
Extracting MUCs from Constraint Networks
Fred Hemery and Christophe Lecoutre and Lakhdar Sais and Frédéric Boussemart1

Abstract. We address the problem of extracting Minimal Unsatisfi-
able Cores (MUCs) from constraint networks. This computationally
hard problem has a practical interest in many application domains
such as configuration, planning, diagnosis, etc. Indeed, identifying
one or several disjoint MUCs can help circumscribe different sources
of inconsistency in order to repair a system. In this paper, we propose
an original approach that involves performing successive runs of a
complete backtracking search, using constraint weighting, in order
to surround an inconsistent part of a network, before identifying all
transition constraints belonging to a MUC using a dichotomic pro-
cess. We show the effectiveness of this approach, both theoretically
and experimentally.

1 Introduction

A constraint network is said to be minimal unsatisfiable if and only
if it is unsatisfiable and deleting an arbitrary constraint makes it sat-
isfiable. Deciding whether a set of constraints is minimal unsatisfi-
able is well known to be DP-Complete [20]. It can be reduced to the
SAT-UNSAT problem: given two CNF formulasφ andψ, isφ satis-
fiable andψ unsatisfiable? DP corresponds to the second level of the
Boolean hierarchy. A problem in this class can be considered as the
difference between two NP-problems.

On the practical side, when inconsistency is encountered, circum-
scribing the conflicting parts of a system can help the user under-
stand, explain, diagnose and restore consistency. To illustrate the im-
portance of the problem addressed in this paper, one can mention the
well-known Radio Link Frequency Assignment Problem (RLFAP)
which is often used as a benchmark in the CSP (Constraint Satis-
faction Problem) community. This problem involves assigning fre-
quencies to a set of radio links defined between pairs of transmitters
in order to avoid interferences. To this end, one looks for a solution
that minimizes the number of used frequencies. Circumscribing the
unfeasible subnetwork areas (of minimal size) can help find new po-
sitions of the transmitters.

In the case of Boolean constraints (formula in Conjunctive Nor-
mal Form), finding minimal unsatisfiable sub-formula is an active re-
search area. Tractable classes have been exhibited. Most of them are
based on the deficiency of the formula (i.e. difference between the
number of clauses and variables) [4, 7]. Also, recent advances in sat-
isfiability checking has allowed successful extensions of SAT solvers
for handling such a hard computational problem [3, 23, 15, 19].

In the context of constraint satisfaction, there is a significant
amount of work dealing with the identification of conflict sets of con-
straints. Such sets, which can be built by recording explanations dur-
ing search, are usually used to perform different forms of intelligent
backtracking (e.g. [22, 8, 13]). However, there are only a few works

1 CRIL-CNRS FRE 2499, rue de l’université, SP 16, 62307 Lens cedex,
France. email:{hemery,lecoutre,sais,boussemart}@cril.univ-artois.fr

really dedicated to the extraction of MUCs from constraint networks.
An approach for the diagnosis of over-constrained networks has been
proposed in [1] and a method to find all MUCs from a given set
of constraints is presented in [9, 5]. This method corresponds to an
exhaustive exploration of a so-called CS-tree, but is limited by the
combinatorial explosion in the number of subsets of constraints. Fi-
nally, a divide and conquer approach has been proposed in [12] in
order to extract from an over-constrained problem an explanation (or
relaxation) using preferences given by the user.

In this paper, we propose an original approach to extract a MUC
from a given constraint network. This approach consists of two
stages. The first one exploits the conflict-directed variable ordering
heuristicdom/wdeg [2] in order to surround (and then extract) an
unsatisfiable core by performing successive complete runs of a back-
tracking search algorithm. Search is restarted, while preserving con-
straint weighting from one run to the next one, until the size of the
proved unsatisfiable core cannot be made smaller. Then, using a total
order on the constraints based on their current weights, and follow-
ing the principle introduced in [6], the second stage allows iteratively
identifying the constraints of a MUC. Compared toconstructive[6]
anddestructive[1] approaches which are respectively O(e.ke) and
θ(e), thedichotomicapproach that we propose is O(log(e).ke). Here,
the complexity corresponds to the worst-case number of calls to the
backtracking search algorithm,e denotes the number of constraints
of the given constraint network andke denotes the number of con-
straints of the extracted MUC. We also relate this complexity with
the one obtained by Junker [12].

The paper is organized as follows. First, we introduce some tech-
nical background. Then, we present the two stages of our approach:
extracting an unsatisfiable core by exploiting constraint weighting
and extracting a minimal core by identifying so-calledtransitioncon-
straints. Next, related work is discussed. Finally, before concluding,
we present the results of an experimentation that we have conducted.

2 Technical Background

A Constraint Network (CN)P is a pair(X ,C) whereX is a finite
set ofn variables andC a finite set ofe constraints. Each variable
X ∈ X has an associated domain, denoteddom(X), which contains
the set of values allowed forX. Each constraintC ∈ C involves a
subset of variables ofX , called scope, and has an associated rela-
tion, denotedrel(C), which contains the set of tuples allowed for the
variables of its scope. For any subsetS ⊆ C of constraints ofP ,P ↑S

will denote the constraint network obtained fromP by removing all
constraints ofS andP↓S will be equivalent toP ↑(C−S).

A solution to a CN is an assignment of values to all the variables
such that all the constraints are satisfied. A CN is said to be satisfiable
iff it admits at least one solution. The Constraint Satisfaction Prob-
lem (CSP) is the NP-complete task of determining whether a given

CN is satisfiable. A CSP instance is then defined by a CN, and solv-
ing it involves either finding one (or more) solution or determining
its unsatisfiability. To solve a CSP instance, a depth-first search al-
gorithm with backtracking can be applied, where at each step of the
search, a variable assignment is performed followed by a filtering
process called constraint propagation. Usually, constraint propaga-
tion algorithms, which are based on some constraint network prop-
erties such as arc consistency, remove some values which can not
occur in any solution. The algorithm that maintains arc consistency
during search is called MAC. An unsatisfiable core corresponds to
an unsatisfiable subnetwork of a CN.

Definition 1. LetP = (X ,C), P ′ = (X ′,C ′) be two CNs.P ′ is
an unsatisfiable core ofP iff P ′ is unsatisfiable,X ′ ⊆ X ∧C ′ ⊆ C .

Different unsatisfiable cores of a given CN may exist. Those which
do not contain any proper unsatisfiable core are said to be minimal.

Definition 2. Let P = (X ,C) be a CN andP ′ = (X ′,C ′) an
unsatisfiable core ofP . P ′ is a Minimal Unsatisfiable Core (MUC)
ofP iff it does not exist any unsatisfiable coreP ′′ ofP ′ s.t.P ′′ 6= P ′.

To show the minimality of an unsatisfiable core, one can just check
the satisfiability of any CN obtained when removing one constraint.

3 Extracting Unsatisfiable Cores

First, following the idea given in [1], we introduce an approach that
allows removing some constraints (while preserving unsatisfiability).
Then, we refine this approach by exploiting constraint weighting and
(complete) restarts.

3.1 A Proof-based Approach

When the unsatisfiability of a CSP instance is proved by a filtering
search algorithm, one can automatically extract a core that is guar-
anteed to be unsatisfiable. Indeed, it suffices to keep track of all the
constraints that have been involved in the proof of unsatisfiability,
that is to say, any constraint that has been used during search to re-
move, by propagation, at least one value in the domain of a variable.
This principle was mentioned in [1] and can be related to the concept
of implication graph used in SAT (e.g. see [17, 23]).

Let us examine how it works with MAC which maintains arc con-
sistency by exploiting, for instance, an algorithm such as AC3 [16].
It involves successive revisions of arcs (pairs composed of a con-
straint and of a variable) in order to remove the values that are no
more consistent with the current state. At the heart of the solver is
then the function depicted in Algorithm 1. All values of the domain
of the given variable that are not currently supported by the given
constraint are removed (lines2 to 4).

By introducing a data structure, denotedactive, that allows as-
sociating a Boolean with each constraint, we are then in a position
to extract an unsatisfiable core. The functionpcore depicted in Al-
gorithm 2 allows such an extraction. Initially, all Booleans are set
to false (line 1). Then, the MAC solver is called (line2), what in-
volves successive revisions. Hence, whenever a revision is effective,
the Boolean associated with the constraint is set totrue (line 5 of
Algorithm 1). Finally, the function returns (line3) the CN obtained
from P by removing any constraintC such thatactive[C] is false.
It is important to remark that the network returned bypcore is guar-
anteed to be unsatisfiable but not necessarily minimal.

Algorithm 1 revise(C : Constraint,X : Variable) : Boolean

1: domainSize← |dom(X)|
2: for eacha ∈ dom(X) do
3: if seekSupport(C,X, a) = false then
4: removea from dom(X)
5: active[C]← true
6: if dom(X) = ∅ then
7: wght[C]← wght[C] + 1 // used by some heuristics
8: returndomainSize 6= |dom(X)|

Algorithm 2 pcore(P= (V ,C) : CN) : CN

1: active[C]← false, ∀C ∈ C
2: MAC(P)
3: returnP ↑{C∈C |active[C]=false}

3.2 A Conflict-based Approach

Even if the proof-based approach is an elegant approach, we have no
idea about its practical efficiency. In other words, we cannot predict
the size of the unsatisfiable core extracted bypcore. It is clear that
the smallest the size is, the most efficient the approach is. Actually,
as illustrated below, exploiting a conflict-directed variable ordering
heuristic in order to push up an unsatisfiable core by performing suc-
cessive runs makes the proof-based approach quite effective.

Heuristic dom/wdeg In [2], it is proposed to associate a counter,
denotedwght[C], with any constraintC of the problem. These
counters are used as constraint weighting. Whenever a constraint
is shown to be unsatisfied (during the constraint propagation pro-
cess), its weight is incremented by1 (see line7 of Algorithm 1).
The weighted degree of a variableX is then defined as the sum
of the weights of the constraints involvingX and at least another
uninstantiated variable. The conflict-directed heuristicdom/wdeg
[2] involves selecting first the variable with the smallest ratio current
domain size to current weighted degree. As search progresses, the
weight of hard constraints become more and more important and this
particularly helps the heuristic to select variables appearing in the
hard part of the network. This heuristic has been shown to be quite
efficient [2, 14, 10].

Illustrative Example Usingdom/wdeg allows efficiently prov-
ing the unsatisfiability of many instances. However, in order to obtain
a proof of unsatisfiability of moderate size, one has to be aware that
it is important to perform successive runs by restarting search sev-
eral times. As an illustration, let us consider the problem of putting
some queens and some knights on a chessboard as described in [2].
The instance with6 queens and3 knights involves9 variables and36
constraints and is unsatisfiable. In fact, we know that the subproblem
corresponding to the3 knights, and involving3 variables and3 con-
straints, is unsatisfiable. In a first phase, solving this instance with
MAC-dom/wdeg (i.e. MAC combined with thedom/wdeg vari-
able ordering heuristic) yields a proof of unsatisfiability integrating
all constraints of the instance (that is to say, all Booleanactive have
been set totrue). However, solving again the same instance, using
current weighting of the constraints as obtained after the first run,
yields a new proof of unsatisfiability integrating only9 constraints.
An additional run furnishes the same result.

Figure 1 illustrates the evolution of such proofs of unsatisfiability.
CNs are represented by constraint graphs where vertices correspond
to variables and edges to binary constraints. Note that constraints ir-

2

queens

knights

second
phase

first

run 1

run 1

run 2

run 2

run 3

run 3

phase

Figure 1. Evolution of the proof of unsatisfiability

relevant to unsatisfiability after one run are represented by dashed
edges. Then, it is possible to refine the extraction after removing all
the constraints which are not involved in the detected core, i.e., proof
of unsatisfiability. Indeed, in a second phase, we obtain an unsatisfi-
able core that corresponds to the knights subproblem.

Exploiting Conflict-directed Heuristics As illustrated above,
performing several runs of a MAC solver may be useful to surround
an unsatisfiable core provided that a conflict-directed heuristic such
asdom/wdeg is used. This approach is depicted by Algorithm 3.
Initially (line 1), the weight of all constraints is set to1. Then, it-
eratively, MAC-dom/wdeg is run (line6) and the number of con-
straints found in the unsatisfiable core detected by the current run
is counted (line7). The iteration stops when the size of the current
unsatisfiable core is greater than or equal to the size of the previous
one. Remember that from one run to the next one, thewght counters
are preserved, which allows potentially concentrating the search to a
smaller and smaller unsatisfiable core. Note that we can easily gener-
alize this algorithm in order to perform several phases as mentioned
in the illustration.

Algorithm 3 wcore(P= (V ,C) : CN) : CN

1: wght[C]← 1, ∀C ∈ C
2: cntaft ← +∞
3: repeat
4: active[C]← false ∀C ∈ C
5: cntbef ← cntaft

6: MAC-dom/wdeg(P)
7: cntaft ←| {C ∈ C |active[C]} |
8: until cntaft ≥ cntbef

9: returnP ↑{C∈C |active[C]=false}

4 Extracting Minimal Unsatisfiable Cores

It is clear that the unsatisfiable core that can be extracted by using
the functionwcore is not guaranteed to be minimal. In order to find
a minimal core, it is necessary to iteratively identify the constraints
that are involved in it. More precisely, we know that, given an unsat-
isfiable CNP and a total ordering of the constraints (to simplify, we
shall consider the natural lexicographic orderC1, C2, . . . , Ce of the
constraints), there exists a constraintCi such thatP↓{C1,...,Ci−1} is
satisfiable andP↓{C1,...,Ci} is unsatisfiable2. This constraint which

2 We shall assume that no constraintC exists inP such that rel(C) = ∅.

clearly belongs to a minimal core ofP will be called thetransition
constraint ofP (according to the given ordering). Note also that any
constraintCj with j > i can be safely removed.

4.1 Identifying the Transition Constraint

It is possible to identify thetransition constraint of an unsatisfiable
CN P by using a constructive approach, a destructive approach or
a dichotomic one. Below, MAC(P) returnsSAT (reps.UNSAT)
iff P is satisfiable (resp. unsatisfiable), and the parameterk (< |C |)
indicates the number of transition constraints previously identified
(the firstk constraints of the current network). It will be meaningful
later, but initially, just considerk = 0.

Constructive Approach The principle is to successively add the
constraints of the given network until the current network becomes
unsatisfiable. This approach is analog to the one introduced in [6]
and is depicted by Algorithm 4.

Algorithm 4 csTransition(P= (V ,C) : CN, k : int) : Constraint

1: for i increasingly varying fromk + 1 to |C | do
2: if MAC(P↓{C1,...,Ci}) = UNSAT then returnCi

Destructive Approach The principle is to successively remove the
constraints of the given network until the current network becomes
satisfiable (note2 that i can never reach1). This approach has been
introduced in [1] and is depicted by Algorithm 5.

Algorithm 5 dsTransition(P= (V ,C) : CN, k : int) : Constraint

1: for i decreasingly varying from|C | to k + 1 do
2: if MAC(P↓{C1,...,Ci−1}) = SAT then returnCi

Dichotomic Approach Finally, it is possible to use a dichotomic
search in order to find the transition constraint. This approach is de-
picted by Algorithm 6. At each step of the search, we know that the
transition constraint ofP belongs to{Cmin, . . . , Cmax}.

Algorithm 6 dcTransition(P= (V ,C) : CN, k : int) : Constraint

1: min← k + 1 ; max← |C |
2: while min 6= max do
3: center ← (min+max)/2
4: if MAC(P↓{C1,...,Ccenter}) = SAT thenmin← center + 1
5: elsemax← center
6: returnCmin

4.2 Extracting the Minimal Core

Using one of the functions described above allows finding the tran-
sition constraintCi of an unsatisfiable networkP , that is to say one
element that belongs to a minimal core ofP . To get a second ele-
ment, we apply the same function on a new CNP ′ which is obtained
fromP by removing all constraintsCj such thatj > i (since unsatis-
fiability is preserved) and considering a new order of the constraints
such thatCi is considered as the smallest element (a natural order
can be preserved by simply renaming constraints). This process can
be repeated until all constraints of the current network correspond to
transition constraints that have been successively found. The princi-
ple of this iterative process has been described in [6, 11, 21]. It is

3

depicted by Algorithm 7 which returns a MUC from the given net-
work (just consider one of the tree approaches by replacing xx with
cs, ds or dc). Note that we have to determine if the last constraint
belongs to the MUC (lines7 and8).

Algorithm 7 xxMUC(P= (V ,C) : CN) : CN

1: P ′← P ; k ← 0
2: while k < |C ′| − 1 do
3: Ci ← xxTransition(P ′, k)
4: k ← k + 1
5: P ′← P ′↑{Cj |j>i}

6: in P ′, tmp← Ci, Cj+1 ← Cj for 1 ≤ j < i, C1 ← tmp

7: if MAC(P ′↑{C|C′|}) = UNSAT then returnP ′↑{C|C′|}

8: elsereturnP ′

The following proposition (whose proof is omitted) suggests that
the dichotomic approach should be more efficient than the two other
ones.

Proposition 1. LetP = (X ,C) be an unsatisfiable CN. The worst-
case number of calls to MAC is O(e.ke) for csMUC(P), θ(e) for
dsMUC(P) and O(log(e).ke) for dcMUC(P). Here,e = |C | andke

is the number of constraints of the extracted MUC.

To be more precise, we obtain a worst-case number of calls to
MAC by dcMUC bounded bylog2(e).(ke + 1) (+1 since we have
to prove that theke transition constraints form a MUC). It can
be compared withQuickXplain whose worst-case complexity is
2ke.log2(e/ke)+2ke [12]. In the worst-case,dcMUC is better than
QuickXplain when(log2(ke) − 1).2ke/(ke − 1) < log2(e), that
is to say, when the size of the extracted core is rather small. This
condition holds for all the instances that have been tested in our ex-
perimentation. Also, considering the illustration given in [12] with
e = 220 and ke = 23, we obtain288 calls withQuickXplain
against180 calls withdcMUC.

Finally, for efficiency reasons, it is really important to use, in prac-
tice, a conflict-based approach (functionwcore) before extracting a
MUC (function xxMUC). This will be shown in Section 6. The
methods that we consider are then (given a constraint networkP):

• CS which corresponds to call csMUC(wcore(P))
• DS which corresponds to call dsMUC(wcore(P))
• DC which corresponds to call dcMUC(wcore(P))

Even if it does not explicitly appear above, we will consider that all
constraints are renamed, before calling xxMUC, in such a way that
the lexicographic order corresponds to the decreasing order of the
current weights of the constraints. It allows to improve the methods
by limiting the number of runs performed. Note also that we can
arbitrarily bound the number of calls to MAC bywcore in order to
have Proposition 1 hold for CS, DS and DC. In practice, we have
observed that the number of calls to MAC bywcore is always low.

5 Related Work

On the one hand, research in extraction of unsatisfiable cores of con-
straint networks is rather limited. Bakker et al. [1] have proposed a
method to extract a MUC (in the context of Model-Based Diagnosis).
This method essentially corresponds to call dsMUC(pcore(P)). Our
approach can then be seen as a refinement3 of theirs since we propose

3 It is also important to note that weights introduced in [1] correspond to static
preferences given by the user.

a dichotomic approach (dcMUC) and a conflict-based preliminary
stage (wcore) whose practical importance will be shown in Section
6. Some other works [11, 21] concern the identification of minimal
Π conflict-sets whereΠ denotes a propagation operator. Roughly
speaking, while extracting a MUC is an activity which is global to
the network, extracting aΠ conflict-set is an activity limited to a
branch of the search tree. As a consequence, in order to keep some
incrementality of the propagation process, the proposed algorithms
in [11, 21] involves (at least, partially) a constructive schema. The
(new) method QuickXplain [12] exploits a divide and conquer ap-
proach (which exploits a dichotomic process) and whose complexity
has been discussed in Section 4.2. A similar approach, called XC1,
has been proposed in [18] in a more general context.

On the other hand, research in unsatisfiable cores for propositional
satisfiability (SAT) is quite active. Bruni and Sassano [3] have pro-
posed an “adaptive core search” to recover a small unsatisfiable sub-
formula. Clause hardness are evaluated thanks to an history search
analysis. By selecting a fixed percentage of hard clauses, the current
unsatisfiable core is expended or contracted until the core becomes
unsatisfiable. In [23], using a resolution proof based approach, the
Zchaff solver is extended for approximating an unsatisfiable core
(i.e. the returned unsatisfiable core is not guaranteed to be minimal).
Finally, Lynce and Marques-Silva [15] have proposed a model that
computes aminimumunsatisfiable core (i.e. the smallest unsatisfi-
able core in the number of clauses).

6 Experiments

In order to show the practical interest of the approach described in
this paper, we have conducted an experimentation, using for each
run MAC-dom/wdeg, on a PC Pentium IV 2,4GHz 512Mo under
Linux. Performances have been measured in terms of the number of
runs (#runs) and the cpu time in seconds (cpu). We also indicate the
number of constraints (#C) (and, sometimes, of variables (#V))) of
instances and extracted cores.

Our experimentation has been performed wrt some random and
real-world instances. The random instances correspond to the unsat-
isfiable instances of two sets, denotedehi-85-297 andehi-90-315,
containing100 easy random instances embedding a small unsatisfi-
able part. The real-world instances correspond to the two archives
RLFAP and FAPP. The selected unsatisfiable instances of the Ra-
dio Link Frequency Assignment Problem (RLFAP) came from the
CELAR (Centre electronique de l’armement) while the instances of
the Frequency Assignment with Polarization Problem (FAPP) came
from the ROADEF’2001 challenge. Most of these instances were
used as benchmarks4 for the first CSP solver competition.

Instance pcore wcore
cpu #C cpu #C

qk-25-25-5-mul (#C =435) 100.1 427 107.7 32
ehi-85-297-0 (#C =4, 094) 2.93 3, 734 3.01 226
graph-14-f28 (#C =4, 638) 4.23 3, 412 4.69 503

Table 1. Cost (cpu) and Size (#C) of cores extracted bypcore andwcore

First, we have studied the practical interest of callingwcore in-
stead ofpcore. Table 1 indicates the size of the cores extracted by
both methods wrt some instances. One can observe that it is really
worth usingwcore since the size of the extracted core can be very
small and the additional cost of performing successive runs is not
penalizing (the cost forwcore is given for all performed runs). It is

4 http://cpai.ucc.ie/05/Benchmarks.html

4

illustrated with one queens-knights instance, one random 3-SAT in-
stance and one RLFAP instance. Note that, for some other instances,
the gap between the two methods is negligible.

Then, we have compared DC with CS and DS. On random EHI
instances (mean costs are given in the first part of Table 2), the differ-
ence between DS and DC is not very important. It can be explained
by the fact that the extracted core returned bywdeg is already small
(it has been observed on all EHI instances but not on all tested real-
world instances). However, on RLFAP and FAPP instances (see sec-
ond and third parts of Table 2), DC clearly outperforms CS and DS.
Both, in terms of cpu and number of runs, DC is about10 times more
efficient than CS and DS. We have obtained this kind of results on
about half the RLFAP and FAPP instances that we have tested.

Instance Method cpu #runs MUC
#V #C

EHI instances (100 instances per series)
ehi− 85− 297 CS 263 1284 19 32

#V = 297 DS 62 157 23 37
#C ≈ 4100 DC 45 153 19 32

ehi− 90− 315 CS 266 1294 19 32
#V = 315 DS 64 156 23 36
#C ≈ 4370 DC 46 154 19 32

RLFAP instances
graph13-w1 CS 303 704 4 6
#V = 916 DS 257 338 4 6
#C = 1479 DC 39 55 4 6
scen02-f25 CS 145 588 10 15
#V = 200 DS 130 311 12 28
#C = 1235 DC 21 67 10 15

scen09-w1-f3 CS 468 576 6 8
#V = 680 DS 533 480 6 8
#C = 1138 DC 38 48 6 8

FAPP instances
fapp03-300-5 CS 469 484 3 3
#V = 300 DS 333 290 3 3
#C = 2326 DC 57 37 3 3

fapp06-500-1 CS 394 393 3 3
#V = 500 DS 306 195 3 3
#C = 3478 DC 48 35 3 3

fapp10-900-1 CS 1206 688 4 4
#V = 900 DS 743 365 4 4
#C = 6071 DC 119 46 4 4

Table 2. Extracting a MUC from EHI, RLFAP and FAPP instances

Finally, we have used the three methods in order to iteratively re-
move, until satisfiability is reached, disjoint MUCs (i.e. MUCs that
do not share any constraint) from two RLFAP instances. It takes
about5 minutes to reach this goal with DC. Remark that there are
about40 and130 constraints involved in the set of disjoint MUCs
extracted fromgraph05 andscen11-f10, respectively. It represents
about3.5% of the set of constraints of each instance.

Instance Method cpu #runs #MUCs
graph05 CS 5, 175 8, 825 5

#V = 200 DS 1, 996 2, 010 5
#C = 1134 DC 330 526 5
scen11-f10 CS 1, 491 3, 840 5
#V = 680 DS 3, 040 2, 452 5
#C = 4103 DC 263 562 5

Table 3. Extracting successive MUCS from RLFAP instances

7 Conclusion

In this paper, we have presented a new approach, denoted DC, that
allows extracting MUCs from constraint networks. The originality
of this approach is that it exploits the recent heuristicdom/wdeg
in order to surround an unsatisfiable core by performing successive
complete runs of MAC, and a dichotomic search in order to identify
the successive transition constraints belonging to a MUC. We have
introduced both theoretical and practical arguments to support our

approach. In particular, the worst-case number of calls to MAC of
DC is bounded bylog2(e).(ke +1), and DC has appeared to be quite
efficient with respect to real-world instances taken from the RLFAP
and FAPP archives. Indeed, a MUC has been extracted from most
of these instances in less than1 minute. In comparison, it is worth
mentioning that most of the instances that have been experimented
in this paper can not be solved, in a reasonable amount of time, when
using standard variable ordering heuristics (see [2, 14]).

Acknowledgments

This paper has been supported by the CNRS, the “programme CO-
COA de la Ŕegion Nord/Pas-de-Calais” and by the “IUT de Lens”.

REFERENCES
[1] R.R. Baker, F. Dikker, F.Tempelman, and P.M. Wognum, ‘Diagnosing

and solving over-determined constraint satisfaction problems’, inPro-
ceedings of IJCAI’93, pp. 276–281, (1993).

[2] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, ‘Boosting system-
atic search by weighting constraints’, inProceedings of ECAI’04, pp.
146–150, (2004).

[3] R. Bruni and A. Sassano, ‘Detecting minimaly unsatisfiable subformu-
lae in unsatisfiable SAT instances by means of adaptative core search’,
in Proceedings of SAT’00, (2000).

[4] H. Kleine Buning, ‘On subclasses of minimal unsatisfiable formulas’,
Discrete Applied Mathematics, 107(1-3), 83–98, (2000).

[5] M. Garcia de la Banda, P.J. Stuckey, and J. Wazny, ‘Finding all minimal
unsatisfiable subsets’, inProceedings of PPDP’03, (2003).

[6] J.L. de Siqueira and J.F. Puget, ‘Explanation-based generalisation of
failures’, inProceedings of ECAI’88, pp. 339–344, (1988).

[7] H. Fleischner, O. Kullmann, and S. Szeider, ‘Polynomial-time recogni-
tion of minimal unsatisfiable formulas with fixed clause-variable differ-
ence’,Theoretical Computer Science, 289, 503–516, (2002).

[8] M. Ginsberg, ‘Dynamic backtracking’,Artificial Intelligence, 1, 25–46,
(1993).

[9] B. Han and S-J. Lee, ‘Deriving minimal conflict sets by cs-trees with
mark set in diagnosis from first principles’,IEEE Tansactions on Sys-
tems, Man and Cybernetics, 29(2), 281–286, (1999).

[10] T. Hulubei and B. O’Sullivan, ‘Search heuristics and heavy-tailed be-
haviour’, inProceedings of CP’05, pp. 328–342, (2005).

[11] U. Junker, ‘QuickXplain: conflict detection for abitrary constraint prop-
agation algorithms’, inProceedings of IJCAI’01 Workshop on mod-
elling and solving problems with constraints, pp. 75–82, (2001).

[12] U. Junker, ‘QuickXplain: preferred explanations and relaxations for
over-constrained problems’, inProc. of AAAI’04, pp. 167–172, (2004).

[13] N. Jussien and V. Barichard, ‘The palm system: explanation-based con-
straint programming’, inProc. of TRICS’00, pp. 118–133, (2000).

[14] C. Lecoutre, F. Boussemart, and F. Hemery, ‘Backjump-based tech-
niques vs conflict-directed heuristics’,ICTAI’04, pp. 549–557, (2004).

[15] I. Lynce and J.P. Marques-Silva, ‘On computing minimum unsatisfiable
cores’, inProceedings of SAT’04, (2004).

[16] A.K. Mackworth, ‘Consistency in networks of relations’,Artificial In-
telligence, 8(1), 99–118, (1977).

[17] J.P. Marques-Silva and K.A. Sakallah, ‘Conflict analysis in search al-
gorithms for propositional satisfiability’, Technical Report RT/4/96, IN-
ESC, Lisboa, Portugal, (1996).

[18] J. Mauss and M. Tatar, ‘Computing minimal conflicts for rich constraint
languages’, inProceedings of ECAI’02, pp. 151–155, (2002).

[19] Y. Oh, M.N. Mneimneh, Z.S. Andraus, K.A. Sakallah, and I.L. Markov,
‘AMUSE: A minimally-unsatisfiable subformula extractor’, inPro-
ceedings of DAC’04, pp. 518–523, (2004).

[20] C.H. Papadimitriou and D. Wolfe, ‘The complexity of facets resolved’,
Journal of Computer and System Sciences, 37, 2–13, (1988).

[21] T. Petit, C. Bessière, and J.C. Ŕegin, ‘A general conflict-set based
framework for partial constraint satisfaction’, inProceedings of
SOFT’03 workshop held with CP’03, (2003).

[22] P. Prosser, ‘Hybrid algorithms for the constraint satisfaction problems’,
Computational Intelligence, 9(3), 268–299, (1993).

[23] L. Zhang and S. Malik, ‘Extracting small unsatisfiable cores from un-
satisfiable boolean formulas’, inProceedings of SAT’03, (2003).

5

