ then

conflictAnalysis();
return back;

if Ψ = ∅ then
bdd := or(bdd, I);
if equal(bdd,1-terminal) then return valid;
modelAnalysis();
return back;

Let l ∈ Xi (i ∈ {1 . . . k}) be the chosen
branching variable;
if
(QDLL(Ψ∪ {l}, X −{l}, I ∪ {l}, d + 1)=valid)
or QDLL(Ψ ∪ {¬l}, X − {l}, I ∪ {¬l}, d +
1)=valid) then

return valid;
if (d = 0) then

return unvalid;
return back;

end

stances, the second, instances solved by only a few num-
ber of solvers (medium) and the last one, contains the open
hard instances. We compare our solver QBFBDD to state of
the art QBF solver QUBE [10] and OPENQBF. Since QBF-
BDD can choose variables using any ordering, we have im-
plemented a variant of Boehm heuristic [4] which selects in
priority existential variables. Let us note that QBFBDD is a
basic preliminary version implemented in Java. For each in-
stance, the cpu time (in seconds) is limited to 600 seconds.

Table 1 summarizes the results obtained on the QBF’03
evaluation instances, restricted to the real world instances.
The time column represents the sum of cpu time needed to
solve all problems (600 seconds is added when the prob-
lem is not solved during the allowed time limit). First of
all, QUBE one of the state of the art solver is able to solve
all easy instances, a majority of medium ones, but none of
the open and hard instances. The solver OPENQBF solves
all easy instances in the allowed time limits, only 36% of
the medium ones and zero instances of the hard category.
Our proposed QBF solver QBFBDD is less competitive than
QUBE and OPENQBF on easy and medium instances. The
most interesting result is that QBFBDD is the most effi-
cient on the hard category, where the instances are solved



1

x5

x6

x2

x4

x1

x3

x1

x1

x3

∃

∃

∃

∃∃

∀

∀

∃

∃

1

x5

x6

x2

x4

x1 x1

x1

∃

∃

∃

∀

∀

∃

∃

1

x5

x6

x2

x4

∃

∃

∀

∀

a. All models of π b. x3 elimination c. x1 elimination
(existential reduction) (existential reduction)

1

x5

x6

x2

∃

∃

∀

1

x5

x6

∃

∃

1

d. x4 elimination e. x2 elimination f. x5, x6 elimination
(redundant node reduction) (redundant node reduction) (existential reduction)

Figure 5. BDD reduction of a QBF total policy

for the first time. Such results are confirmed on hard robots
instances (see. table 2).

QUBE OPENQBF QBFBDD

Category nb solved time solved time solved time
Easy 178 178 46 178 1 062 60 73 232

Medium 331 328 5 830 276 37 215 121 129 221
Hard 135 0 81 000 0 81 000 12 74 739

Table 1. From easy to hard QBFs

Table 2 highlights cpu time and number of nodes of the
search tree for different instances of the QBF’03 evalua-
tion. Each line contains problem name, number of different
quantifier groups (#Q), number of variables (#V), number
of clauses (#C), the validity of the formula (V ?), the cpu
time (in seconds) and the number of nodes of the search
tree for the three different solvers (nodes are not available
with QUBE). In general, QUBE is the best and the fastest
solver. Our method QBFBDD is very competitive with re-
spect to some QBFs. Indeed, the solver QBFBDD solves all
robot instances encoding the robot navigation problem [6]
whereas the other solvers fail on some of them. Note that 12
instances are solved for the first time in a reasonable amount
of time using QBFBDD. Interestingly enough, QBFBDD is

not restricted to particular kind of QBF formulas. For ex-
ample, it solves quite easily the impl08 instance with 17
different quantifier groups and lognBWLARGEA1 instance
with a great number of clauses. We have remarked that the
OPENQBF solver make use of a monotone literal propa-
gation rule that seems to be very effective with respect to
some instances, since without such a rule, OPENQBF fails
to solve them in the allowed amount of time.

As a summary, our approach outperform the other
solvers on hard QBF instances, and it is competitive on
easy instances.

5. Future Work

Use of binary decision diagram to solve quantified
boolean formula is very promising and opens interest-
ing perspectives. We particularly plan to investigate the
following :

• Binary decision diagram is recognized as one of the
most efficient data structures for representing boolean
formula. In this paper, new BDD reduction operators
have been proposed, showing that one can answer ef-
ficiently if a set of models is total policy of a quanti-
fied boolean formula. Consequently, the design of in-
complete QBF solver is a very promising path of re-



QUBE OPENQBF QBFBDD

problem #Q #V #C V ? time nodes time nodes time nodes
robots_1_5_2_1.2 2 2964 8640 Y 0.13 ? 2.6 233 0.8 288
robots_1_5_5_3.3 2 3 952 12277 Y 0.75 ? 25 1 293 1.5 433
robots_1_5_2_1.3 2 3952 12274 Y 0.9 - 49 3 866 1.5 435
robots_1_5_2_2.7 2 7 904 26 810 Y - - - - 9 1 129

robots_1_5_3_1.10 2 10 868 37 713 Y - - - - 177 2 455
robots_1_5_2_1.9 2 9880 34078 Y - - - - 45 1800
term1.blif_0.10_0. 23 1116 3763 Y
20_0_1_inp_exact 0.53 ? 4.6 12544 0.7 1198
comp.blif_0.10_0. 7 311 833 Y
20_0_1_inp_exact 0.3 ? 146 304243 2.5 12815

flip-flop-5-c 3 3279 3630 N 0.1 ? 0.2 4 - -
adder-2-unsat 3 334 114 N 0.1 ? 5 21 552 423 192 763

impl08 17 34 66 Y 0.01 ? 0.1 103 18 7 719
lognBWLARGEA1 3 1099 62820 N 5 ? - - 10 1 181

toilet_g_10_01.2 3 54 190 Y 0.01 ? 0.01 19 - -
z4ml.blif_0.10_1. 3 64 196 Y
00_0_1_out_exact 0.01 ? 0.1 63 0.1 10

Table 2. Results on real-world QBFs

search. Indeed, one can use Local search techniques
that have been shown very efficient in finding mod-
els(e.g. [17, 12]) and binary decision diagram to repre-
sent them and to answer the validity or the non validity
of quantified boolean formulas.

• Our implementation of QBFBDD is a straightforward
one that do not use efficient coding tricks and extra fea-
tures leading to greater efficiency. Clearly, integrating
the most efficient satisfiability solver (e.g. Zchaff[15],
Berkmin51 [11]) could lead to significant improve-
ments of the QBFBDD solver. As our approach is freed
from the prefix ordering of the QBF, such extension
could be done in an obvious way.

• Another interesting path for future research concerns
the design of QBF solver that is only BDD-based. In
other word, one can construct the BDD associated to
the boolean matrix of the QBF instead of representing
the models found by a DLL-like techniques. Then, an
experimental comparison of the two approaches on a
large set of QBFs is necessary.

6. Conclusion

In this paper, a new QBF solver made of a combina-
tion of the well known DLL procedure with binary decision
diagram is presented. Reduction operations that prevent to
some extent the blowup of the BDD size and to answer the
validity of the QBF. The main advantage of our approach is
that it is freed from any ordering of variables. This facili-

tates the extension of satisfiability solver to solve quantified
boolean formulas. Experimental results on instances from
the QBFs competition show the effectiveness of our ap-
proach. More interestingly, some open hard QBF instances
are solved for the first time.

References

[1] S. Akers. Binary decision diagrams. IEEE Transactions on
Computers, 27(6):509–516, 1978.

[2] D. L. Berre, L. Simon, and A. Tachella. Challenges in the
qbf arena: the sat’03 evaluation of qbf solvers. In Proceed-
ings of the Sixth International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT2003), volume 2919
of LNAI, pages 452–467, 2003.

[3] R. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, 8:677–692,
C-35.

[4] M. Buro and H. K. Büning. Report on a SAT competition.
Bulletin of the European Association for Theoretical Com-
puter Science, 49:143–151, 1993.

[5] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm
to evaluate quantified boolean formulae. In Proceedings of
the Fifteenth National Conference on Artificial Intelligence
(AAAI’98), pages 262–267, Madison (Wisconsin - USA),
1998.

[6] C. Castellini, E. Giunchiglia, and A. Tachella. Sat based
planning in complex domains : Concurency, constraints and
non determinism. Artificial Intelligence, 147(1):85–117,
2003.



[7] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM,
5(7):394–397, July 1962.

[8] O. Dubois and G. Dequen. A backbone-search heuristic for
efficient solving of hard 3–sat formulae. In Proceedings of
the 17th International Joint Conference on Artificial Intelli-
gence (IJCAI–01), Aug. 4–10 2001.

[9] I. P. Gent, H. H. Hoos, A. G. D. Rowley, and K. Smyth. Us-
ing stochastic local search to solve quantified boolean for-
mulae. In Proceedings of the 9th international conference
of principles and practice of constraint programming, vol-
ume 2833 of LNCS, pages 348–362, 2003.

[10] E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE :
A system for deciding Quantified Boolean Formulas Satis-
fiability. In Proceedings of the International Joint Confer-
ence on Automated Reasoning (IJCAR’01), Siena, Italy, June
2001.

[11] E. Goldberg and Y. Novikov. BerkMin: A fast and robust
SAT-solver. In Proceedings of International Conference on
Design, Automation, and Test in Europe (DATE ’02), pages
142–149, 2002.

[12] H. H. Hoos and T. Stützle. Local search algorithms for SAT:
An empirical evaluation. Journal of Automated Reasoning,
24(4):421–481, 2000.

[13] R. Letz. Lemma and model caching in decision procedures
for quantified boolean formulas. In Proceedings of Tableaux
2002, pages 160–175, Copenhagen, Denmark, 2002.

[14] S. C. Marquis, H. Fargier, J. Lang, D. L. Berre, and P. Mar-
quis. Function problems for quantified boolean formulas.
Technical report, CRIL - France, 2003.

[15] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff : Engineering an efficient sat solver. In Pro-
ceedings of 38th Design Automation Conference (DAC01),
2001.

[16] J. Rintanen. Partial implicit unfolding in the Davis-Putnam
procedure for Quantified Boolean Formulae. In Proceedings
of the First International Conference on Quantified Boolean
Formulae (QBF’01), pages 84–93, 2001.

[17] B. Selman, H. Levesque, and D. Mitchell. A new method
for solving hard satisfiability problems. In Proceedings
of the Tenth National Conference on Artificial Intelligence
(AAAI’92), pages 459–465, 1992.

[18] L. Zhang and S. Malik. Towards a symetric treatment of sat-
isfaction and conflicts in quantified boolean formula evalu-
ation. In Proceedings of the Eighth International Confer-
ence on Principles and Practice of Constraint Programming
(CP’02), pages 200–215, Ithaca, NY, USA, Sept. 2002.


