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Abstract. In this paper, we present some preliminary results about the connec-
tions existing between qualitative and discrete constraint networks. We present a
natural encoding of any qualitative networkN into a discrete one P such that the
constraints of N become the variables of P and the constraints of P are defined
by the weak composition table of the used qualitative algebra. We then introduce
some properties about the (global) consistency of networks, circumscribing con-
ditions under which the two models are equivalent. We also relate some domain
filtering consistencies (such as generalized arc consistency) of discrete networks
encoding qualitative ones with ◦-consistency, where ◦ denotes the weak compo-
sition of the qualitative calculus.

1 Introduction

The need for reasoning about time and space arises in many areas of Artificial Intel-
ligence, including computer vision, natural language understanding, geographic infor-
mation systems (GIS), scheduling, planning, diagnosis and genetics. Numerous for-
malisms for representing and reasoning about time and space in a qualitative way have
been proposed in the past two decades [1, 16, 13, 5, 15, 11, 4].

Those formalisms involve a finite set of basic relations denoting qualitative rela-
tionships between temporal or spatial entities. Intersection, overlapping, containment,
precedence are examples of such qualitative relationships. For instance, in the field
of qualitative reasoning about temporal data, there is a well known formalism called
Allen’s calculus [1]. It is based on intervals of the rational line for representing tem-
poral entities and thirteen basic relations between such intervals are used to represent
the qualitative situations between temporal entities: an interval can follow another one,
meet another one, and so on.

Typically, Qualitative Constraint Networks (QCNs) are used to express information
on a spatial or temporal situation. Each constraint of a QCN represents a set of accept-
able qualitative configurations between some temporal or spatial entities and is defined
by a set of basic relations.

On the other hand, the discrete Constraint Satisfaction Problem (CSP) is at the
heart of Constraint Programming. Its task is to determine the satisfiability of a Dis-
crete Constraint Network (DCN), i.e. a network such that each variable takes its values
in an associated discrete domain. For solving DCNs, tree search algorithms are com-
monly used. To limit their combinatorial explosion, various improvements have been
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proposed. Such improvements mainly concern ordering heuristics, filtering techniques
and conflict analysis, and can be conveniently classified as look-ahead and look-back
schemes [8].

In this paper, we report on current work concerning the representation of qualita-
tive networks by discrete ones. More particularly, we define and study a transformation
that allows for translating a QCN into a DCN. We show that satisfiability (unlike unsat-
isfiability) is preserved by this transformation. Moreover, we study the links between
local consistency concepts of qualitative and discrete models. The final objective of this
work is to detect and import into the qualitative domain the most efficient inference and
search methods of the discrete model.

This paper is organized as follows. After introducing some technical background
about discrete and qualitative constraint networks, we introduce an encoding of quali-
tative networks into discrete ones while addressing the issue of satisfiability. Then, we
relate local consistencies from the two qualitative and discrete paradigms. Finally, we
conclude with some perspectives.

2 Background on Discrete Constraint Networks

Definition 1. A Discrete Constraint Network (DCN) P is a triple (X ,D,C) where:

– X is a finite set of variables;
– D is a mapping which associates to each variable x ∈ X a finite set of values D(x)

called domain;
– C is a finite set of constraints such that each constraint c ∈C involves a subset of

variables of X , called scope and denoted by vars(c), and has an associated relation,
denoted rel(c), which contains the set of tuples allowed for the variables of its
scope.

A solution to a discrete constraint network is an assignment of values to all the
variables such that all the constraints are satisfied. A constraint network is said to be
satisfiable or consistent iff it admits at least one solution. Two discrete constraint net-
works are equivalent iff they admit the same set of solutions.

Arc Consistency (AC) remains the central property of discrete constraint networks
and establishing AC on a given network P involves removing all values that are not
arc-consistent.

Definition 2. Let P = (X ,D,C) be a DCN. A pair (x,a), with x ∈ X and a ∈ D(x), is
arc-consistent iff ∀c ∈C | x ∈ vars(C), there exists a support of (x,a) in C, i.e. a tuple
t ∈ rel(c) such that t[x] = a and t[y]∈D(y) ∀y∈ vars(c)1. P is arc consistent iff ∀x∈ X ,
D(x) 6= /0 and ∀a ∈ D(x), (x,a) is arc-consistent.

The definition above is given in the general case, that is to say for instances involv-
ing constraints of any arity. Then, one usually talks about Generalized Arc Consistency
(GAC) (e.g. see [6]) or hyper-arc consistency (e.g. see [3]). We will say that an as-
signment of a value to each variable of a set S ⊆ X of variables is consistent iff any

1 t[x] denotes the value assigned to x in t
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constraint c ∈C only involving assigned variables of S (i.e. vars(c)⊆ S) is satisfied. P
is said to be (i, j)-consistent iff any consistent assignment to i variables can be extended
to a consistent assignment to j additional variables. Also, the k-consistency concept
(with k ≥ 1) is defined [9] as being equivalent to (k−1,1)-consistency. Finally, a DCN
is strong k-consistent iff it is j-consistent, for any j in {1, . . . ,k}.

To solve a discrete constraint network, one can apply inference or search methods
[8]. Usually, domains of variables are reduced by removing inconsistent values, i.e.
values that can not occur in any solution. We can then compare the different states of a
network during inference or search by focusing on domains as follows:

Definition 3. Let P = (X ,D,C) and P ′ = (X ,D′,C) be two DCNs. P ′ ⊆ P iff ∀x ∈ X ,
D′(x)⊆ D(x).

3 Background on Qualitative Calculi

3.1 Relations and Operations

A qualitative calculus involves a finite set B of binary2 relations, called basic relations,
defined on a domain D. The elements of D represent temporal or spatial entities. Each
basic relation of B corresponds to a particular possible configuration between two tem-
poral or spatial entities. The relations of B are jointly exhaustive and pairwise disjoint,
which means that any pair of elements of D belongs to exactly one basic relation in
B. Moreover, for each basic relation B ∈ B there exists a basic relation of B, denoted
by B∼, corresponding to the transposition of B. Moreover, we suppose that a particular
relation of B is the identity relation on D, we denote this basic relation by Id. The set
A is defined as the set of relations corresponding to all unions of the basic relations:
A = {

⋃
E : E ⊆ B}. It is customary to represent an element B1∪ . . .∪Bm (with Bi ∈ B

for each i such that 1≤ i≤m) of A by the set {B1, . . . ,Bm} belonging to 2B. Hence, we
make no distinction between A and 2B in the sequel.

As an example, consider the well known temporal qualitative formalism called
Allen’s calculus [2]. It uses intervals of the rational line for representing temporal en-
tities. Hence, D is the set {(x−,x+) ∈ Q×Q : x− < x+}. The set of basic relations
consists of a set of thirteen binary relations B = {eq,b,bi,m,mi,o,oi,s,si,d,di, f , f i}
corresponding to all possible configurations between two intervals. These basic rela-
tions are depicted in Figure 1. We have Id = eq.

As a set of subsets, A is equipped with the usual set-theoretic operations including
intersection (∩) and union (∪). As a set of binary relations, it is also equipped with the
operation of converse (∼) and an operation of composition (◦) sometimes called weak
composition or qualitative composition. The converse of a relation R in A is the union
of the transpositions of the basic relations contained in R. The composition A◦B of two
basic relations A and B is the relation R = {C ∈ B | ∃x,y,z ∈ D,x A y,y B z and x C z}.
The composition R◦S of R,S ∈ A is the relation T =

⋃
A∈R,B∈S{A◦B}. Computing the

results of these various operations for relations of 2B can be done efficiently by using
tables giving the results of these operations for the basic relations of B. For instance,

2 In this paper, we focus on binary relations but this work can be extended to n-ary relations with n > 2.
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Fig. 1: The basic relations of Allen’s calculus.

consider the relations R = {eq,b,o,si} and S = {d, f ,s} of Allen’s calculus, we have
R∼ = {eq,bi,oi,s}. The relation R◦S is {d, f ,s,b,o,m,eq,si,oi}.

3.2 Qualitative Constraint Networks

A qualitative constraint network (QCN) is a pair composed of a set of variables and a set
of constraints. The set of variables represents spatial or temporal entities of the system.
A constraint consists of a set of acceptable basic relations (the possible configurations)
between two variables. Formally, a QCN is defined in the following way:

Definition 4. A QCN is a pair N = (V,C) where V = {v1, . . . ,vn} is a finite set of n
variables and C is a map that assigns to each pair (vi,v j) of V ×V a set C(vi,v j) ∈ 2B

of basic relations. In the sequel, C(vi,v j) will be also denoted by Ci j. C is such that
Cii ⊆ {Id} and Ci j = C∼ji for all vi,v j ∈V .

With regard to a QCN N = (V,C), we have the following definitions. A solution of
N is a map σ from V to D such that (σ(vi),σ(v j)) satisfies Ci j for all vi,v j ∈ V . N is
consistent iff it admits a solution. A QCN N ′ = (V ′,C′) is a sub-QCN of N (denoted
byN ′ ⊆N ) if and only if V = V ′ and C′i j ⊆Ci j for all vi,v j ∈V . A QCNN ′ = (V ′,C′)
is equivalent to N if and only if V = V ′ and both networks N and N ′ have the same
solutions. The minimal QCN of N is the smallest (for ⊆) sub-QCN of N equivalent to
N . An atomic QCN is a QCN such that each Ci j contains exactly one basic relation. A
scenario of N is an atomic sub-QCN of N .

Given a QCNN , the main issue to be addressed is the consistency problem: decide
whether or not N admits (at least) a solution. Most of the algorithms used for solving
this problem are based on a method which we call the ◦-closure method. The ◦-closure
method is a constraint propagation method allowing to enforce the (0,3)-consistency of
a QCNN = (V,C), which means that all restrictions ofN to 3-variables are consistent.
The ◦-closure method consists in iteratively performing the following operation: Ci j :=
Ci j ∩ (Cik ◦Ck j), for all vi,v j,vk of V , until a fix-point is reached. The QCN obtained in
this way is a sub-QCN of N which is equivalent to it, and such that Ci j ⊆Cik ◦Ck j, for
all vi,v j,vk of V .
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This latter property is expressed by saying that this sub-network is ◦-closed (to
simplify, in the sequel, we will assume that a ◦-closed QCN does not contain the empty
relation associated with a constraint). When the QCN obtained in this way contains
the empty relation as a constraint, we can assert that the initial QCN is not consistent.
However, when it is not the case, we cannot (in the general case) infer the consistency
of the network. Despite this, the ◦-closure method is the main constraint propagation
method used for qualitative constraint networks.

4 Encoding Qualitative Networks into Discrete Ones

The idea of mapping qualitative networks into discrete ones is quite natural, but, to the
best of our knowledge, it has not been formalized and studied in the general case (i.e.
for any qualitative algebra). However, we can cite the work of Pham et al. [14] who
propose such a transformation for the Interval Algebra (IA). More precisely, any IA
network N can be encoded into a discrete network P as follows. First, each constraint
ofN is mapped to a variable of P whose domain corresponds to the atomic relations of
the constraint (and, as a consequence, a subset of B). Second, each triple of constraints
of N is mapped to a ternary constraint of P such that the associated relation contains
all valid 3-tuples satisfying the weak composition.

In this section, we propose a more preservative encoding of qualitative networks
into discrete ones. In our case, a QCN N is transformed into a ternary DCN P where
the constraints of N become the variables of P and the constraints of P are such that
their associated relations are defined by the entire table of weak composition. More
formally, we define such a transformation, denoted TDCN, as follows:

Definition 5. Let N = (V,C) be a QCN. TDCN(N ) is the DCN P = (X ,D,C′) defined
by:

– for each pair of variables vi,v j ∈ V with 0 < i ≤ j ≤ n, X contains a variable xi j.
The domain of xi j is defined by Ci j;

– for each triple of variables vi,v j,vk ∈V with 0 < i < k < j≤ n, C′ contains a ternary
constraint C′i jk involving the three variables xi j,xik,xk j and defined by C′i jk = TC
with TC = {(a,b,c) ∈ B3 : a ∈ b◦ c}.

Remark that the main difference between the approach that we describe below and
the approach of [14] is that the ternary constraints of the discrete network are not re-
duced by weak composition. Hence, we remain closer to the initial qualitative networks.

Firstly, we can prove that this transformation is sound for the consistency problem:

Proposition 1. Let N = (V,C) be a QCN. If N is consistent then TDCN(N ) is consis-
tent.

Proof. Let N = (V,C) be a QCN and TDCN(N ) = (X ,D,C′) be the DCN obtained
from N . If N is consistent then there exists a consistent scenario S = (V,C′′) of N .
As S is consistent and atomic, S is ◦-closed. Now, let us consider the assignment
I of the variables X defined by I(xi j) = bi j with C′′i j = {bi j} for all xi j ∈ X . S is a
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Fig. 2: The transformation TDCN.

subnetwork of N , hence I(xi j) ∈ D(xi j). Let xi j,xik,xk j ∈ X with 0 < i < k < j ≤ n,
C′′i j ⊆C′′ik ◦C′′k j as S is ◦-closed. As a consequence, (I(xi j), I(xik), I(xk j)) ∈ TC. Hence,
(I(xi j), I(xik), I(xk j)) ∈ C′i jk. We can conclude that I is a solution of TDCN(N ). So,
TDCN(N ) is consistent. ut

Unfortunately, the encoding is not complete for some qualitative calculi. As an il-
lustration, let us consider the QCNN depicted in Figure 3 which is defined in the cyclic
interval algebra [10, 4]. This qualitative networkN is inconsistent whereas the discrete
network TDCN(N ) is consistent. A solution of this DCN is given by instantiating each
variable by the value of its domain. Despite this, we have the following weaker property:

Proposition 2. Let N = (V,C) be a QCN. If TDCN(N ) is consistent then N admits a
◦-closed scenario.

Proof. Let N = (V,C) be a QCN and P = TDCN(N ) = (X ,D,C′). If P is consistent
then there exists a consistent instantiation I for P . Let S = (V,C′′) be the QCN defined
by : C′′i j = {I(xi j)} for all 0 < i ≤ j ≤ n, C′′i j = (C′′ji)

∼ for all 0 < j < i ≤ n. Remark
that C′′i j 6= {} for all 0 < j < i ≤ n. Let i, j,k ∈ {1, . . . ,n}. Firstly, consider the case
where i, j,k are distinct numbers. Suppose without any loss of generality than i < k < j.
We have (I(xi j), I(xik), I(xk j)) ∈ TC, as a consequence there exists di,d j,dk ∈ D such
that di C′′i j d j, di C′′ik dk, dk C′′k j d j, d j C′′ji di, dk C′′ki di and d j C′′jk dk. Moreover we
can remark that di C′′ii di, d j C′′j j d j and dk C′′kk dk since C′′ii = C′′j j = C′′kk = {Id}. From
all this we know that S is an atomic QCN and is consistent on all triples of distinct
variables vi,v j,vk ∈V . It results that C′′i j ⊆C′′ik ◦C′′k j for all distinct variables vi,v j,vk ∈V .
Now, consider i, j,k ∈ {1, . . . ,n} with i = j. We have C′′i j = {Id}. By definition of the
weak composition and the converse we know that {Id} ∈ b◦b∼ for all b ∈ B. It results
that C′′i j ⊆ C′′ik ◦C′′k j for all k ∈ {1, . . . ,n} since C′′k j = C′′ki = (C′′ik)

∼. Now suppose that
i, j,k ∈ {1, . . . ,n} with i = k (resp. j = k). We have C′′i j ⊆C′′ik ◦C′′k j since C′′ik = {Id} and
C′′k j = C′′i j (resp. C′′k j = {Id} and C′′ik = C′′i j). We can conclude that S is ◦-closed. ut

A qualitative calculus will be said to be nice iff it satisfies the following property:
a scenario is consistent if and only if it is ◦-closed. In fact, many qualitative calculi are
nice, and in particular the well known Allen’s calculus. From Propositions 1 and 2, we
can establish the following property (whose proof is immediate):
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Fig. 3: A QCN N of the cyclic interval algebra. Although N is inconsistent,
TDCN(N ) = (X ,D,C) is consistent.

Proposition 3. LetN be a QCN defined in a nice qualitative calculus.N is consistent
iff TDCN(N ) is consistent.

We can also show that the transformation TDCN preserves minimality and equiva-
lence.

Proposition 4. Let N be a QCN. N is minimal iff TDCN(N ) is minimal.

Proposition 5. LetN andN ′ be two QCNs. IfN andN ′ are equivalent then TDCN(N )
and TDCN(N ′) are equivalent.

To close this section, we define the converse transformation of TDCN, namely the
transformation TQCN.

Definition 6. Let N = (V,C) be a QCN and P = (X ,D,C′) be a DCN such that P ⊆
TDCN(N ). TQCN(P) is the QCN (V,C′′) defined by C′′i j = D(xi j) and C′′ji = (C′′i j)

∼ for
all 0 < i≤ j ≤ n.

We have the following properties :

Proposition 6. Let N be a QCN.

(a) N = TQCN(TDCN(N ));
(b) if P ⊆ TDCN(N ) then TQCN(P)⊆N ;
(c) if N ⊆N ′ then TDCN(N )⊆ TDCN(N ′). ut
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5 Equivalence between Local Consistencies

In this section we study the relationships of qualitative and discrete constraint networks
in terms of (local) consistencies.

Proposition 7. Let N be a ◦-closed QCN. N and TDCN(N ) are (0,3)-consistent.

Proof. For the first claim, let N = (V,C) be a ◦-closed QCN. We know that Ci j ⊆
Cik ◦Ck j for all 0 < i, j,k ≤ n. There exists bi j ∈Ci j, bik ∈Ci j and bk j ∈Ck j such that
bi j ∈ bik ◦bk j. By definition of the weak composition, there exist yi,y j,yk ∈D such that
yi bi j y j, yi bik yk and yk bk j y j. Moreover, by definition of QCNs we know that b∼i j ∈C ji,
b∼ik ∈Cki and b∼k j ∈C jk. Hence, by definition of the inverse we have: y j b∼i j yi, yk b∼ik yi

and y j b∼k j yk. Moreover yi Cii yi, y j C j j y j and yk Ckk yk since Cii = C j j = Ckk = {Id}.
It results that the restriction ofN on vi,v j,vk is consistent for all 0 < i, j,k≤ n. We can
conclude that N is (0,3)-consistent.

For the second claim let P = TDCN(N ) = (X ,D,C′). Consider three variables xi j,
xik,xk j ∈ X with 0 < i < k < j≤ n (we consider these triples of variables since there are
no constraint on other triples of variables). We have Ci j ⊆Cik ◦Ck j. As a consequence,
there exists bi j ∈ Ci j, bik ∈ Cik and bk j ∈ Ck j such that bi j ∈ bik ◦ bk j. We have bi j ∈
D(xi j), bik ∈ D(xik), bk j ∈ D(xk j) and (bi j,bik,bk j) ∈ C′i jk. We can conclude that P is
(0,3)-consistent. ut

Moreover, we have the following properties.

Proposition 8. Let N be a ◦-closed QCN. TDCN(N ) is strongly 3-consistent.

Proof. Let P = TDCN(N ) where N = (V,C) is a ◦-closed QCN. From the fact that
each domain of P is not empty and each constraint is a ternary constraint we can assert
that P is (0,1)-consistent and (1,1)-consistent. Now, let us prove that P is also (2,1)-
consistent. Let us consider three variables xi j,xik,xk j ∈ X with 0 < i < k < j ≤ n (we
just consider triples of variables corresponding to the scope of a constraint). Let I be a
partial consistent assignment on xi j and xik. We know that I(xi j) ∈Ci j and I(xik) ∈Cik.
Moreover, Ci j ⊆Cik ◦Ck j. It results that there exists bk j ∈Ck j such that I(xi j) ∈ I(xik)◦
bk j. Hence, (I(xi j), I(xik),bk j) ∈ TC, and besides, bk j ∈ D(xk j). As a consequence, by
defining I(xk j) with bk j we extend I in a partial consistent assignment to xk j. In a similar
way of reasoning, we can extend a partial consistent assignment on xi j and xk j to the
variable xik and extend a partial consistent assignment on xik and xk j to the variable xi j.
Hence P is (2,1)-consistent. We can conclude that P is a strongly 3-consistent DCN.

ut

Proposition 9. Let N be a ◦-closed QCN. TDCN(N ) is generalized arc-consistent.

Proof. Let P = TDCN(N ) where N is a ◦-closed QCN. From Proposition 8, we know
that P is strongly 3-consistent. Since P only involves ternary constraints, it results that
P is (1,2)-consistent and also generalized arc-consistent. ut

A corollary of these propositions is that ifN is a ◦-closed atomic QCN then TDCN(N )
is a consistent DCN.
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Proposition 10. Let N be a QCN. If TDCN(N ) is a generalized arc-consistent then N
is ◦-closed.

Proof. Let P = TDCN(N ) = (X ,D,C′) with N = (V,C) a QCN. Suppose that P is
generalized arc-consistent. Consider 0 < i, j,k ≤ n. Suppose that i < k < j without any
loss of generality. Let bi j ∈Ci j. We have bi j ∈ D(xi j). P is generalized arc-consistent,
it results that there exist bik ∈ D(xik) and bk j ∈ D(xk j) with (bi j,bik,bk j) ∈ C′i jk. As
bik ∈ Cik and bk j ∈ Ck j we have bi j ∈ Cik ◦Ck j. Hence, Ci j ⊆ Cik ◦Ck j. From this we
also have C∼i j ⊆ (Cik ◦Ck j)∼. Hence, C ji ⊆ C jk ◦Cki. Now let bik ∈ Cik. We have bik ∈
D(xik). P is generalized arc-consistent, it results that there exist bi j ∈ D(xi j) and bk j ∈
D(xk j) with (bi j,bik,bk j) ∈ C′i jk. From the definition of the weak composition, since
(bi j,bik,bk j) ∈ TC we can assert that (bik,bi j,b∼k j) ∈ TC. As bi j ∈Ci j and b∼k j ∈C jk we
have bik ∈Ci j ◦C jk. Hence, Cik ⊆Ci j ◦C jk. From this we also have C∼ik ⊆ (Ci j ◦C jk)∼.
Hence, Cki ⊆Ck j ◦C ji. With a similar line of reasoning we can prove that Ck j ⊆Cki ◦Ci j
and C jk ⊆ C ji ◦Cik. Now suppose that i = j. We have Ci j = C ji = {Id}. Moreover we
know that {Id} ⊆ b◦b∼ for all b ∈ B. It results that Ci j ⊆Cik ◦Ck j and C ji ⊆C jk ◦Cki.
Morevover it easy to see that Cik ⊆Ci j ◦C jk, Cki ⊆Ck j ◦C ji, C jk ⊆C ji ◦Cik and Ck j ⊆
Cki ◦Ci j. We obtain the same result with i = k or k = j. Finally we can assert that N is
a ◦-closed QCN. ut

As a consequence, a way to obtain the ◦-closure of a QCN is to transform it into a
DCN via TDCN. Indeed, we can then apply a GAC algorithm and transform the obtained
DCN into a QCN via TQCN (see Figure 4).

N P = TDCN(N )

GAC

P ′N ′ = TQCN(P ′)

◦-closure

Fig. 4: The ◦-closure through the DCNs.

6 Future Work and Conclusions

Abscon [12] and QAT (Qualitative Algebra Toolkit) [7] are two JAVA constraint pro-
gramming libraries developed at CRIL-CNRS. The first one is dedicated to discrete
constraint networks. It can solve instances of any arity and implements state-of-the-art
generic filtering (constraint propagation) and search algorithms. The second one is spe-
cialized in qualitative constraint networks. It aims to provide open and generic tools
for defining and manipulating qualitative algebras and qualitative networks based on



From Qualitative to Discrete Constraint Networks 63

these algebras. QAT also provides several methods to tackle the main centers of interest
when dealing with qualitative constraint networks, mainly the consistency problem, the
problem of finding one or all solutions, and the minimal network problem.

Currently, using these libraries, we are studying the interest of mapping qualitative
networks into discrete ones. One of our ultimate objective is to detect which (inference
or search) methods from the discrete CSP community could be efficiently specialized to
the qualitative algebras. For example, we project to experimentally determine whether
exploiting GAC could be an efficient alternative ◦-closure for qualitative constraints.
Another current line of research is the study of SAT encodings for QCNs.
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