
Last Conflict based Reasoning

Christophe Lecoutre and Lakhdar Sais and Sébastien Tabary and Vincent Vidal 1

Abstract. In this paper, we propose an approach to guide search
to sources of conflicts. The principle is the following: the last vari-
able involved in the last conflict is selected in priority, as long as the
constraint network can not be made consistent, in order to find the
(most recent) culprit variable, following the current partial instanti-
ation from the leaf to the root of the search tree. In other words, the
variable ordering heuristic is violated, until a backtrack to the cul-
prit variable occurs and a singleton consistent value is found. Conse-
quently, this way of reasoning can easily be grafted to many search
algorithms and represents an original way to avoid thrashing. Exper-
iments over a wide range of benchmarks demonstrate the effective-
ness of this approach.

1 Introduction

For solving instances of the Constraint Satisfaction Problem (CSP),
tree search algorithms are commonly used. To limit their combinato-
rial explosion, various improvements have been proposed. Such im-
provements mainly concern ordering heuristics, filtering techniques
and conflict analysis, and can be conveniently classified as look-
ahead and look-back schemes [8].Look-aheadschemes are used
when the current partial solution has to be extended andLook-back
schemes are designed to manage encountered dead-ends.

Early in the 90’s, the look-ahead Forward-Checking (FC) algo-
rithm [12] combined with the look-back Conflict-directed Back-
Jumping (CBJ) technique [20] was considered as the most efficient
approach to solve CSP instances. However, some years later, the
look-ahead MAC algorithm, which maintains arc-consistency during
search, was shown to be more efficient than FC-CBJ [21, 2].

Then, it became unclear if both paradigms were orthogonal, i.e.
counterproductive one to the other, or not. Indeed, while it is con-
firmed by theoretical results [6] that the more advanced the forward
phase is, the less useful the backward phase is, some experiments
on hard, structured problems show that adding CBJ to M(G)AC can
still present significant improvements. Further, refining the look-back
scheme [11, 1, 16] by associating a so-called eliminating explana-
tion (or conflict) with any value rather than with any variable gives
to the search algorithm a more powerful backjumping ability. The
empirical results in [1, 16] show that MAC can be outperformed by
algorithms embedding such look-back techniques.

More recently, look-ahead techniques have taken an advantage
with the introduction of conflict-directed variable ordering heuris-
tics [4]. The idea is to associate a weight with any constraintC and
to increment the weight ofC wheneverC is violated during search.
As search progresses, the weight of hard constraints become more
and more important, and this particularly helps the heuristic to select
variables appearing in the hard part of the network. It does respect the

1 CRIL-CNRS FRE 2499, rue de l’université, SP 16, 62307 Lens cedex,
France. email:{lecoutre,sais,tabary,vidal}@cril.univ-artois.fr

fail-first principle : “To succeed, try first where you are most likely to
fail” [12]. The new conflict-directed heuristicdom/wdeg is a very
simple way to prevent thrashing [4, 13] and is an efficient alternative
to backjump-based techniques [18].

Even if an advanced look-ahead technique is used, one can be in-
terested by looking for the reason of an encountered dead-end as find-
ing the ideal ordering of variables is intractable in practice. A dead-
end corresponds to a conflict between a subset of decisions (vari-
able assignments) performed so far. In fact, it is relevant (to prevent
thrashing) to identify the most recent decision (let us call it the cul-
prit one) that participates to the conflict. Indeed, once the culprit has
been identified, we know that it is possible to safely backtrack up to
it – this is the role of look-back techniques such as CBJ and DBT
(Dynamic Backtracking) [11].

In this paper, we propose an original approach to (indirectly) back-
track to the culprit of the last encountered dead-end. To achieve it, the
leaf conflict variable becomes in priority the next variable to be se-
lected as long as the successive assignments that involves it render
the network arc inconsistent. It then corresponds to checking the sin-
gleton consistency of this variable from the leaf toward the root of
the search tree until a singleton value is found. In other words, the
variable ordering heuristic is violated, until a backtrack to the culprit
variable occurs and a singleton value is found.

In summary, the approach that we propose aims at guiding search
to dynamically detect the conflict reason of the last encountered
dead-end. It is important to remark that, contrary to sophisticated
backjump techniques, our approach can be grafted in a very simple
way to a tree search algorithm without any additional data structure.

2 Technical background

A Constraint Network (CN)P is a pair(X , C) whereX is a finite
set ofn variables andC a finite set ofe constraints. Each variable
X ∈ X has an associated domain, denoteddom(X), which contains
the set of values allowed forX. Each constraintC ∈ C involves a
subset of variables ofX , called scope and denotedvars(C), and has
an associated relation, denotedrel(C), which contains the set of tu-
ples allowed for its variables. A solution to a CN is an assignment of
values to all the variables such that all the constraints are satisfied.
A CN is said to be satisfiable iff it admits at least one solution. The
Constraint Satisfaction Problem (CSP) is the NP-complete task of de-
termining whether a given CN is satisfiable. A CSP instance is then
defined by a CN, and solving it involves either finding one (or more)
solution or determining its unsatisfiability. To solve a CSP instance,
one can modify the CN by using inference or search methods [8].
Usually, domains of variables are reduced by removing inconsistent
values, i.e. values that cannot occur in any solution. Indeed, it is pos-
sible to filter domains by considering some properties of constraint
networks. Arc Consistency (AC) remains the central one.

Definition 1 LetP = (X , C) be a CN. A pair(X, v), withX ∈ X
and v ∈ dom(X), is arc consistent iff∀C ∈ C | X ∈ vars(C),
there exists a support of(X, v) in C, i.e., a tuplet ∈ rel(C) such
that t[X] = v and t[Y] ∈ dom(Y) ∀Y ∈ vars(C). P is arc con-
sistent iff∀X ∈ X , dom(X) 6= ∅ and∀v ∈ dom(X), (X, v) is arc
consistent.

Singleton Arc Consistency (SAC) [7] is a stronger consistency
than AC, i.e. SAC can identify more inconsistent values than AC
can. SAC guarantees that enforcing arc consistency after performing
any variable assignment does not show unsatisfiability, i.e., does not
entail a domain wipe-out.

Backtracking Search Algorithms The backtracking algorithm
(BT) is a central algorithm for solving CSP instances. It employs
a depth-first search in order to instantiate variables and a backtrack
mechanism when dead-ends occur. Many works have been devoted to
improve its forward and backward phases by introducing look-ahead
and look-back schemes [8].

MAC [21] is the look-ahead algorithm which is considered as the
most efficient generic approach to solve CSP instances. It simply
maintains (re-establishes) arc consistency after each variable assign-
ment. A dead-end is encountered if the network becomes arc incon-
sistent (because a domain is wiped out, i.e. becomes empty). When
mentioning MAC, it is important to indicate which branching scheme
is employed. Indeed, it is possible to consider binary (2-way) branch-
ing or non binary (d-way) branching. These two schemes are not
equivalent as it has been shown that binary branching is more power-
ful (to refute unsatisfiable instances) than non-binary branching [14].
With binary branching, at each step of the search, a pair (X,v) is se-
lected whereX is an unassigned variable andv a value in dom(X),
and two cases are considered: the assignmentX = v and the refuta-
tion X 6= v. The MAC algorithm (using binary branching) can then
be seen as building a binary tree. During search (i.e. when the tree
is being built), we can make the difference between an opened node,
for which only one case has been considered, and a closed node, for
which both cases have been considered. Classically, MAC always
starts by assigning variables before refuting values.

On the other hand, three representative look-back algorithms are
SBT (Standard Backtracking), CBJ (Conflict Directed Backjumping)
[20] and DBT (Dynamic Backtracking) [11]. The principle of these
look-back algorithms is to jump back to a variable assignment that
must be reconsidered as it is suspected to be the most recent culprit
of the dead-end. SBT simply backtracks to to the previously assigned
variable whereas CBJ and DBT can identify a meaningful culprit
decision by exploiting eliminating explanations.

Search Heuristics The order in which variables are assigned by
a backtracking search algorithm has been recognized as a key issue
for a long time. Using different variable ordering heuristics to solve
a CSP instance can lead to drastically different results in terms of ef-
ficiency. In this paper, we will focus on the following representative
variable ordering heuristics:dom, bz, dom/ddeg anddom/wdeg.
The well-known dynamic heuristicdom [12] selects, at each step of
the search, one variable with the smallest domain size. To break ties
(which correspond to sets of variables that are considered as equiva-
lent by the heuristic), one can use the current (also called dynamic)
degree of the variable. This is the heuristic calledbz [5]. By di-
rectly combining domain sizes and dynamic variable degrees, one
obtainsdom/ddeg [2] which can substantially improve the perfor-
mance of the search on some problems. Finally, in [4], the heuristic

dom/wdeg has been introduced. The principle is to associate with
any constraint of the problem a counter which is incremented when-
ever the constraint is involved in a dead-end. Hence,wdeg that refers
to the weighted degree of a variable corresponds to the sum of the
weights of the constraints involving this variable (and at least another
unassigned variable).

3 Reasoning from conflicts

In this section, we show that it is possible to identify a nogood from a
sequence of decisions leading to a conflict, and to exploit this nogood
during search. We then discuss the impact of such a reasoning on
thrashing prevention.

3.1 Nogood identification

Definition 2 Let P = (X , C) be aCN and (X,v) be a pair such
that X ∈ X andv ∈ dom(X). The assignmentX = v is called a
positive decision whereas the refutationX 6= v is called a negative
decision.¬(X = v) denotesX 6= v and¬(X 6= v) denotesX = v.

¿From now on, we will consider an inference operatorφ assumed
to satisfy some usual properties. This operator can be employed at
any step of a tree search, denotedφ-search, using a binary branching
scheme. For example, MAC corresponds to theφAC -search algo-
rithm whereφAC is the operator that establishes AC.

Definition 3 LetP be aCN and∆ be a set of decisions.P |∆ is the
CN obtained fromP such that, for any positive decision (X = v)
∈ ∆, dom(X) is restricted to{v}, and, for any negative decision
(X 6= v) ∈ ∆, v is removed from dom(X). φ(P) is the CN obtained
after applying the inference operatorφ onP .

If there exists a variable with an empty domain inφ(P) thenP is
clearly unsatisfiable, denotedφ(P) = ⊥.

Definition 4 Let P be a CN and ∆ be a set of decisions.∆ is
a nogood ofP iff P |∆ is unsatisfiable.∆ is a φ-nogood ofP iff
φ(P |∆) = ⊥. ∆ is a minimalφ-nogood ofP iff @∆′ ⊂ ∆ such that
φ(P |∆′) = ⊥.

Obviously,φ-nogoods are nogoods, but the opposite is not nec-
essarily true. Our definition includes both positive and negative de-
cisions as in [9, 17]. Note that we can consider aφ-nogood∆ as
deduced from a sequence of decisions〈δ1, . . . , δi〉 such that∆ =
{δ1, . . . , δi}. Such a sequence can correspond to the decisions taken
along a branch in a search tree leading to a dead-end.

Definition 5 Let P be a CN and Σ = 〈δ1, . . . , δi〉 be a se-
quence of decisions such that{δ1, . . . , δi} is a φ-nogood ofP .
A decisionδj ∈ Σ is said to be culprit iff∃v ∈ dom(Xi) |
φ(P |{δ1,...,δj−1,¬δj ,Xi=v}) 6= ⊥ whereXi is the variable involved
in δi. We define the culprit subsequence ofΣ to be either the empty
sequence if no culprit decision exists, or the sequence〈δ1, . . . , δj〉
whereδj is the latest culprit decision inΣ.

In other words, the culprit subsequence of a sequence of decisions
Σ leading to an inconsistency ends in the most recent decision such
that, when negated, there exists a value that can be assigned, without
yielding an inconsistency withφ, to the variable involved in the last
decision ofΣ. We can show that it corresponds to a nogood.

Proposition 1 Let P be aCN andΣ = 〈δ1, . . . , δi〉 be a sequence
of decisions s.t.{δ1, . . . , δi} is aφ-nogood ofP . The set of decisions
contained in the culprit subsequence ofΣ is a nogood ofP .

Proof. Let 〈δ1, . . . , δj〉 be the culprit subsequence ofΣ. Let us
demonstrate by recurrence that for any integerk such thatj ≤ k ≤ i,
the following hypothesis, denoted H(k), holds:

H(k): {δ1, . . . , δk} is a nogood
First, let us show that H(i) holds. We know that{δ1, . . . , δi} is a no-
good since, by hypothesis,{δ1, . . . , δi} is a φ-nogood ofP . Then,
let us show that, forj < k ≤ i, if H(k) holds then H(k − 1) also
holds. Ask > j and H(k) holds, we know that, by recurrence hy-
pothesis,{δ1, . . . , δk−1, δk} is a nogood. Furthermore,δk is not a
culprit variable (sincek > j). Hence, by Definition 5, we know that
∀v ∈ dom(Xi), φ(P |{δ1,...,δk−1,¬δk,Xi=v}) = ⊥. As a result, the
set{δ1, . . . , δk−1,¬δk} is a nogood. By resolution,{δ1, . . . , δk−1}
is a nogood.2

The following property states that identifying an empty culprit
subsequence allows proving the unsatisfiability of a CN.

Corollary 1 LetP be aCN andΣ = 〈δ1, . . . , δi〉 be a sequence of
decisions such that{δ1, . . . , δi} is a φ-nogood ofP . If the culprit
subsequence ofΣ is empty, thenP is unsatisfiable.

When we obtain aφ-nogood from a sequence of decisionsΣ taken
along a branch built by aφ-search algorithm, it is safe to backjump
to the last decision contained in the culprit subsequence ofΣ which
corresponds to a nogood. We can also remark that the set of decisions
contained in a culprit subsequence may not be a minimal nogood,
and can be related to the nogood computed using the first Unique
Implication Point (1UIP) scheme used in SAT solvers [22].

3.2 Last Conflict reasoning

The identification and exploitation of nogoods as described above
can be easily embedded into aφ-search algorithm thanks to a sim-
ple modification of the variable ordering heuristic. We will call this
approachLast Conflict reasoning(LC).

In practice, we will exploit LC only when a dead-end has been
reached from an opened node of the search tree, that is to say, from
a positive decision since when a binary branching scheme is used,
positive decisions are generally taken first. It means that LC will be
used iffδi (the last decision of the sequence mentioned in Definition
5) is a positive decision. To implement LC, it is then sufficient to (i)
register the variable whose assignment to a given value directly leads
to an inconsistency, and (ii) always prefer this variable in subsequent
decisions (if it is still unassigned) over the choice given by the un-
derlying heuristic – whatever heuristic is used. Notice that LC does
not require any additional space cost.

Figure 1 illustratesLast Conflictreasoning. The leftmost branch
on the figure corresponds to the positive decisionsX1 = v1, . . .,
Xi = vi, such thatXi = vi leads to a conflict. At this point,Xi

is registered by LC for future use. As a consequence,vi is removed
from dom(Xi), i.e. Xi 6= vi. Then, instead of pursuing the search
with a new selected variable,Xi is chosen to be assigned with a new
valuev′. In our illustration, this leads once again to a conflict,v′ is
removed fromdom(Xi), and the process loops until all values are
removed fromdom(Xi), leading to a domain wipe-out. The algo-
rithm then backtracks to the assignmentXi−1 = vi−1, going to the
right branchXi−1 6= vi−1. As Xi is still recorded by LC, it is then
selected in priority, and all values ofdom(Xi) are excluded due to

6 ∃v ∈ dom(Xi),
AC(P ′|Xi=v)

6 ∃v ∈ dom(Xi),
AC(P ′|Xi=v)

AC(P ′|Xi=v)
6 ∃v ∈ dom(Xi),

AC(P ′|Xi=v)
∃v ∈ dom(Xi),

Xi−1 = vi−1

Xi 6= vi

Xj+1 6= vj+1

Xi 6= v

Xj 6= vjXj = vj

Xj+1 = vj+1

Xi = vi

Xi = v

Xi−1 6= vi−1

Figure 1. Last Conflict reasoning illustrated in a partial binary branching
search tree.P ′ denotes the constraint network obtained at each node after
performing the previous decisions and applying an inference operatorφ.

the same process as above. The algorithm finally backtracks to the
decisionXj = vj , going to the right branchXj 6= vj . Then, as
Xi is still the registered variable, it is preferred again and the values
of dom(Xi) are tested. But, as one of them (v) does not lead to a
conflict, the search can continue with the assignmentXi = v. The
variableXi is then unregistered, and the choice for subsequent deci-
sions is left to the underlying heuristic, until the next conflict occurs.

By using theφAC operator to identify culprit subsequences as de-
scribed above, we obtain the following complexity results.

Proposition 2 LetP = (X , C) be aCN andΣ = 〈δ1, . . . , δi〉 be
a sequence of decisions s.t.{δ1, . . . , δi} is aφAC -nogood ofP . The
worst case time complexity of computing the culprit subsequence of
Σ is O(eid3), wheree = |C | andd is the greatest domain size ofP .

Proof. The worst case is when the computed culprit subsequence of
Σ is empty. In this case, it means that, for each decision, we check the
singleton arc consistency of the variable involved inδi. As checking
the singleton arc consistency of a variable corresponds to at mostd
calls to an arc consistency algorithm, the worst case time complex-
ity is id times the complexity of the used arc consistency algorithm.
As the optimal worst case time complexity of establishing arc con-
sistency isO(ed2) (e.g. AC2001/3.1 [3]), we obtain the overall time
complexityO(eid3).2

Corollary 2 Let P = (X , C) be aCN andΣ = 〈δ1, . . . , δi〉 be
a sequence of decisions that corresponds to a branch built by MAC
leading to a failure. The worst case time complexity of computing the
culprit subsequence ofΣ is O(end3), wheren = |X |, e = |C | and
d is the greatest domain size ofP .

Proof. First, we know, that as positive decisions are performed first
by MAC, the number of opened nodes in a branch of the search tree
is at mostn. Second, for each closed node, we do not have to check
the singleton arc consistency of the variable involved inδi since we
have to directly backtrack. So we obtainO(end3). 2

3.3 Preventing thrashing using LC

Thrashing is the fact of repeatedly exploring the same subtrees. This
phenomenon deserves to be carefully studied as an algorithm subject
to thrashing can be very inefficient.

Sometimes, thrashing can be explained by some bad choices made
earlier during search. In fact, whenever a value is removed from the
domain of a variable, it can be explained (with more or less preci-
sion). It simply means that it is possible to indicate the decisions (i.e.
variable assignments in our case) that entailed removing this value.
By recording such so-called eliminating explanations and exploiting
this information, one can hope to backtrack up to a level where a
culprit variable will be re-assigned, this way, avoiding thrashing.

In some cases, no pertinent culprit variable(s) can be identified by
a backjumping technique although thrashing occurs. For example,
let us consider some unsatisfiable instances of the queens+knights
problem as proposed in [4]. When the two subproblems are merged
without any interaction (there is no constraint involving both a queen
variable and a knight variable as in theqk-25-25-5-add instance),
a backjumping technique such as CBJ or DBT is able to prove the
unsatisfiability of the problem from the unsatisfiability of the knights
subproblem (by backtracking up to the root of the search tree). When
the two subproblems are merged with an interaction (queens and
knights cannot be put on the same square as in theqk-25-25-5-mul
instance), CBJ and DBT become subject to thrashing (when they are
used with a standard variable ordering heuristic such asdom, bz and
dom/ddeg) because the last assigned queen variable is considered as
participating to the failure. The problem is that, even if there exists
different eliminating explanations for a removed value, only the first
one is recorded. One can still imagine to improve existing backjump-
ing algorithms by updating eliminating explanations or computing
new ones [15]. However, it is far beyond the scope of this paper.

Last Conflict reasoning is a new way of preventing thrashing,
while still being a look-ahead technique. Indeed, guiding search to
the last decision of a culprit subsequence behaves similarly to using a
form of backjumping to that decision. For example, we can show that
when a backjump to a culprit decision occurs with the Gaschnig’s
technique [10], then LC, in the same context, also reaches this deci-
sion in polynomial time.

Table 1 illustrates the powerful thrashing prevention capability of
LC on the two instances mentioned above. SBT, CBJ and DBT can-
not prevent thrashing for theqk-25-25-5-mul instance as, within
2 hours, the instance remains unsolved (even when other standard
heuristics are used). On the other hand, in about1 minute, LC (with
SBT) can prove the unsatisfiability of this instance. The reason is
that all knight variables are singleton arc inconsistent. When such a
variable is reached, LC guides search up to the root of the search tree.

Instance SBT CBJ DBT LC
qk-25-25-5-add cpu > 2h 11.7 12.5 58.9

nodes − 703 691 10, 053
qk-25-25-5-mul cpu > 2h > 2h > 2h 66.6

nodes − − − 9922

Table 1. Cost of running MAC-bz (time out set to2 hours)

4 Experiments

In order to show the practical interest of the approach described in
this paper, we have conducted an extensive experimentation (on a PC
Pentium IV 2,4GHz 512Mo under Linux). Performances are mea-
sured in terms of the number of visited nodes (nodes) and the cpu
time in seconds (cpu). Remark that for our experimentation, we have
used MAC (with SBT, i.e. chronological backtracking), and studied
the impact of LC wrt various variable ordering heuristics.

First, we have experimented different series of problems. The re-
sults that we have obtained are given in Table 2. The series corre-
sponding to composed random instances, random 3-SAT instances

dom/ddeg dom/wdeg bz
¬LC LC ¬LC LC ¬LC LC

Composed random instances (10 instances per series)
25-1-40 3600 (10) 0.03 0.05 0.03 0.01 0.01
25-10-20 1789 (4) 0.32 0.09 0.08 1255 (3) 0.10
75-1-40 3600 (10) 0.10 0.10 0.90 0.02 0.02

Random 3-SAT instances (100 instances per series)
ehi-85 1726 2.43 2.21 0.43 1236 1.34
ehi-90 3919 3.17 2.34 0.43 2440 1.37

Balanced QWH instances (100 instances per series)
15-106 3.72 2.6 0.27 0.35 3.8 2.9
18-141 528 (4) 267 (1) 4.96 6.87 542 (4) 274 (1)

Radar Surveillance instances (50 instances per series)
rs-24-2 948 (13) 0.28 0.01 0.01 1989 (26) 0.52
rs-30-0 242 (3) 0.35 0.01 0.01 1108 (15) 18

Table 2. Average cost (cpu) of running MAC without LC (¬LC) and with
LC on different series of problems

and balanced QWH instances were used as benchmarks2 for the first
CSP solver competition. Each composed random instance contains
a main (under-constrained, here) fragment and some auxiliary frag-
ments, each one being grafted to the main fragment by introduc-
ing some binary constraints. Each random 3-SAT instance embeds
a small unsatisfiable part and has been converted to CSP using the
dual encoding method. Each balanced QWH instance corresponds to
a satisfiable balanced quasi-group instance with holes. Finally, the
last series correspond to some realistic radar surveillance instances3

as proposed by the Swedish Institute of Computer Science (SICS).
The problem is to adjust the signal strength (from0 to 3) of a given
number of fixed radars wrt6 geographic sectors. Moreover, each cell
of the geographic area must be covered exactly by3 radar stations,
except for some insignificant cells that must not be covered. Each set
is denotedrs-i-j wherei andj represent the number of radars and
the number of insignificant cells, respectively.

In Table 2, we can observe the impact of LC when using MAC and
different heuristics. Note that the time limit was fixed to1 hour (ex-
cept for the random 3-SAT instances, all solved in reasonable time)
and that the number of expired instances, i.e. instances not solved
within 1 hour of allowed cpu time, is given between brackets. Also,
remark that, in case of expired instances, the indicated cpu must be
considered as a lower bound.

On the one hand, when standard heuristicsdom/ddeg andbz are
used, it clearly appears that LC allows improving the efficiency of
MAC in both CPU time and the number of solved instances, espe-
cially on composed and radar surveillance instances. In fact, these
instances have a structure and a too blind search is subject to thrash-
ing. Using LC avoids this phenomena without disturbing the main
behaviour of the heuristics. On the other hand, when the conflict-
directed heuristicdom/wdeg is used, LC is not so important since
thrashing was already prevented by the heuristic.

Finally, we present in Table 3 some representative results obtained
for some selected instances of the first international CSP competi-
tion. The time limit was also fixed to1 hour. Once again, it appears
that using LC with a standard heuristic greatly improves the effi-
ciency of MAC. This is not always the case for MAC-dom/wdeg.
Note that most of these instances cannot be efficiently solved using a
backjumping technique such as CBJ or DBT combined with a stan-
dard heuristic as shown in [18].

2 http://cpai.ucc.ie/05/Benchmarks.html
3 http://www.ps.uni-sb.de/˜walser/radar/radar.html

dom/ddeg dom/wdeg dom bz
¬LC LC ¬LC LC ¬LC LC ¬LC LC

Academic instances
Golomb-11-sat cpu 438 146 584 149 379 134 439 147

nodes 55, 864 19, 204 51, 055 12, 841 58, 993 21, 858 60, 352 21, 262
BlackHole-4-4-0010 cpu 3.89 3.60 3.01 5.26 > 1h 36.45 > 1h 28.50

nodes 6, 141 5, 573 6, 293 9, 166 − 162K − 106K
cc-10-10-2 cpu 1238 35.63 3.10 4.11 99.95 8.45 1239 35.50

nodes 543K 14, 656 2, 983 3, 526 180K 9, 693 543K 14, 656
qcp-20-balanced−23 cpu > 1h 201 17.11 1.00 26.70 2.62 1.11 3.39

nodes − 141K 19, 835 1, 210 100K 6, 606 431 3, 470
qk-25-25-5-add cpu > 1h 57.30 135 63.64 > 1h 57.72 > 1h 57.35

nodes − 10, 052 24, 502 11, 310 − 10, 053 − 10, 053
qk-25-25-5-mul cpu > 1h 66.34 134 68.31 > 1h 65.64 > 1h 66.23

nodes − 9, 922 22, 598 9, 908 − 9, 922 − 9, 922
Real-world instances

e0ddr1-10 cpu > 1h 87.47 18.85 30.49 102 1.06 > 1h 52.11
nodes − 157K 37, 515 56, 412 307K 1, 390 − 94, 213

enddr1-1 cpu > 1h 1.35 0.72 0.57 0.20 0.20 > 1h 0.78
nodes − 2, 269 1, 239 733 50 50 − 1, 117

graph2-f25 cpu > 1h 77.86 29.10 3.53 > 1h 344 > 1h 72.23
nodes − 54, 255 31, 492 3, 140 − 436K − 51, 246

graph8-f11 cpu > 1h 5.00 7.54 0.49 > 1h 57.73 > 1h 49.58
nodes − 1, 893 5, 075 152 − 41, 646 − 22, 424

scen11 cpu 95.84 1.65 0.97 0.96 > 1h 1104 > 1h 2942
nodes 31, 81 905 911 936 − 804K − 1672K

scen6-w2 cpu > 1h 0.45 0.51 0.29 > 1h 0.51 > 1h 0.46
nodes − 405 741 272 − 706 − 318

Table 3. Cost of running MAC without LC (¬LC) and with LC on academic and real-world instances

5 Conclusion

In this paper, we have introduced an original approach that can be
grafted to any search algorithm based on a depth-first exploration.
The principle is to select in priority the variable involved in the last
conflict (i.e. the last assignment that failed) as long as the network
cannot be made consistent. This way of reasoning allows preventing
thrashing by backtracking to the most recent culprit of the last con-
flict. It can be done without any additional cost in space and with a
worst-case time complexity in O(end3). Our extensive experimenta-
tion clearly shows the interest of this approach.

In our approach, the variable ordering heuristic is violated, until
a backtrack to the culprit variable occurs and a singleton consistent
value is found. However, there is an alternative which is to not con-
sider the found singleton consistent value as the next value to be as-
signed. In this case, the approach becomes a pure inference technique
which corresponds to (partially) maintaining a singleton consistency
(SAC, for example) on the variable involved in the last conflict. This
would be related to the recent “quick shaving” technique [19].

Acknowledgments

This paper has been supported by the CNRS, the “Planevo” project
and the “IUT de Lens”.

REFERENCES
[1] F. Bacchus, ‘Extending Forward Checking’, inProceedings of CP’00,

pp. 35–51, (2000).
[2] C. Bessìere and J. Ŕegin, ‘MAC and combined heuristics: two reasons

to forsake FC (and CBJ?) on hard problems’, inProceedings of CP’96,
pp. 61–75, (1996).

[3] C. Bessìere, J.C. Ŕegin, R.H.C. Yap, and Y. Zhang, ‘An optimal coarse-
grained arc consistency algorithm’,Artificial Intelligence, 165(2), 165–
185, (2005).

[4] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, ‘Boosting system-
atic search by weighting constraints’, inProceedings of ECAI’04, pp.
146–150, (2004).

[5] D. Brelaz, ‘New methods to color the vertices of a graph’,Communi-
cations of the ACM, 22, 251–256, (1979).

[6] X. Chen and P. van Beek, ‘Conflict-directed backjumping revisited’,
Journal of Artificial Intelligence Research, 14, 53–81, (2001).

[7] R. Debruyne and C. Bessière, ‘Some practical filtering techniques for
the constraint satisfaction problem’, inProceedings of IJCAI’97, pp.
412–417, (1997).

[8] R. Dechter,Constraint processing, Morgan Kaufmann, 2003.
[9] F. Focacci and M. Milano, ‘Global cut framework for removing sym-

metries’, inProceedings of CP’01, pp. 77–92, (2001).
[10] J. Gaschnig, ‘Performance measurement and analysis of search algo-

rithms.’, Technical Report CMU-CS-79-124, Carnegie Mellon, (1979).
[11] M. Ginsberg, ‘Dynamic backtracking’,Artificial Intelligence, 1, 25–46,

(1993).
[12] R.M. Haralick and G.L. Elliott, ‘Increasing tree search efficiency for

constraint satisfaction problems’,Artificial Intelligence, 14, 263–313,
(1980).

[13] T. Hulubei and B. O’Sullivan, ‘Search heuristics and heavy-tailed be-
haviour’, inProceedings of CP’05, pp. 328–342, (2005).

[14] J. Hwang and D.G. Mitchell, ‘2-way vs d-way branching for CSP’, in
Proceedings of CP’05, pp. 343–357, (2005).

[15] U. Junker, ‘QuickXplain: preferred explanations and relaxations for
over-constrained problems’, inProceedings of AAAI’04, pp. 167–172,
(2004).

[16] N. Jussien, R. Debruyne, and P. Boizumault, ‘Maintaining arc-
consistency within dynamic backtracking’, inProceedings of CP’00,
pp. 249–261, (2000).

[17] G. Katsirelos and F. Bacchus, ‘Generalized nogoods in csps’, inPro-
ceedings of AAAI’05, pp. 390–396, (2005).

[18] C. Lecoutre, F. Boussemart, and F. Hemery, ‘Backjump-based tech-
niques versus conflict-directed heuristics’, inProceedings of ICTAI’04,
pp. 549–557, (2004).

[19] O. Lhomme, ‘Quick shaving’, inProceedings of AAAI’05, pp. 411–415,
(2005).

[20] P. Prosser, ‘Hybrid algorithms for the constraint satisfaction problems’,
Computational Intelligence, 9(3), 268–299, (1993).

[21] D. Sabin and E. Freuder, ‘Contradicting conventional wisdom in con-
straint satisfaction’, inProceedings of CP’94, pp. 10–20, (1994).

[22] L. Zhang, C.F. Madigan, M.W. Moskewicz, and S. Malik, ‘Efficient
conflict driven learning in a Boolean satisfiability solver’, inProceed-
ings of ICCAD’01, pp. 279–285, (2001).

