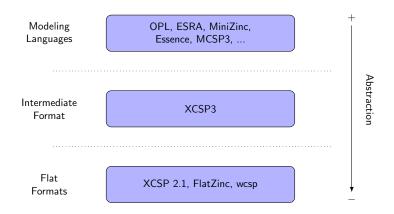
XCSP3 Competition 2018 - Results -

http://www.cril.fr/XCSP18/

Christophe Lecoutre and Olivier Roussel

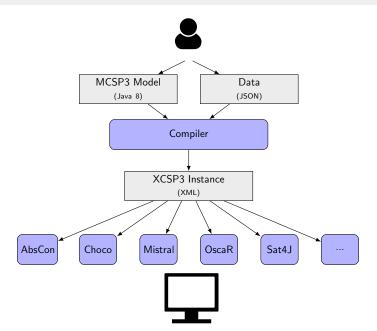
24th International Conference Principles and Practice of Constraint Programming

August 28, 2018


XCSP3 is:

- an XML-based format designed to represent instances of combinatorial constrained problems
- an *intermediate* integrated format preserving the structure of models

XCSP3 is a major extension of XCSP 2.1 since it allows us to deal with:


- mono/multi optimization
- many types of variables
- cost functions
- reification and views
- annotations
- variable quantification
- distributed, probabilistic and qualitative reasoning

XCSP3: an Intermediate Format

www.xcsp.org

XCSP3: the central piece of a Modeling/Solving process

XCSP3: Available Tools and Benchmarks

Many tools are available on github:

https://github.com/xcsp3team/

Parsers available on github:

- Java 8 Parser
- C++ 11 Parser

Various tools for:

- checking solutions and bounds: org.xcsp.parser.callbacks.SolutionChecker
- checking the validity of an instance for a competition track: org.xcsp.parser.callbacks.CompetitionValidator

Many series of CSP/COP instances that can be downloaded from www.xcsp.org by means of our selection engine!

Outline

1 2018 Competition

2 2018 Results

Purpose of Competitions

The goal of a competition is to:

- evaluate solvers in the same conditions
- help collecting publicly available benchmarks and data (results, traces, ...)
- help the community identify good ideas and strange results: the goal is to raise questions and get new ideas!

Competitions should not be misunderstood:

- The results are not an absolute truth: they depend on the benchmark selection, experimental conditions, ...
- A competition is not limited to a ranking: rankings are just an over-simplified view, but still relevant to motivate authors
- Competitions must be driven by the community: benchmark submission/selection advices, suggestions for improvements, ...

Perimeter of Constraints (mainly, XCSP3-core)

For the standard tracks:

- intension, extension
- regular and mdd
- allDifferent, allEqual, ordered and lex
- sum, count, nValues and cardinality
- maximum, minimum, element and channel
- noOverlap and cumulative
- circuit and instantiation
- slide

For the Mini-solver tracks:

- intension, extension
- allDifferent
- sum
- element

Tracks for the 2018 XCSP3 Competition

There are 6 Standard tracks and 2 Minisolver tracks.

Problem	Goal	Exploration	Timeout
CSP	one solution	sequential	40 minutes
CSP	one solution	parallel	40 minutes
COP	best solution	sequential	4 minutes
COP	best solution	sequential	40 minutes
COP	best solution	parallel	40 minutes

Table: Standard Tracks.

Problem	Goal	Exploration	Timeout
CSP	one solution	sequential	40 minutes
COP	best solution	sequential	40 minutes

Table: Mini-Solver Tracks.

Main Novelties in 2018

- 1 Constraint extension. Short tables (i.e., tables with '*') allowed.
- Onstraint allDifferent and sum, handling view extensions. For example:

```
<allDifferent>
add(x1,1) add(x2,2) add(x3,3)
</allDifferent>
```

- Onstraint element. It is possible to have a vector of integers (instead of variables).
- ④ Constraint channel. It is possible to have two lists of different sizes.
- **5** Constraint circuit. This constraint is introduced in 2018.
- 6 For some instances (series), the set of decision variables are specified, by means of annotations.

Remark.

The XCSP3 Competition essentially remains a blackbox solving competition.

Computer Infrastructure

- The cluster we used is provided by CRIL and is composed of nodes with two quad-cores (Intel @ 2.67GHz with 32 GiB RAM).
- Hyperthreading was disabled.
- Sequential solvers were run on one processor (4 cores) and were allocated 15500 MiB of memory.
- Parallel solvers were run on two processors (8 cores) and were allocated 31000 MiB of memory.

Organisation

Selection of instances by Christophe Lecoutre (good knowledge in modeling with MCSP3):

- Standard tracks: 236 CSP and 346 COP instances
- Mini-solver tracks: 176 CSP and 188 COP instances

Remark. AbsCon didn't enter the competition.

Remark. 4 discarded instances (computations requiring 64 bits).

Olivier Roussel managed the experiments.

Ranking. Based on the number of times a solver is able to prove a result (satisfiability, optimality). For COP, another viewpoint given with the number of times a solver gives the best known answer (satisfiability, optimality, best known bound).

Problems (36.5% are new, displayed in italic font)

Problem	Optimization	Constraints
Auction	max SUM	count, sum
BACP	min MAXIMUM	intension, extension, count, sum
BIBD		sum, lexMatrix
Car Sequencing		extension, sum, cardinality
Coloured Queens		allDifferent, allDifferentMatrix
Crosswords		extension
Crosswords Design	max SUM	extension (*)
Dubois		extension
Eternity		intension, extension, allDifferent
FAPP	min SUM	intension, extension
FRB		extension
Golomb Ruler	min VAR	intension, allDifferent
Graceful Graph		intension, allDifferent
Graph Coloring	min MAXIMUM	intension
Haystacks		extension
Knapsack	max SUM	sum
Langford		intension, element
Low Autocor.	min SUM	intension, sum
Magic Hexagon		intension, sum and allDifferent
Magic Square		allDifferent, sum, instantiation
Mario	max SUM	intension, extension, sum, circuit

Problem	Optimization	Constraints
Mistery Shopper		intension, extension, allDifferent, lexMatrix, channel
Nurse Rostering	min SUM	intension, extension, sum, count, regular, instantiation, slide
Peacable Armies	max SUM	intension, sum, count
Pizza Voucher	min SUM	intension, count
Pseudo-Boolean	min SUM	sum
QAP	min SUM	extension, allDifferent
QuasiGroup		intension, allDifferentMatrix, instantiation, element
RCPSP	min VAR	intension, cumulative
RLFAP	min NVALUES	intension, instantiation
Social Golfers		intension, instantiation, cardinality, lexMatrix
Sports Sched.		intension, extension, instantiation, allDifferent, count, cardinality
Steel Mill Slab	min SUM	intension, extension, ordered, sum
Still Life	max VAR	intension, extension, instantiation, sum
Strip Packing		intension, extension, noOverlap
Subgraph Iso.		extension, allDifferent
Sum Coloring	min SUM	intension
TAL	min SUM	intension, extension, count
Template Design	min SUM	intension, ordered, sum
Traveling Tour.	min SUM	<pre>intension, extension (*), allDifferent, element, cardinality, regular</pre>
Travelling Sal.	min SUM	extension, allDifferent

Generating Instances – 1. Model

7

```
class Knapsack implements ProblemAPI {
 int capacity;
 Item[] items;
 class Item {
   int weight;
    int value:
 }
 public void model() {
    int[] weights = valuesFrom(items, item -> item.weight);
    int[] values = valuesFrom(items, item -> item.value);
    int nItems = items.length;
    Var[] x = array("x", size(nItems), dom(0, 1),
     "x[i] is 1 iff the ith item is selected");
    sum(x, weightedBy(weights), LE, capacity)
      .note("the capacity of the knapsack must not be exceeded");
    maximize(SUM, x, weightedBy(values))
      .note("maximizing summed up value (benefit)");
 }
```

Generating Instances – 2. Data

```
{
    "capacity": 10,
    "items": [
        { "weight": 2, "value": 54 },
        { "weight": 2, "value": 92 },
        { "weight": 1, "value": 62 },
        { "weight": 2, "value": 20 },
        { "weight": 2, "value": 55 }
]
```

Generating Instances – 3. Compilation

java org.xcsp.modeler.Compiler Knapsack -data=knap10.json

Generating Instances – 4. Instance

```
<instance format="XCSP3" type="COP">
  <variables>
    <array id="x" note="x[i] is 1 iff the ith item is selected"</pre>
      size="[5]"> 0 1 </array>
  </variables>
  <constraints>
    <sum>
      <list> x[] </list>
      <coeffs> 2 2 1 2 2 </coeffs>
      <condition> (le,10) </condition>
    </sum>
  </constraints>
  <objectives>
    <maximize type="sum">
      <list> x[] </list>
      <coeffs> 54 92 62 20 55 </coeffs>
    </maximize>
  </objectives>
</instance>
```

Outline

1 2018 Competition

Teams/Solvers (in alphabetic order)

BTD, miniBTD	P. Jegou, H. Kanso and C. Terrioux
BTD_12, miniBTD_12	P. Jegou, D. Habet, H. Kanso and C. Terrioux
Choco-solver	C. Prud'homme and JG. Fages
Concrete	J. Vion
cosoco	G. Audemard
GG's minicp	A. Gellens and S. Gustin
macht, minimacht	D. Habet and C. Terrioux
MiniCPFever	V. Joos and A. Vanderschueren
Mistral-2.0	E. Hebrard and M. Siala
NACRE	Gaël Glorian
OscaR	OscaR Team
PicatSAT	NF. Zhou and H. Kjellerstrand
Sat4j-CSP	D. Le Berre and E. Lonca
scop	T. Soh, D. Le Berre, M. Banbara, N. Tamura
slowpoke	A. Gerlache and v. vandervilt
Solver of Schul & Smal	X. Schul, Y. Smal
SuperSolver	F. Stevenart Meeus and JB. Macq
The dodo solver	A. Dubray

Total number of instances: 188

	#solved		%inst.	%VBS
Virtual Best Solver (VBS)) 48	48 OPT	26%	100%
1 cosoco	46 (122)	46 OPT	24%	96%
2 Solver of Schul & Smal	35 (44)	35 OPT	19%	73%
3 GG's minicp	3 (22)	3 OPT	2%	6%
4 MiniCPFever	0 (50)		0%	0%
5 SuperSolver	0 (23)		0%	0%
6 The dodo solver	0 (18)		0%	0%
7 slowpoke	0 (12)		0%	0%

Total number of instances: 188

	$\# {\sf solved}$		%inst.	%VBS
Virtual Best Solver (VBS)	48	48 OPT	26%	100%
1 cosoco	46 (122)	46 OPT	24%	96%
2 Solver of Schul & Smal	35 (44)	35 OPT	19%	73%
3 GG's minicp	3 (22)	3 OPT	2%	6%
4 MiniCPFever	0 (50)		0%	0%
5 SuperSolver	0 (23)		0%	0%
6 The dodo solver	0 (18)		0%	0%
7 slowpoke	0 (12)		0%	0%

Total number of instances: 188

	#solved		%inst.	%VBS
Virtual Best Solver (VBS)	48	48 OPT	26%	100%
1 cosoco	46 (122)	46 OPT	24%	96%
2 Solver of Schul & Smal	35 (44)	35 OPT	19%	73%
3 GG's minicp	3 (22)	3 OPT	2%	6%
4 MiniCPFever	0 (50)		0%	0%
5 SuperSolver	0 (23)		0%	0%
6 The dodo solver	0 (18)		0%	0%
7 slowpoke	0 (12)		0%	0%

Total number of instances: 188

	#solved		%inst.	%VBS
Virtual Best Solver (VBS)	48	48 OPT	26%	100%
1 cosoco	46 (122)	46 OPT	24%	96%
2 Solver of Schul & Smal	35 (44)	35 OPT	19%	73%
3 GG's minicp	3 (22)	3 OPT	2%	6%
4 MiniCPFever	0 (50)		0%	0%
5 SuperSolver	0 (23)		0%	0%
6 The dodo solver	0 (18)		0%	0%
7 slowpoke	0 (12)		0%	0%

Total number of instances: 188

	# solved		%inst.	%VBS
Virtual Best Solver (VBS)	48	48 OPT	26%	100%
1 cosoco	46 (122)	46 OPT	24%	96%
2 Solver of Schul & Smal	35 (44)	35 OPT	19%	73%
3 GG's minicp	3 (22)	3 OPT	2%	6%
4 MiniCPFever	0 (50)		0%	0%
5 SuperSolver	0 (23)		0%	0%
6 The dodo solver	0 (18)		0%	0%
7 slowpoke	0 (12)		0%	0%

	%inst.	%VBS		
Virtual Best Solver (VBS)	113	53 SAT, 60 UNSAT	64%	100%
1 NACRE	86	43 SAT, 43 UNSAT	49%	76%
2 miniBTD_12	79	36 SAT, 43 UNSAT	45%	70%
3 miniBTD	75	32 SAT, 43 UNSAT	43%	66%
4 cosoco	72	42 SAT, 30 UNSAT	41%	64%
5 minimacht	69	37 SAT, 32 UNSAT	39%	61%
6 GG's minicp	56	37 SAT, 19 UNSAT	32%	50%
7 Solver of Schul & Smal	54	23 SAT, 31 UNSAT	31%	48%
8 MiniCPFever	54	34 SAT, 20 UNSAT	31%	48%
9 slowpoke	38	38 SAT	22%	34%
10 SuperSolver	31	31 SAT	18%	27%
11 The dodo solver	25	25 UNSAT	14%	22%

7	%inst. %VBS			
Virtual Best Solver (VBS)	113	53 SAT, 60 UNSAT	64%	100%
1 NACRE	86	43 SAT, 43 UNSAT	49%	76%
2 miniBTD_12	79	36 SAT, 43 UNSAT	45%	70%
3 miniBTD	75	32 SAT, 43 UNSAT	43%	66%
4 cosoco	72	42 SAT, 30 UNSAT	41%	64%
5 minimacht	69	37 SAT, 32 UNSAT	39%	61%
6 GG's minicp	56	37 SAT, 19 UNSAT	32%	50%
7 Solver of Schul & Smal	54	23 SAT, 31 UNSAT	31%	48%
8 MiniCPFever	54	34 SAT, 20 UNSAT	31%	48%
9 slowpoke	38	38 SAT	22%	34%
10 SuperSolver	31	31 SAT	18%	27%
11 The dodo solver	25	25 UNSAT	14%	22%

7	∉solved		%inst.	%VBS
Virtual Best Solver (VBS)	113	53 SAT, 60 UNSAT	64%	100%
1 NACRE	86	43 SAT, 43 UNSAT	49%	76%
2 miniBTD_12	79	36 SAT, 43 UNSAT	45%	70%
3 miniBTD	75	32 SAT, 43 UNSAT	43%	66%
4 cosoco	72	42 SAT, 30 UNSAT	41%	64%
5 minimacht	69	37 SAT, 32 UNSAT	39%	61%
6 GG's minicp	56	37 SAT, 19 UNSAT	32%	50%
7 Solver of Schul & Smal	54	23 SAT, 31 UNSAT	31%	48%
8 MiniCPFever	54	34 SAT, 20 UNSAT	31%	48%
9 slowpoke	38	38 SAT	22%	34%
10 SuperSolver	31	31 SAT	18%	27%
11 The dodo solver	25	25 UNSAT	14%	22%

7	∉solved		%inst.	%VBS
Virtual Best Solver (VBS)	113	53 SAT, 60 UNSAT	64%	100%
1 NACRE	86	43 SAT, 43 UNSAT	49%	76%
2 miniBTD_12	79	36 SAT, 43 UNSAT	45%	70%
3 miniBTD	75	32 SAT, 43 UNSAT	43%	66%
4 cosoco	72	42 SAT, 30 UNSAT	41%	64%
5 minimacht	69	37 SAT, 32 UNSAT	39%	61%
6 GG's minicp	56	37 SAT, 19 UNSAT	32%	50%
7 Solver of Schul & Smal	54	23 SAT, 31 UNSAT	31%	48%
8 MiniCPFever	54	34 SAT, 20 UNSAT	31%	48%
9 slowpoke	38	38 SAT	22%	34%
10 SuperSolver	31	31 SAT	18%	27%
11 The dodo solver	25	25 UNSAT	14%	22%

	#solved		%inst.	%VBS
Virtual Best Solver (VBS)	113	53 SAT, 60 UNSAT	64%	100%
1 NACRE	86	43 SAT, 43 UNSAT	49%	76%
2 miniBTD_12	79	36 SAT, 43 UNSAT	45%	70%
3 miniBTD	75	32 SAT, 43 UNSAT	43%	66%
4 cosoco	72	42 SAT, 30 UNSAT	41%	64%
5 minimacht	69	37 SAT, 32 UNSAT	39%	61%
6 GG's minicp	56	37 SAT, 19 UNSAT	32%	50%
7 Solver of Schul & Smal	54	23 SAT, 31 UNSAT	31%	48%
8 MiniCPFever	54	34 SAT, 20 UNSAT	31%	48%
9 slowpoke	38	38 SAT	22%	34%
10 SuperSolver	31	31 SAT	18%	27%
11 The dodo solver	25	25 UNSAT	14%	22%

Total number of instances: 346

	#solved		%inst. %VBS		
Virtual Best Solver (VBS)	146	146 OPT	42%	100%	
1 PicatSAT <i>2018-08-14</i>	132 (132)	132 OPT	38%	90%	
2 Concrete <i>3.9.2</i>	105 (148)	105 OPT	30%	72%	
3 Choco-solver 4.0.7b seq	102 (154)	102 OPT	29%	70%	
4 OscaR-Conf. Ordering+restarts	s 99 (132)	99 OPT	29%	68%	
5 Concrete 3.9.2-SuperNG	99 (139)	99 OPT	29%	68%	
6 созосо 1.12	64 (112)	64 OPT	18%	44%	
7 OscaR - Hybrid <i>2018-08-14</i>	61 (132)	61 OPT	18%	42%	
8 Sat4j-CSP	54 (86)	54 OPT	16%	37%	

Total number of instances: 346

	#solved		%inst. %VBS		
Virtual Best Solver (VBS)	146	146 OPT	42%	100%	
1 PicatSAT 2018-08-14	132 (132)	132 OPT	38%	90%	
2 Concrete <i>3.9.2</i>	105 (148)	105 OPT	30%	72%	
3 Choco-solver 4.0.7b seq	102 (154)	102 OPT	29%	70%	
4 OscaR-Conf. Ordering+restarts	s 99 (132)	99 OPT	29%	68%	
5 Concrete 3.9.2-SuperNG	99 (139)	99 OPT	29%	68%	
6 соѕосо 1.12	64 (112)	64 OPT	18%	44%	
7 OscaR - Hybrid <i>2018-08-14</i>	61 (132)	61 OPT	18%	42%	
8 Sat4j-CSP	54 (86)	54 OPT	16%	37%	

Total number of instances: 346

	#solved		%inst.	. %VBS	
Virtual Best Solver (VBS)	146	146 OPT	42%	100%	
1 PicatSAT 2018-08-14	132 (132)	132 OPT	38%	90%	
2 Concrete <i>3.9.2</i>	105 (148)	105 OPT	30%	72%	
3 Choco-solver 4.0.7b seq	102 (154)	102 OPT	29%	70%	
4 OscaR-Conf. Ordering+restarts	99 (132)	99 OPT	29%	68%	
5 Concrete 3.9.2-SuperNG	99 (139)	99 OPT	29%	68%	
6 cosoco 1.12	64 (112)	64 OPT	18%	44%	
7 OscaR - Hybrid <i>2018-08-14</i>	61 (132)	61 OPT	18%	42%	
8 Sat4j-CSP	54 (86)	54 OPT	16%	37%	

Total number of instances: 346

	#solved		%inst.	%VBS
Virtual Best Solver (VBS)	146	146 OPT	42%	100%
1 PicatSAT 2018-08-14	132 (132)	132 OPT	38%	90%
2 Concrete 3.9.2	105 (148)	105 OPT	30%	72%
3 Choco-solver 4.0.7b seq	102 (154)	102 OPT	29%	70%
4 OscaR-Conf. Ordering+restarts	s 99 (132)	99 OPT	29%	68%
5 Concrete 3.9.2-SuperNG	99 (139)	99 OPT	29%	68%
6 соѕосо 1.12	64 (112)	64 OPT	18%	44%
7 OscaR - Hybrid <i>2018-08-14</i>	61 (132)	61 OPT	18%	42%
8 Sat4j-CSP	54 (86)	54 OPT	16%	37%

Total number of instances: 346

	#solved		%inst.	%VBS
Virtual Best Solver (VBS)	146	146 OPT	42%	100%
1 PicatSAT 2018-08-14	132 (132)	132 OPT	38%	90%
2 Concrete <i>3.9.2</i>	105 (148)	105 OPT	30%	72%
3 Choco-solver 4.0.7b seq	102 (154)	102 OPT	29%	70%
4 OscaR-Conf. Ordering+restarts	99 (132)	99 OPT	29%	68%
5 Concrete 3.9.2-SuperNG	99 (139)	99 OPT	29%	68%
6 cosoco 1.12	64 (112)	64 OPT	18%	44%
7 OscaR - Hybrid <i>2018-08-14</i>	61 (132)	61 OPT	18%	42%
8 Sat4j-CSP	54 (86)	54 OPT	16%	37%

Standard solvers (sequential), CSP, 236 Instances

	#solved		%inst.	%VBS
Virtual Best Solver (VBS)	164	104 SAT, 60 UNSAT	69%	100%
1 scop order+MapleCOMSPS	146	92 SAT, 54 UNSAT	62%	89%
2 scop <i>both+MapleCOMSPS</i>	140	87 SAT, 53 UNSAT	59%	85%
3 PicatSAT <i>2018-08-14</i>	138	85 SAT, 53 UNSAT	58%	84%
4 Mistral-2.0	116	80 SAT, 36 UNSAT	49%	71%
5 Choco-solver 4.0.7b seq	115	77 SAT, 38 UNSAT	49%	70%
6 Concrete 3.9.2	92	64 SAT, 28 UNSAT	39%	56%
7 OscaR-Conf. Ordering+restarts	90	62 SAT, 28 UNSAT	38%	55%
8 Concrete 3.9.2-SuperNG	84	55 SAT, 29 UNSAT	36%	51%
9 Sat4j-CSP	83	40 SAT, 43 UNSAT	35%	51%
10 OscaR - Conflict Ordering	81	51 SAT, 30 UNSAT	34%	49%
11 cosoco <i>1.12</i>	79	53 SAT, 26 UNSAT	33%	48%
12 BTD_12	76	32 SAT, 44 UNSAT	32%	46%
13 BTD	76	31 SAT, 45 UNSAT	32%	46%
14 macht	66	33 SAT, 33 UNSAT	28%	40%

#solved			%inst. %VB	
Virtual Best Solver (VBS)	164	104 SAT, 60 UNSAT	69%	100%
1 scop order+MapleCOMSPS	146	92 SAT, 54 UNSAT	62%	89%
2 scop <i>both+MapleCOMSPS</i>	140	87 SAT, 53 UNSAT	59%	85%
3 PicatSAT 2018-08-14	138	85 SAT, 53 UNSAT	58%	84%
4 Mistral-2.0	116	80 SAT, 36 UNSAT	49%	71%
5 Choco-solver 4.0.7b seq	115	77 SAT, 38 UNSAT	49%	70%
6 Concrete <i>3.9.2</i>	92	64 SAT, 28 UNSAT	39%	56%
7 OscaR-Conf. Ordering+restarts	90	62 SAT, 28 UNSAT	38%	55%
8 Concrete 3.9.2-SuperNG	84	55 SAT, 29 UNSAT	36%	51%
9 Sat4j-CSP	83	40 SAT, 43 UNSAT	35%	51%
10 OscaR - Conflict Ordering	81	51 SAT, 30 UNSAT	34%	49%
11 cosoco <i>1.12</i>	79	53 SAT, 26 UNSAT	33%	48%
12 BTD_12	76	32 SAT, 44 UNSAT	32%	46%
13 BTD	76	31 SAT, 45 UNSAT	32%	46%
14 macht	66	33 SAT, 33 UNSAT	28%	40%

#solved			%inst. %V	
Virtual Best Solver (VBS)	164	104 SAT, 60 UNSAT	69%	100%
1 scop order+MapleCOMSPS	146	92 SAT, 54 UNSAT	62%	89%
2 scop <i>both+MapleCOMSPS</i>	140	87 SAT, 53 UNSAT	59%	85%
3 PicatSAT 2018-08-14	138	85 SAT, 53 UNSAT	58%	84%
4 Mistral-2.0	116	80 SAT, 36 UNSAT	49%	71%
5 Choco-solver 4.0.7b seq	115	77 SAT, 38 UNSAT	49%	70%
б Concrete 3.9.2	92	64 SAT, 28 UNSAT	39%	56%
7 OscaR-Conf. Ordering+restarts	90	62 SAT, 28 UNSAT	38%	55%
8 Concrete 3.9.2-SuperNG	84	55 SAT, 29 UNSAT	36%	51%
9 Sat4j-CSP	83	40 SAT, 43 UNSAT	35%	51%
10 OscaR - Conflict Ordering	81	51 SAT, 30 UNSAT	34%	49%
11 cosoco <i>1.12</i>	79	53 SAT, 26 UNSAT	33%	48%
12 BTD_12	76	32 SAT, 44 UNSAT	32%	46%
13 BTD	76	31 SAT, 45 UNSAT	32%	46%
14 macht	66	33 SAT, 33 UNSAT	28%	40%

	#solved		%inst.	%VBS
Virtual Best Solver (VBS)	164	104 SAT, 60 UNSAT	69%	100%
1 scop order+MapleCOMSPS	146	92 SAT, 54 UNSAT	62%	89%
2 scop <i>both+MapleCOMSPS</i>	140	87 SAT, 53 UNSAT	59%	85%
3 PicatSAT 2018-08-14	138	85 SAT, 53 UNSAT	58%	84%
4 Mistral-2.0	116	80 SAT, 36 UNSAT	49%	71%
5 Choco-solver 4.0.7b seq	115	77 SAT, 38 UNSAT	49%	70%
6 Concrete <i>3.9.2</i>	92	64 SAT, 28 UNSAT	39%	56%
7 OscaR-Conf. Ordering+restarts	90	62 SAT, 28 UNSAT	38%	55%
8 Concrete 3.9.2-SuperNG	84	55 SAT, 29 UNSAT	36%	51%
9 Sat4j-CSP	83	40 SAT, 43 UNSAT	35%	51%
10 OscaR - Conflict Ordering	81	51 SAT, 30 UNSAT	34%	49%
11 cosoco <i>1.12</i>	79	53 SAT, 26 UNSAT	33%	48%
12 BTD_12	76	32 SAT, 44 UNSAT	32%	46%
13 BTD	76	31 SAT, 45 UNSAT	32%	46%
14 macht	66	33 SAT, 33 UNSAT	28%	40%

#solved			%inst.	%VBS
Virtual Best Solver (VBS)	164	104 SAT, 60 UNSAT	69%	100%
1 scop order+MapleCOMSPS	146	92 SAT, 54 UNSAT	62%	89%
2 scop <i>both+MapleCOMSPS</i>	140	87 SAT, 53 UNSAT	59%	85%
3 PicatSAT 2018-08-14	138	85 SAT, 53 UNSAT	58%	84%
4 Mistral-2.0	116	80 SAT, 36 UNSAT	49%	71%
5 Choco-solver 4.0.7b seq	115	77 SAT, 38 UNSAT	49%	70%
6 Concrete 3.9.2	92	64 SAT, 28 UNSAT	39%	56%
7 OscaR-Conf. Ordering+restarts	90	62 SAT, 28 UNSAT	38%	55%
8 Concrete 3.9.2-SuperNG	84	55 SAT, 29 UNSAT	36%	51%
9 Sat4j-CSP	83	40 SAT, 43 UNSAT	35%	51%
10 OscaR - Conflict Ordering	81	51 SAT, 30 UNSAT	34%	49%
11 cosoco 1.12	79	53 SAT, 26 UNSAT	33%	48%
12 BTD_12	76	32 SAT, 44 UNSAT	32%	46%
13 BTD	76	31 SAT, 45 UNSAT	32%	46%
14 macht	66	33 SAT, 33 UNSAT	28%	40%

Standard solvers (parallel), COP

Not enough contestants for being relevant, but Choco-solver 4.0.7b par has made a good job.

Standard solvers (parallel), CSP

#solved		%inst.	%VBS	
Virtual Best Solver (VBS)	168	104 SAT, 64 UNSAT	71%	100%
1 scop order+glucose-syrup	151	95 SAT, 56 UNSAT	64%	90%
2 scop <i>both+glucose-syrup</i>	138	82 SAT, 56 UNSAT	58%	82%
3 Choco-solver 4.0.7b par	134	88 SAT, 46 UNSAT	57%	80%
4 OscaR - Parallel with EPS	89	56 SAT, 33 UNSAT	38%	53%

Standard solvers (parallel), CSP

#solved		%inst.	%VBS	
Virtual Best Solver (VBS)	168	104 SAT, 64 UNSAT	71%	100%
1 scop <i>order+glucose-syrup</i>	151	95 SAT, 56 UNSAT	64%	90%
2 scop both+glucose-syrup	138	82 SAT, 56 UNSAT	58%	82%
3 Choco-solver 4.0.7b par	134	88 SAT, 46 UNSAT	57%	80%
4 OscaR - Parallel with EPS	89	56 SAT, 33 UNSAT	38%	53%

Standard solvers (parallel), CSP

#solved		%inst.	%VBS	
Virtual Best Solver (VBS)	168	104 SAT, 64 UNSAT	71%	100%
1 scop order+glucose-syrup	151	95 SAT, 56 UNSAT	64%	90%
2 scop both+glucose-syrup	138	82 SAT, 56 UNSAT	58%	82%
3 Choco-solver 4.0.7b par	134	88 SAT, 46 UNSAT	57%	80%
4 OscaR - Parallel with EPS	89	56 SAT, 33 UNSAT	38%	53%

#solved		%inst.	%VBS	
Virtual Best Solver (VBS)	168	104 SAT, 64 UNSAT	71%	100%
1 scop order+glucose-syrup	151	95 SAT, 56 UNSAT	64%	90%
2 scop both+glucose-syrup	138	82 SAT, 56 UNSAT	58%	82%
3 Choco-solver 4.0.7b par	134	88 SAT, 46 UNSAT	57%	80%
4 OscaR - Parallel with EPS	89	56 SAT, 33 UNSAT	38%	53%

#solved			%inst.	%VBS
Virtual Best Solver (VBS)	168	104 SAT, 64 UNSAT	71%	100%
1 scop order+glucose-syrup	151	95 SAT, 56 UNSAT	64%	90%
2 scop both+glucose-syrup	138	82 SAT, 56 UNSAT	58%	82%
3 Choco-solver 4.0.7b par	134	88 SAT, 46 UNSAT	57%	80%
4 OscaR - Parallel with EPS	5 89	56 SAT, 33 UNSAT	38%	53%

Standard solvers (sequential), COP – fast (4 minutes)

Total number of instances: 346

	#best	%inst.	%VBS
Virtual Best Solver (VBS)	316	91%	100%
1 Concrete 3.9.2	151	44%	48%
2 Choco-solver 4.0.7b seq	146	42%	46%
3 OscaR - Hybrid	139	40%	44%
4 OscaR - Conflict Ordering with restarts	133	38%	42%
5 Concrete 3.9.2-SuperNG	129	37%	41%
6 Mistral-2.0	123	36%	39%
7 соѕосо	107	31%	34%
8 Sat4j-CSP	78	23%	25%

For this fast track, we consider the number of times the solver gives the best known result (not necessarily, a proved optimal one).

On http://www.cril.fr/XCSP18/, many tables/diagrams and plots can be found.

Also, you can get the traces of any solver.

Forthcoming

• Proceedings with descriptions of:

- problems and models,
- solvers,
- analysis of the results.

Not done in 2017 (sorry), but this year proceedings already include detailed descriptions of all models.

- 2019 XCSP3 Competition
- MCSP3, Version 1.1, release in October 2018 ⇒ it is **important** to propose new series for the 2019 Competition.
- Update of the website
- Publications of 100 problems/models in Fall 2018