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Abstract. We address the problem of extracting Minimal Unsatisfi- really dedicated to the extraction of MUCs from constraint networks.
able Cores (MUCs) from constraint networks. This computationallyAn approach for the diagnosis of over-constrained networks has been
hard problem has a practical interest in many application domaingroposed in [1] and a method to find all MUCs from a given set
such as configuration, planning, diagnosis, etc. Indeed, identifyin@f constraints is presented in [9, 5]. This method corresponds to an
one or several disjoint MUCs can help circumscribe different sourcegxhaustive exploration of a so-called CS-tree, but is limited by the
of inconsistency in order to repair a system. In this paper, we proposeombinatorial explosion in the number of subsets of constraints. Fi-
an original approach that involves performing successive runs of aally, a divide and conquer approach has been proposed in [12] in
complete backtracking search, using constraint weighting, in ordeorder to extract from an over-constrained problem an explanation (or
to surround an inconsistent part of a network, before identifying allrelaxation) using preferences given by the user.

transition constraints belonging to a MUC using a dichotomic pro-  In this paper, we propose an original approach to extract a MUC
cess. We show the effectiveness of this approach, both theoreticallyom a given constraint network. This approach consists of two
and experimentally. stages. The first one exploits the conflict-directed variable ordering
heuristicdom /wdeg [2] in order to surround (and then extract) an
unsatisfiable core by performing successive complete runs of a back-
tracking search algorithm. Search is restarted, while preserving con-
A constraint network is said to be minimal unsatisfiable if and onlystraint weighting from one run to the next one, until the size of the
if it is unsatisfiable and deleting an arbitrary constraint makes it satproved unsatisfiable core cannot be made smaller. Then, using a total
isfiable. Deciding whether a set of constraints is minimal unsatisfi-order on the constraints based on their current weights, and follow-
able is well known to be DP-Complete [20]. It can be reduced to thang the principle introduced in [6], the second stage allows iteratively
SAT-UNSAT problem: given two CNF formulag ands), is ¢ satis-  identifying the constraints of a MUC. Compareddonstructive[6]

fiable andy unsatisfiable? DP corresponds to the second level of th@nd destructive[1] approaches which are respectivelye@y) and
Boolean hierarchy. A problem in this class can be considered as th#&(e), thedichotomicapproach that we propose isi@{(e).k.). Here,
difference between two NP-problems. the complexity corresponds to the worst-case number of calls to the

On the practical side, when inconsistency is encountered, circunacktracking search algorithm,denotes the number of constraints
scribing the conflicting parts of a system can help the user underof the given constraint network arid denotes the number of con-
stand, explain, diagnose and restore consistency. To illustrate the ingtraints of the extracted MUC. We also relate this complexity with
portance of the problem addressed in this paper, one can mention tifee one obtained by Junker [12].
well-known Radio Link Frequency Assignment Problem (RLFAP) The paper is organized as follows. First, we introduce some tech-
which is often used as a benchmark in the CSP (Constraint Satigtical background. Then, we present the two stages of our approach:
faction Problem) community. This problem involves assigning fre-extracting an unsatisfiable core by exploiting constraint weighting
quencies to a set of radio links defined between pairs of transmitter@nd extracting a minimal core by identifying so-calteshsitioncon-
in order to avoid interferences. To this end, one looks for a solutiorstraints. Next, related work is discussed. Finally, before concluding,
that minimizes the number of used frequencies. Circumscribing th&e present the results of an experimentation that we have conducted.
unfeasible subnetwork areas (of minimal size) can help find new po-
sitions of the transmitters.

In the case of Boolean constraints (formula in Conjunctive Nor-
mal Form), finding minimal unsatisfiable sub-fqrmula is an active re-A Constraint Network (CNY is a pair(2", €) where 2" is a finite
search area. Tractable classes have been exhibited. Most of them ag . - . .

L . . set ofn variables andg” a finite set ofe constraints. Each variable

based on the deficiency of the formula (i.e. difference between th . . - )

. . € 2 has an associated domain, denated(X'), which contains
number of clauses and variables) [4, 7]. Also, recent advances in sat, ) ;
e e ; : e set of values allowed foX . Each constrain€ € % involves a
isfiability checking has allowed successful extensions of SAT solvers - .

. . Subset of variables aof2”, called scope, and has an associated rela-
for handling such a hard computational problem [3, 23, 15, 19]. . . )
. . . . e tion, denotedel(C'), which contains the set of tuples allowed for the
In the context of constraint satisfaction, there is a significant _ . . . 15
. . . P ; variables of its scope. For any subset ¢ of constraints of?, P
amount of work dealing with the identification of conflict sets of con- . : :
straints. Such sets, which can be built by recording explanations du}lyIII denote the constraint network obtained frafhby removing all
' ’ y 9exp constraints ofS and P, s will be equivalent toP'(¢ =),

ing search, are usually used to perform different forms of intelligent A solution to a CN is an assignment of values to all the variables

backtracking (€.g. [22, 8, 13]). However, there are only a few Workssuch that all the constraints are satisfied. A CN is said to be satisfiable
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CN is satisfiable. A CSP instance is then defined by a CN, and soNa|gorithm 1 revise(C : Constraint,X : Variable) : Boolean
ing it involves either finding one (or more) solution or determining 1. domainSize — |[dom(X)]

its unsatisfiability. To solve a CSP instance, a depth-first search al-z: for eacha € dom(X) do

gorithm with backtracking can be applied, where at each step of the3, if seekSupport(C, X, a) = false then

search, a variable assignment is performed followed by a filtering . removea from ;ion’z(X)

process called constraint propagation. Usually, constraint propagas, active|C] — true

tion algorithms, which are based on some constraint network prop-¢. i dom(X) = 0 then

erties such as arc consistency, remove some values which can no;_
occur in any solution. The algorithm that maintains arc consistency8; ret
during search is called MAC. An unsatisfiable core corresponds ta
an unsatisfiable subnetwork of a CN.

wght[C] «— wght[C] + 1 // used by some heuristics
urndomainSize # |dom(X)|

Algorithm 2 pcoreP=(¥,%) : CN) : CN
Definition 1. LetP = (27,%), P’ = (2",%") be two CNsP' is 1: active|C] — false,¥C € €
an unsatisfiable core a? iff P’ is unsatisfiableZ”’ C Z A€’ C €. 2. MAC(P)
3: returnPT{CE‘K\active[C]:false}

Different unsatisfiable cores of a given CN may exist. Those which
do not contain any proper unsatisfiable core are said to be minimal. .
y prop 3.2 A Conflict-based Approach

Even if the proof-based approach is an elegant approach, we have no
idea about its practical efficiency. In other words, we cannot predict
the size of the unsatisfiable core extractedpbyre. It is clear that

To show the minimality of an unsatisfiable core, one canjustchecl%he smallest the size is, the most efficient the approach is. Actually,

the satisfiability of any CN obtained when removing one constraint. 22 |II_le_tra}ted below, exploiting a confllgt-dlrected variable Of_de”“g
heuristic in order to push up an unsatisfiable core by performing suc-

cessive runs makes the proof-based approach quite effective.

Definition 2. Let P = (£2,%) be aCN andP’ = (2,%") an
unsatisfiable core of. P’ is a Minimal Unsatisfiable Core (MUC)
of P iffit does not exist any unsatisfiable cdr¢ of P’ s.t. P" # P'.

3 Extracting Unsatisfiable Cores

Heuristic dom/wdeg In [2], it is proposed to associate a counter,
First, following the idea given in [1], we introduce an approach thatgenotedwght[C], with any constraintC’ of the problem. These
allows removing some constraints (while preserving unsatisfiability) counters are used as constraint weighting. Whenever a constraint
Then, we refine this approach by exploiting constraint weighting ands shown to be unsatisfied (during the constraint propagation pro-

(complete) restarts. cess), its weight is incremented hy(see line7 of Algorithm 1).
The weighted degree of a variablé is then defined as the sum
3.1 A Proof-based Approach of the weights of the constraints involving and at least another

uninstantiated variable. The conflict-directed heuriglien /wdeg

When the unsatisfiability of a CSP instance is proved by a filterindz] involves selecting first the variable with the smallest ratio current
search algorithm, one can automatically extract a core that is guaflomain size to current weighted degree. As search progresses, the
anteed to be unsatisfiable. Indeed, it suffices to keep track of all thweight of hard constraints become more and more important and this
constraints that have been involved in the proof of unsatisfiabilityParticularly helps the heuristic to select variables appearing in the
that is to say, any constraint that has been used during search to fdard part of the network. This heuristic has been shown to be quite
move, by propagation, at least one value in the domain of a variablefficient (2, 14, 10].

This principle was mentioned in [1] and can be related to the concept

of implication graph used in SAT (e.g. see [17, 23)). lllustrative Example Using dom/wdeg allows efficiently prov-

Let us examine how it works with MAC which maintains arc con- ing the unsatisfiability of many instances. However, in order to obtain
sistency by exploiting, for instance, an algorithm such as AC3 [16].a proof of unsatisfiability of moderate size, one has to be aware that
It involves successive revisions of arcs (pairs composed of a cont is important to perform successive runs by restarting search sev-
straint and of a variable) in order to remove the values that are neral times. As an illustration, let us consider the problem of putting
more consistent with the current state. At the heart of the solver isome queens and some knights on a chessboard as described in [2].
then the function depicted in Algorithm 1. All values of the domain The instance witlé queens and knights involve® variables and6
of the given variable that are not currently supported by the giverconstraints and is unsatisfiable. In fact, we know that the subproblem
constraint are removed (lin€<o 4). corresponding to thg knights, and involving variables an& con-

By introducing a data structure, denotedive, that allows as-  straints, is unsatisfiable. In a first phase, solving this instance with
sociating a Boolean with each constraint, we are then in a positioMAC-dom /wdeg (i.e. MAC combined with thelom /wdeg vari-
to extract an unsatisfiable core. The functjgre depicted in Al-  able ordering heuristic) yields a proof of unsatisfiability integrating
gorithm 2 allows such an extraction. Initially, all Booleans are setall constraints of the instance (that is to say, all Booleative have
to false (line 1). Then, the MAC solver is called (ling), what in- been set tdrue). However, solving again the same instance, using
volves successive revisions. Hence, whenever a revision is effectiveurrent weighting of the constraints as obtained after the first run,
the Boolean associated with the constraint is set-t@ (line 5 of yields a new proof of unsatisfiability integrating orflyconstraints.
Algorithm 1). Finally, the function returns (lin&) the CN obtained  An additional run furnishes the same result.

from P by removing any constrair@ such thatctive[C] is false. Figure 1 illustrates the evolution of such proofs of unsatisfiability.
It is important to remark that the network returneddayre is guar-  CNs are represented by constraint graphs where vertices correspond
anteed to be unsatisfiable but not necessarily minimal. to variables and edges to binary constraints. Note that constraints ir-



n 2 clearly belongs to a minimal core @ will be called thetransition

un 3 constraint ofP (according to the given ordering). Note also that any
. O——¢—0 constraintC; with j > i can be safely removed.
phase
‘\O 4.1 ldentifying the Transition Constraint
© queens It is possible to identify théransition constraint of an unsatisfiable
@ knights CN P by using a constructive approach, a destructive approach or

a dichotomic one. Below, MAQY) returnsSAT (reps.UNSAT)

/2 Y
run 1 run 3 iff P is satisfiable (resp. unsatisfiable), and the paraniefer |%|)
it indicates the number of transition constraints previously identified
4 (the firstk constraints of the current network). It will be meaningful

later, but initially, just considek = 0.

Constructive Approach The principle is to successively add the
Figure 1. Evolution of the proof of unsatisfiability constraints of the given network until the current network becomes
unsatisfiable. This approach is analog to the one introduced in [6]
relevant to unsatisfiability after one run are represented by dashe@nd is depicted by Algorithm 4.
edges. Then, it is possible to refine the extraction after removing all
the constraints which are not involved in the detected core, i.e., proohlgorithm 4 csTransitionfP= (¥, %) : CN, k : int) : Constraint
of unsatisfiability. Indeed, in a second phase, we obtain an unsatisfi-1: for ; increasingly varying fronk + 1 to || do
able core that corresponds to the knights subproblem. 2. if MAC(P,(c,.....c,3) = UNSAT then returnC;

Exploiting Conflict-directed Heuristics As illustrated above,
performing several runs of a MAC solver may be useful to surroundDestructive Approach The principle is to successively remove the
an unsatisfiable core provided that a conflict-directed heuristic suchonstraints of the given network until the current network becomes
asdom/wdeg is used. This approach is depicted by Algorithm 3. satisfiable (notethati can never reach). This approach has been
Initially (line 1), the weight of all constraints is set o Then, it-  introduced in [1] and is depicted by Algorithm 5.
eratively, MAC-dom /wdeg is run (line6) and the number of con-
straints found in the unsatisfiable core detected by the current ruAlgorithm 5 dsTransitionP= (7, %) : CN, k : int) : Constraint
is counted (line7). The iteration stops when the size of the current 1: for ; decreasingly varying fron#’| to k + 1 do
unsatisfiable core is greater than or equal to the size of the previou: jf MAC(P|(c,,....c;_1}) = SAT thenreturnC;
one. Remember that from one run to the next oneythkt counters
are preserved, which allows potentially concentrating the search to a
smaller and smaller unsatisfiable core. Note that we can easily geneBichotomic Approach Finally, it is possible to use a dichotomic
alize this algorithm in order to perform several phases as mentionegearch in order to find the transition constraint. This approach is de-

in the illustration. picted by Algorithm 6. At each step of the search, we know that the
- transition constraint oP belongs to{ Crnin, - - - , Crmax }-

Algorithm 3 wcore(P=(¥,%) : CN) : CN

1 wght[C] « 1,YC € € Algorithm 6 dcTransitionf= (¥,%) : CN, k : int) : Constraint

g fg;égt(_ oo 1: min — k+1;maz «— |%|

: ) 2: while min # max do

4:  active[C] « falseVC € € 3. center — (min + max)/2

5 Cnlep = Cnlafe 4:  if MAC(P|{c,,....Ceonter}) = SAT then min «— center + 1

6: MAC-dom/wdeg(P) . 5. elsemaz « center

7. entapr —| {C € Flactive[C} | 6: returnC,n

8: until entaf: > cntpes

9: returnPT{CG%\active[c]:false}

4.2 Extracting the Minimal Core

4 Extracting Minimal Unsatisfiable Cores Using one of the functions described above allows finding the tran-

It is clear that the unsatisfiable core that can be extracted by usingftion constrainC’; of an unsatisfiable network, that is to say one

the functionwcore is not guaranteed to be minimal. In order to find €/eément that belongs to a minimal core Bf To get a second ele-

a minimal core, it is necessary to iteratively identify the constraintsMent, we apply the same function on a new €Nwhich is obtained

that are involved in it. More precisely, we know that, given an unsat{rom P by removing all constraint§’; such thag > i (since unsatis-

isfiable CNP and a total ordering of the constraints (to simplify, we fiability is preserved) and considering a new order of the constraints

shall consider the natural lexicographic ordar, Cs, ..., C. ofthe ~ Such thatCi is considered as the smallest element (a natural order

constraints), there exists a constraihtsuch thatP, (¢, ¢, ,yis  €an be preservgd by simply. renaming constraints). This process can

satisfiable andP, (¢, ¢,y is unsatisfiable This constraint which be re_p_eated until gll constraints of the current _network correspon_d tg
‘ transition constraints that have been successively found. The princi-

2 We shall assume that no constraifexists inP such that rel() = 0. ple of this iterative process has been described in [6, 11, 21]. It is

,,,,,




depicted by Algorithm 7 which returns a MUC from the given net- a dichotomic approach (dcMUC) and a conflict-based preliminary
work (just consider one of the tree approaches by replacing xx witlstage (wcore) whose practical importance will be shown in Section
cs, ds or dc). Note that we have to determine if the last constraind. Some other works [11, 21] concern the identification of minimal

belongs to the MUC (line% ands). IT conflict-sets wherdl denotes a propagation operator. Roughly
speaking, while extracting a MUC is an activity which is global to
Algorithm 7 xxMUC(P= (¥,%) : CN) : CN the network, extracting &l conflict-set is an activity limited to a
1. P —P: k<0 branch of the search tree. As a consequence, in order to keep some
2: while k < |¢’| — 1 do incrementality of the propagation process, the proposed algorithms
3. C; «— zxTransition(P', k) in [11, 21] involves (at least, partially) a constructive schema. The
4 ke—k+1 (new) method QuickXplain [12] exploits a divide and conquer ap-
5 P p'H{Cili>i} proach (which exploits a dichotomic process) and whose complexity
6 NP tmp— Ci, Cia1 — Cjfor1 < j <i,Cy — tmp has been discussed_ in Se(_:tion 4.2. A similar approach, called XC1,
7. if MAC(P/T{C\“K’I }) = UNSAT then return P’ {Ce’} has been proposed in [18] in @ more general context.
8 elsereturnP’ On the other hand, research in unsatisfiable cores for propositional

satisfiability (SAT) is quite active. Bruni and Sassano [3] have pro-

. . . . posed an “adaptive core search” to recover a small unsatisfiable sub-
The following proposition (whose proof is omitted) suggests that .
. . e formula. Clause hardness are evaluated thanks to an history search
the dichotomic approach should be more efficient than the two other : : :
analysis. By selecting a fixed percentage of hard clauses, the current
ones. e . .
unsatisfiable core is expended or contracted until the core becomes
Proposition 1. Let P = (2", %) be an unsatisfiable CN. The worst- unsatisfiable. In [23], using a resolution proof based approach, the
case number of calls to MAC is @k.) for csMUC(P), 6(e) for Zchaff solver is extended for approximating an unsatisfiable core
dsMUC(P) and Ofog(e).ke) for dcMUC(P). Here,e = |%| andk. (i.e. the returned unsatisfiable core is not guaranteed to be minimal).
is the number of constraints of the extracted MUC. Finally, Lynce and Marques-Silva [15] have proposed a model that

) ) computes aninimumunsatisfiable core (i.e. the smallest unsatisfi-
To be more precise, we obtain a worst-case number of calls tgpje core in the number of clauses).

MAC by dcMUC bounded byog:(e).(ke + 1) (+1 since we have

to prove that thek. transition constraints form a MUC). It can

be compared withQuick X plain whose worst-case complexity is 6 Experiments

2ke.logz(e/ke) +2ke [12]. In the worst-caselcM U C is better than o . )
Quick X plain when(loga (ke) — 1).2k. / (ke — 1) < loga(e), that In_order to show the practical interest of t_he app_roach d_escrlbed in
is to say, when the size of the extracted core is rather small. ThifiS paper, we have conducted an experimentation, using for each

condition holds for all the instances that have been tested in our eXUn MAC-dom/wdeg, on a PC Pentium IV 2,4GHz 512Mo under
perimentation. Also, considering the illustration given in [12] with Linux. Performances have been measured in terms of the number of

e = 2% andk. — 2%, we obtain288 calls with Quick X plain runs (#runs) and the cpu time in seconds (cpu). We also indicate the
against180 calls withde M UC. number of constraints (#C) (and, sometimes, of variables (#V))) of

Finally, for efficiency reasons, it is really important to use, in prac-instances and extracted cores.

tice, a conflict-based approach (functiomore) before extracting a Our experimentation has been performed wrt some random and
MUC (function zzMUC). This will be shown in Section 6. The real-world instances. The random instances correspond to the unsat-

methods that we consider are then (given a constraint netifprk  1Sfiable instances of two sets, denotgd-85-297 andehi-90-315,
containing100 easy random instances embedding a small unsatisfi-

e CS which corresponds to call csMUC(wcaRgj able part. The real-world instances correspond to the two archives
e DS which corresponds to call dsMUC(wcor) RLFAP and FAPP. The selected unsatisfiable instances of the Ra-
e DC which corresponds to call dcMUC(wcore)) dio Link Frequency Assignment Problem (RLFAP) came from the

£ ifitd t exolicitl b i ider that IICELAR (Centre electronique de I'armement) while the instances of
ven ititdoes not explicitly appear above, we will considerthat all o Frequency Assignment with Polarization Problem (FAPP) came

constraints are renamed, before calling xxMUC, in such a way tha}rom the ROADEF’2001 challenge. Most of these instances were
the lexicographic order corresponds to the decreasing order of th&

. . : sed as benchmarkgor the first CSP solver competition.
current weights of the constraints. It allows to improve the methods
by limiting the number of runs performed. Note also that we can

Instance pcore wcore

arbitrarily bound the number of calls to MAC hycore in order to cpu #C cpu #C

o . qk-25-25-5-mul (BC =435) | 100.1 427 | 107.7 | 32
have Proposition 1 hold for CS, DS and DC. In practice, we have ehi-85-297-0 (FC =4, 094) 2.03 | 3,734 3.01 | 226
observed that the number of calls to MAC byore is always low. graph-14-f28 #C=4,638) | 4.23 | 3,412 [ 4.69 [ 503

Table 1. Cost (cpu) and Size (#C) of cores extractedbbyre andwcore

5 Related Work

On the one hand, research in extraction of unsatisfiable cores of con- First, we have SIUd'e_d the practlcal_lnterest of callingre in-
stead ofpcore. Table 1 indicates the size of the cores extracted by

straint networks is rather limited. Bakker et al. [1] have proposed ab th method " inst o b that it ft
method to extract a MUC (in the context of Model-Based Diagnosis). oth methods wrt Some Instances. LUne can observe that it IS really

This method essentially corresponds to call dsMUC(pd@)e(Our worth usingwcore since the size of the extracted core can be very

approach can then be seen as a refinefdiibeirs since we propose small_a_nd the additional cos't of_ performing successive runs is not
penalizing (the cost fowcore is given for all performed runs). It is

3 Itis also important to note that weights introduced in [1] correspond to static
preferences given by the user. 4 http://cpai.ucc.ie/05/Benchmarks.html




illustrated with one queens-knights instance, one random 3-SAT inapproach. In particular, the worst-case number of calls to MAC of
stance and one RLFAP instance. Note that, for some other instance3(C is bounded byog: (e).(k. + 1), and DC has appeared to be quite
the gap between the two methods is negligible. efficient with respect to real-world instances taken from the RLFAP
Then, we have compared DC with CS and DS. On random EHlnd FAPP archives. Indeed, a MUC has been extracted from most
instances (mean costs are given in the first part of Table 2), the diffef these instances in less thaminute. In comparison, it is worth
ence between DS and DC is not very important. It can be explainedhentioning that most of the instances that have been experimented
by the fact that the extracted core returnedubaleg is already small  in this paper can not be solved, in a reasonable amount of time, when

(it has been observed on all EHI instances but not on all tested realising standard variable ordering heuristics (see [2, 14]).

world instances). However, on RLFAP and FAPP instances (see sec-

ond and third parts of Table 2), DC clearly outperforms CS and DSAcknowledgments
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