SOLVING WCSP

BY EXTRACTION OF MINIMAL UNSATISFIABLE CORES

CHRISTOPHE LECOUTRE, NICOLAS PARIS, OLIVIER ROUSSEL AND SÉBASTIEN TABARY

{*lecoutre,paris,roussel,tabary*}@cril.univ-artois.fr

Introduction

Context:

• CSP and Weighted CSP frameworks

• WCSP algorithms are often more complex than their CSP counterparts (due to management of costs)

Goal:

• Benefit from efficient CSP algorithms developped for more than two decades

Principle:

Solve WCSP by iteratively generating and solving classical CSPs (greedy approach)
The sequence of CSPs is enumerated according to an increasing cost order related to the WCSP
Minimal Unsatisfiable Cores (MUC) identify the soft constraints whose costs must be increased

	A T • T	
	Algorithm	
GMR (W: WCSP)		
foreach $w \in constraints(W)$ do		
$\int f[w] \leftarrow 0;$		
repeat		
$P \leftarrow toCSP_{\leq}(W, f);$		
$sol \leftarrow solve \overline{CSP}(P);$		
if $sol \neq \bot$ then		
return sol;		
else		
$M \leftarrow extractMUC(P);$		
$W' \leftarrow restrict(W, M)$;		

Background

CSP framework:

- A CSP is satisfiable iff it admits at least one solution
- An Unsatisfiable Core is an unsatisfiable subset of constraints
- A core is a Minimal Unsatisfiable Core (MUC) iff each strict subset is satisfiable

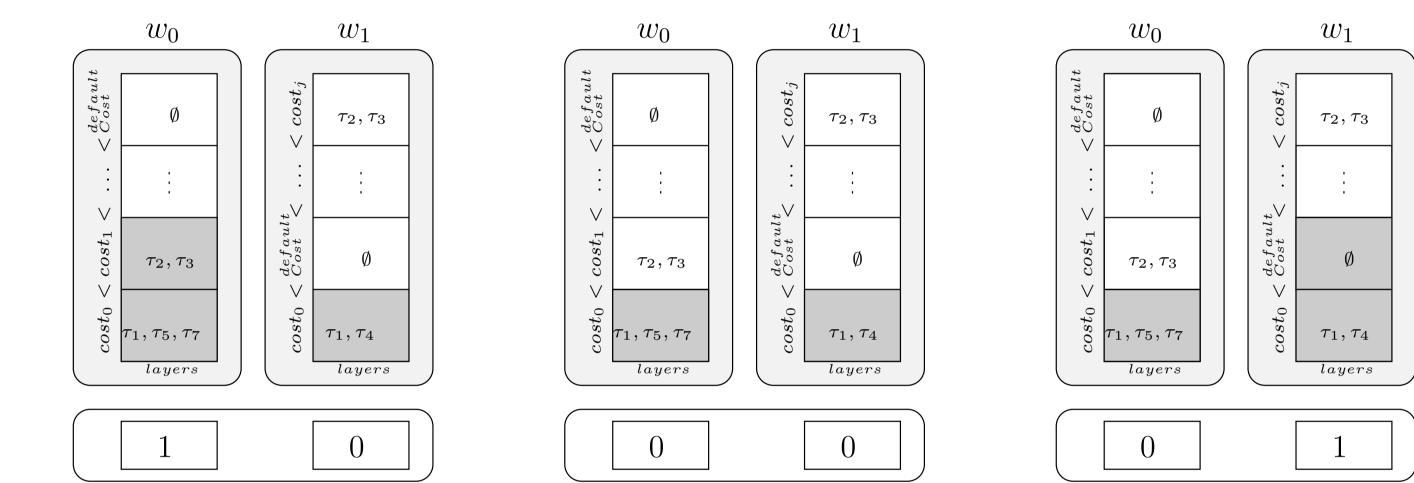
WCSP framework:

- Extension of CSP
- (X, C, k): C is a set of soft constraints (cost functions), k > 0 is either a natural integer or $+\infty$
- $\forall a, b \in \{0, \dots, k\}, a \oplus b = min(k, a + b)$
- Goal: find a complete instantiation with minimal cost (optimisation problem)
- The current methods to solve WCSPs: branch and bound tree search combined with the use of soft local consistencies (EDAC, etc. by cost tranfer) for estimating minimal costs of sub-problems during search

 $f \leftarrow relax(W', f)$;

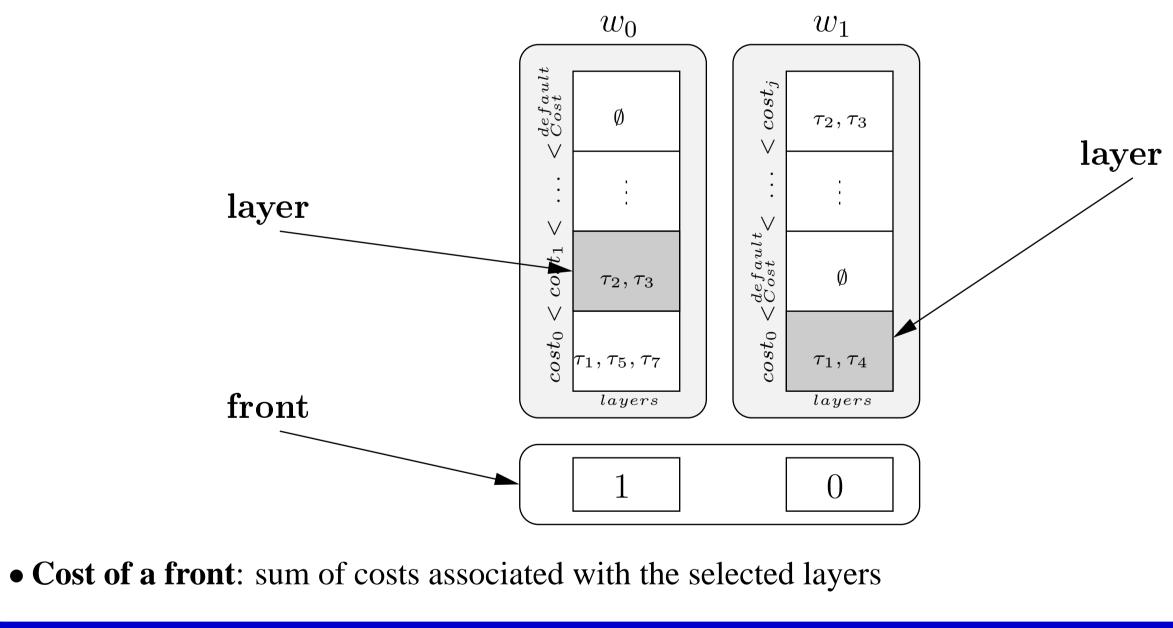
until $sol \neq \bot$;

• $toCSP \leq (W, f)$


- Translates WCSP into CSP: converting soft constraints into hard constraints according to a front f
- Considering a soft constraint w and the front f: a hard constraint is obtained by selecting as allowed tuples in w the tuples of the layers whose index is **less than or equal** to f[w]
- Representation: extension, positive table (supports) / negative table (conflicts)
- Default cost Layer forbidden (resp. allowed) \Rightarrow hard positive (resp. negative) constraint

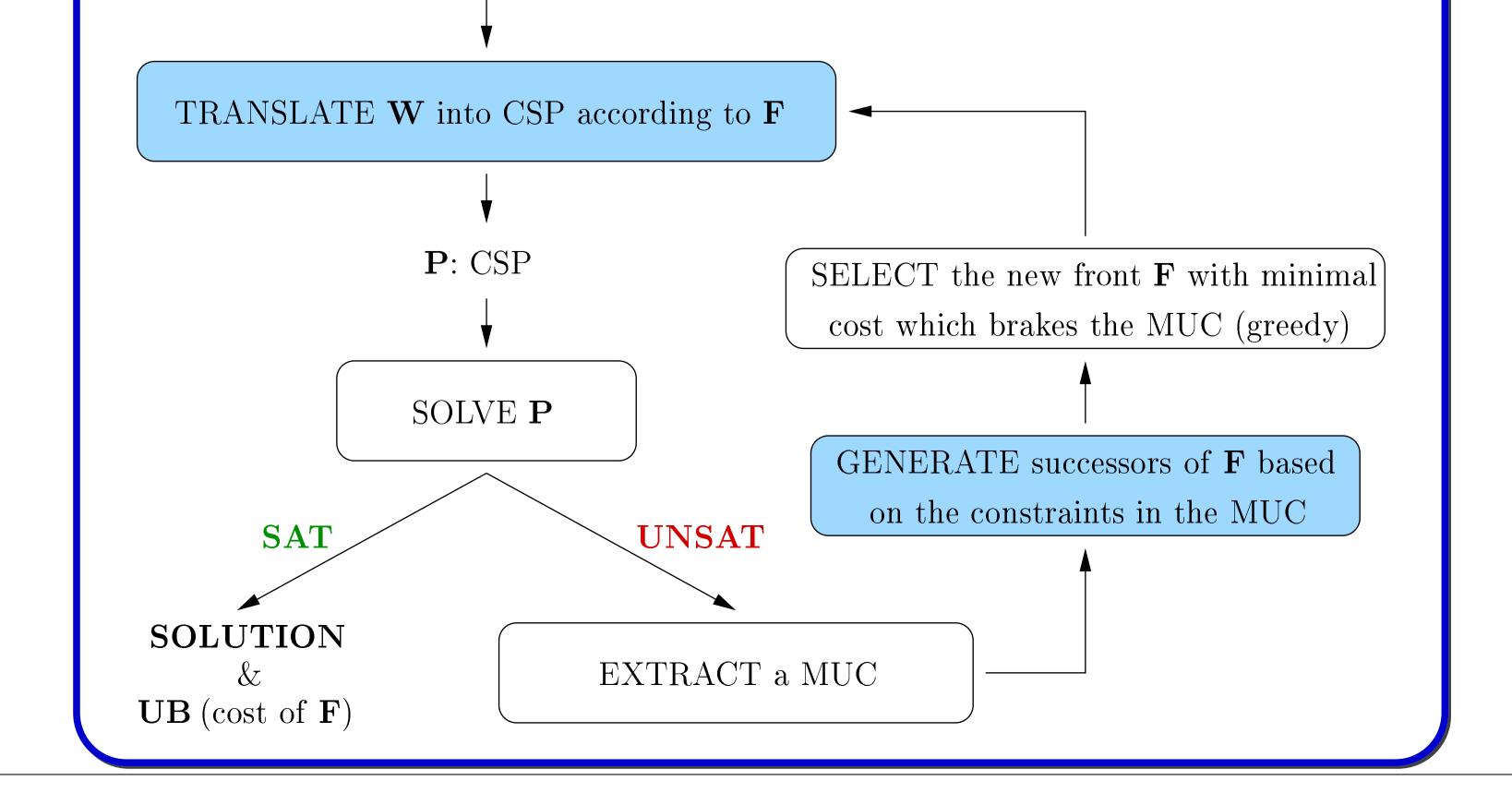
• extractMUC(P)

– A dichotomic approach is used to extract MUCs of unsatisfiable CSPs


• relax(W', f)

– MUCs are broken by generating successors of the front considering only the constraints of MUCs

Layers and fronts


- Focus on soft table constraints (explicit and implicit tuples), but the method can be easily extended to other kinds of constraints
- A layer contains all tuples having the same cost
- A front (represented by an array f) maps each constraint of a WCSP to one of its layers

General principle of the greedy approach

 \mathbf{W} : original WCSP, \mathbf{F} : initial front

successor of a front d	liffers only by	y the incrementation	on of the allowe	ed layers for or	ne constraint
		Experiments			
Instances		AbsCo GMR	on EDAC	ToulBar INCOP	2 EDAC
spot5/spot5-404	CPU	4.99			217
- , -	UB	118	114	114	$\frac{211}{114}$
<i>spot5/spot5-</i> 412	CPU	18.8			\perp
	UB	33,403	43,390	32398	37,399
spot5/spot5-505	CPU	12			
	UB	22,266	28,258	21266	25,268
spot5/spot5-509	CPU	32.2		\perp	
	UB	37469	48,475	37462	46,477
<i>spot5/spot5-</i> 1403	CPU	142.5			
	UB	${f 481,266}$	517,260	482267	507,265
celar/graph-05	CPU	16.6	\perp	\perp	0.62
	UB	221	4,645	243	$\underline{221}$
celar/scen-06-20	CPU	68.5	\perp		67.9
	UB	3,402	8,594	3166	3 , 163

celar/scen-07	CPU	209.9	\perp	\perp \perp
	UB	426, 423	31,230K	394006 505,731

CPU time (in seconds) to prove optimality on various selected instances (time-out of 600 seconds set per instance, \perp : time-out reached)

Conclusion and future work

Conclusion

- Original greedy approach: solve WCSP through successive resolutions of CSPs
 Focus the cost increase on the sole constraints in the Minimal Unsatisfiable Cores extracted
- Promising results when compared to other state-of-the-art approaches

• Future work

- Complete approach based on the same principles (work in progress)