
Second XCSP3 Competition
(2018 CSP and COP competition)

Last Call for Solvers and Benchmarks
(Strict Participation Deadline: April 29, 2018)

http://www.xcsp.org

The second international XCSP3 constraint solver competition is organized to improve
our knowledge about components (e.g., filtering algorithms, heuristics, search strategies, and
learning procedures) that are behind the efficiency of solving systems (referred to as constraint
solvers in this document) for combinatorial constrained problems. Two classical problems are
considered for this competition:

• CSP (Constraint Satisfaction Problem)

• COP (Constrained Optimization Problem)

The intermediate1 format XCSP3 is used as input format for the solvers. The effort
required for entering the competition is limited because some tools (parsers) are available,
and only a central set of popular (and important) constraints is considered.

This call for solvers and benchmarks presents the tracks that will be considered during
the competition. In particular, we give important details about the format restrictions, the
execution environment, and the rules that must be followed by the solvers.

Importantly, do note that:

• you can find the final and detailed results concerning the first XCSP3 competition on
www.cril.fr/XCSP17. Nine teams were competing in 2017 for the first edition.

• anybody (an in particular, contestants) is strongly sollicited to submit new benchmarks
(you can, for example, use the Java-based API called MCSP3 for that).

1XCSP3 is neither a modeling language, nor a flat format. It is intermediate because it preserves the
structure of problems through the concepts of variable arrays, constraint groups/blocks, and meta-constraints.

1

http://www.xcsp.org
http://www.cril.univ-artois.fr/XCSP17
http://xcsp.org/modeling


Contents

1 Timetable 4

2 Tracks 4

3 Format 5
3.1 Constraints for Standard Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Constraint intension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Constraint extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.3 Constraint regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.4 Constraint mdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.5 Constraint allDifferent . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.6 Constraint allEqual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.7 Constraint ordered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.8 Constraint lex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.9 Constraint sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.10 Constraint count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.11 Constraint nValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.12 Constraint cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.13 Constraint maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.14 Constraint minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.15 Constraint element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.16 Constraint channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.17 Constraint noOverlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.18 Constraint cumulative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.19 Constraint instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.20 Constraint circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.21 Meta-Constraint slide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Constraints for Mini-solver Tracks . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Constraint intension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Constraint extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Constraint allDifferent . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.4 Constraint sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.5 Constraint element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Differences between 2017 and 2018 Competitions 11

5 Resources: Benchmarks and Tools 12

6 Execution Environment 12
6.1 Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Special Considerations for Incomplete Solvers . . . . . . . . . . . . . . . . . . . 18

6.3.1 Complete solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3.2 Incomplete solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.4 Special Considerations for Parallel Solvers . . . . . . . . . . . . . . . . . . . . . 19

2



7 Entering the Competition 19

8 Ranking 20

9 Committees 20
9.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.2 Judges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3



1 Timetable

The deadlines of the competition are defined below:

Opening of the registration site at
http://www.cril.fr/XCSP18/ March 2018
Pre-registration of contestants March 20, 2018
Final registration (submission of solvers and benchmarks) April 29, 2018
Test of solvers conformance early May 2018
Position paper (2 pages) mid-June 2018
Competition running May-June 2018
Final results available during CP 2018

Once submitted, solvers will be run on a limited number of benchmarks to make sure that
they interact correctly with the evaluation environment. Potential problems will be reported
to the authors by the 13th of May 2018. Bug fixes will be due by the 20th of May 2018.

2 Tracks

First, do note that we consider two main problems: CSP (a decision problem) and COP (an
optimization problem). For CSP, the goal is to exhibit one solution or to prove that none
exists. For COP (mono-objective optimization), the goal is to exhibit a solution with the best
possible objective value, ideally proving that it represents an optimum solution.

Anyone can submit a solver to any particular track. There are exactly 8 tracks. The first
6 tracks impose absolutely no conditions on solvers. For example, they can be written in
any language (provided that we can reasonably execute them in our environment), and can
be complete or incomplete solvers (e.g., based on local search). The 6 Standard tracks are
described by Table 1.

Problem Goal Exploration Timeout

CSP one solution sequential 40 minutes
CSP one solution parallel 40 minutes

COP best solution sequential 4 minutes
COP best solution parallel 4 minutes
COP best solution sequential 40 minutes
COP best solution parallel 40 minutes

Table 1: Standard Tracks.

Ranking for COP will be stated in two different manners: by considering and not consid-
ering possible proofs of optimality, permitting in the latter case to emphasize the quality of
incomplete solvers.

There are also 2 Mini-Solver tracks, where a mini-solver is a solver whose code must be
open-source (and expected to be rather compact, although we do not impose anymore specific
restrictions). For Mini-solvers tracks, only sequential exploration is considered, and the set of
constraints is rather restricted, as described in the next section.

4

http://www.cril.fr/XCSP18/


Our interest in Mini-solver tracks is two-fold. First, this should facilitate the participation
of people (e.g., students) whose solvers cannot be complete enough to compete with well-
established solvers from the community. Second, it will hopefully provide the community with
one (or several) compact well-documented and easily extendable open-source solver.

Problem Goal Exploration Timeout

CSP one solution sequential 40 minutes
COP best solution sequential 40 minutes

Table 2: Mini-Solver Tracks.

3 Format

The complete description of the format (XCSP3) used to represent combinatorial constrained
problems can be found in [BLAP17]. Do note that we refer to the version 3.0.5 of the
specifications. However, for the 2018 competition, we limit XCSP3 to its kernel, called XCSP3-
core. This means that the scope of XCSP3 is restricted to:

• integer variables,

• CSP and COP problems,

• a set of 21 popular (global) constraints for Standard tracks, and a small set of constraints
for Mini-solver tracks.

For simplicity, we also impose the following restrictions:

• Integer variables have finite domains (and so, the special value infinity is forbidden).

• Variable arrays always start indexing at 0 (and so, the attribute startIndex, whose
default value is 0, cannot be associated with <array>).

• The attribute as can only be associated with elements <var> and <array>; see Section
10.5 in [BLAP17].

• Undefined variables are not accepted but useless variables are (note that parsers/solvers
can easily identify useless variables); see Section 2.10 in [BLAP17].

• Advanced forms of constraints (see Part III in [BLAP17]) are not accepted, except for
the very specific cases explicitly described in the rest of this section.

• Reification is not accepted. View extensions are only accepted for constraints allDifferent
and sum, as explained later.

• The type of the objective (in case of a COP instance) cannot be "product" or "lex",
and when it is "expression", the content of the element <minimize> or <maximize>
can only be a variable (identifier); see Chapter 3 in [BLAP17].

• Any integer value occurring in an XCSP3 file must belong to the interval −231..231 − 1.

5



3.1 Constraints for Standard Tracks

In the Standard tracks, we find twenty-one constraints. In practice, it turns out that specific
code of propagators is needed for approximately 14 constraints only, because:

• similar propagators may be used for regular and mdd,

• similar propagators may be used for maximum and minimum,

• channel can be decomposed into element constraints,

• ordered, allEqual and instantiation can be trivially reformulated as intension,

• slide is decomposed into a set of constraints intension or extension; the parser can
do it automatically for you.

Do note that a large majority of the 23,000 instances (from around 90 classical models,
some of them being described for example at CSPLib) that are currently available on our
website only involve these 21 constraints.

3.1.1 Constraint intension

This constraint is described in Section 4.1.1.1 in [BLAP17]. There is no competition restriction
for this constraint.

3.1.2 Constraint extension

This constraint is described in Section 4.1.1.2 in [BLAP17]. Competition restrictions:

1. Compressed tables (i.e., tables with compressed tuples) and smart tables are not ac-
cepted. However, do note that short tables (i.e., tables with tuples containing ’*’) are
accepted in 2018.

2. Empty Tables (i.e., tables with with 0 support or 0 conflict) are not accepted.

Note that unary, binary and n-ary extensional constraints are accepted.

3.1.3 Constraint regular

This constraint is described in Section 4.1.2.1 in [BLAP17]. Competition restrictions:

1. The automaton on which is based the constraint must be deterministic.

3.1.4 Constraint mdd

This constraint is described in Section 4.1.2.3 in [BLAP17]. Competition restrictions:

1. There must be at least one path from the root node to the terminal node.

2. In <transitions>, the root note is given by the first item of the first transition.

6

http://www.csplib.org/


3.1.5 Constraint allDifferent

This constraint is described in Section 4.1.3.1 in [BLAP17]. Competition restrictions:

1. If present, the element <except> only contains one (integer) value.

2. Restricted forms (obtained by using the attribute restriction) are not accepted.

In addition to the basic form of allDifferent, the advanced form allDifferent-matrix
described in Section 7.2.1 in [BLAP17] is accepted.

Also, handling view extensions is authorized for the basic form of allDifferent. It means
that instead of a list of variables inside the element <list>, it is possible to have a list of integer
expressions (trees). This is shown at the end of Section 4.1.3.1 in [BLAP17]. Competition
restriction:

3. For the basic form of allDifferent, the element <list> contains either only variables
or only integer expressions (trees). It means that it is not possible to mix both forms.

3.1.6 Constraint allEqual

This constraint is described in Section 4.1.3.2 in [BLAP17]. There is no competition restriction
for this constraint.

3.1.7 Constraint ordered

This constraint is described in Section 4.1.3.4 in [BLAP17]. Competition restrictions:

1. The compact form, obtained by using the attribute case, is not accepted.

Contrary to 2017, note that it is now possible to deal with an element <lengths>.

3.1.8 Constraint lex

This constraint is described in Section 7.1.4.1 in [BLAP17]. There is no competition restriction
for this constraint.

In addition to this form of lex, the advanced form lex-matrix described in Section 7.2.2
in [BLAP17] is accepted.

3.1.9 Constraint sum

This constraint is described in Section 4.1.4.1 in [BLAP17]. Competition restrictions:

1. The condition is such that either the operator must be relational (i.e., must be in
{lt,le,gt,ge,eq,ne}) and the (right) operand must be a value or a variable, or the
operator must necessarily be in and the (right) operand must be an integer interval; See
Section 1.5 in [BLAP17].

Also, handling view extensions is authorized for sum. It means here that instead of a list of
variables inside the element <list>, it is possible to have a list of integer expressions (trees).
This is shown at the end of Section 4.1.4.1 in [BLAP17]. Competition restriction:

2. The element <list> contains either only variables or only integer expressions (trees). It
means that it is not possible to mix both forms.

7



3.1.10 Constraint count

This constraint is described in Section 4.1.4.2 in [BLAP17]. Competition restrictions:

1. The element <values> can only contain (integer) values.

2. The condition is such that either the operator must be relational (i.e., must be in
{lt,le,gt,ge,eq,ne}) and the (right) operand must be a value or a variable, or the
operator must necessarily be in and the (right) operand must be an integer interval; See
Section 1.5 in [BLAP17].

3.1.11 Constraint nValues

This constraint is described in Section 4.1.4.3 in [BLAP17]. Competition restrictions:

1. If present, the element <except> only contains one (integer) value.

2. The condition is such that either the operator must be eq and the (right) operand must
be a value or a variable, or the operator is gt and the (right) operand is 1.

3. Restricted forms (obtained by using the attribute restriction) are not accepted.

Contrary to 2017, note that it is now possible to deal with the special case where the condi-
tion is composed of the operator gt and the (right) operand is the value 1, which corresponds
to the global constraint notAllEqual.

3.1.12 Constraint cardinality

This constraint is described in Section 4.1.4.4 in [BLAP17]. Competition restrictions:

1. The element <values> can only contain (integer) values.

2. Restricted forms (obtained by using the attribute restriction) are not accepted.

3.1.13 Constraint maximum

This constraint is described in Section 4.1.5.1 in [BLAP17]. Competition restrictions:

1. The condition is such that the operator must necessarily be eq and the (right) operand
must be a value or a variable.

2. The element <index>, used for the variant <arg_max>, is not accepted.

3.1.14 Constraint minimum

This constraint is described in Section 4.1.5.2 in [BLAP17]. Competition restrictions:

1. The condition is such that the operator must necessarily be eq and the (right) operand
must be a value or a variable.

2. The element <index>, used for the variant <arg_min>, is not accepted.

8



3.1.15 Constraint element

This constraint is described in Section 4.1.5.3 in [BLAP17]. Competition restrictions:

1. The optionnal attribute startIndex, if present, is necessarily equal to 0.

2. The attribute rank, whose default value is "any", cannot be present.

Contrary to 2017, it is now possible to have a list of values (instead of variables) inside
<list>. This is presented in Section 4.1.5.3 in [BLAP17].

3.1.16 Constraint channel

This constraint is described in Section 4.1.5.4 in [BLAP17]. Competition restrictions:

1. Restricted forms (obtained by using the attribute restriction) are not accepted.

Contrary to 2017, note that for the form of channel involving two lists, it is now possible
that these two lists have different sizes. This is discussed at the top of Page 79 in Section
4.1.5.4 in [BLAP17].

3.1.17 Constraint noOverlap

This constraint is described in Section 4.1.6.2 in [BLAP17]. Competition restrictions:

1. In case the element <lengths> contains (integer) values, whatever is the dimension, the
value 0 is not accepted.

3.1.18 Constraint cumulative

This constraint is described in Section 4.1.6.3 in [BLAP17]. Competition restrictions:

1. The element <ends> is not accepted.

2. The variant, using <machines>, is not accepted.

3.1.19 Constraint instantiation

This constraint is described in Section 4.1.8.2 in [BLAP17]. There is no competition restriction
for this constraint.

3.1.20 Constraint circuit

This constraint is described in Section 4.1.7.1 in [BLAP17]. Competition restrictions:

1. The optionnal attribute startIndex, if present, is necessarily equal to 0.

2. The element <size> cannot be present.

Contrary to 2017, we can deal with this constraint in 2018.

9



3.1.21 Meta-Constraint slide

This meta-constraint is described in Section 8.1 in [BLAP17]. Competition restrictions:

1. Only one element <list> is accepted.

2. The constraint template must be of form <intension> or <extension>.

3.2 Constraints for Mini-solver Tracks

All general restrictions introduced for Standard tracks hold. Additionnally, the constraints
that are accepted for Mini-solver tracks are restricted to five types, as decribed below.

3.2.1 Constraint intension

This constraint is described in Section 4.1.1.1 in [BLAP17]. Competition restrictions for Mini-
solver Tracks : only primitive constraints with one of the following form will be considered.
In what follows, x, y and z denote integer variables, k denotes an integer value, � denotes
a relational operator in {<,≤,≥, >,=, 6=} and ⊕ denotes a binary arithmetic operator in
{+,−, ∗, /,%, ||}, with || being the distance.

• x� k k � x

• x� y

• (x⊕ k)� y (k ⊕ x)� y x� (y ⊕ k) x� (k ⊕ y)

• (x⊕ y)� y x� (y ⊕ z)

3.2.2 Constraint extension

This constraint is described in Section 4.1.1.2 in [BLAP17]. Competition restrictions for Mini-
solver Tracks (the same as for Standard Tracks):

1. Compressed tables (i.e., tables with compressed tuples) and smart tables are not ac-
cepted. However, do note that short tables (i.e., tables with tuples containing ’*’) are
accepted in 2018.

2. Empty Tables (i.e., tables with with 0 support or 0 conflict) are not accepted.

Note that unary, binary and n-ary extensional constraints are accepted.

3.2.3 Constraint allDifferent

This constraint is described in Section 4.1.3.1 in [BLAP17]. Competition restrictions for Mini-
solver Tracks:

1. The element <except> cannot be present.

2. Restricted forms (obtained by using the attribute restriction) are not accepted.

No advanced form of allDifferent, as e.g., allDifferent-matrix, is accepted.
Contrary to Standard tracks, handling view extensions for allDifferent is not permitted

for the Mini-solver tracks.

10



3.2.4 Constraint sum

This constraint is described in Section 4.1.4.1 in [BLAP17]. Competition restrictions for Mini-
solver Tracks:

1. The condition is such that the operator must be relational (i.e., in {lt,le,gt,ge,eq,ne})
and the (right) operand must be a value or a variable; see Section 1.5 in [BLAP17].

Contrary to Standard tracks, handling view extensions for sum is not permitted for the
Mini-solver tracks.

3.2.5 Constraint element

This constraint is described in Section 4.1.5.3 in [BLAP17]. Competition restrictions for Mini-
solver Tracks:

1. The optionnal attribute startIndex, if present, is necessarily equal to 0.

2. The element <index> is necessarily present but the attribute rank, whose default value
is "any", cannot be present.

Contrary to 2017, it is now possible to have a list of values (instead of variables) inside
<list>. This is presented in Section 4.1.5.3 in [BLAP17].

4 Differences between 2017 and 2018 Competitions

The differences in terms of restrictions, between the 2017 competition and the 2018 competi-
tion, are as follows:

1. Constraint extension. Contrary to 2017, short tables (i.e., tables with some tuples
containing ’*’) are accepted in 2018. Note that an algorithm such as STR (Simple
Tabular Reduction) or CT (Compact-Table) can be easily extended to deal with short
tables.

2. Constraint allDifferent. Contrary to 2017, handling view extensions is authorized for
the basic form of allDifferent in Standard tracks. It means that instead of a list of
variables in the element <list>, it is possible to have a list of integer expressions (trees).
This is shown at the end of Section 4.1.3.1 in [BLAP17].

3. Constraint ordered. Contrary to 2017, it is now possible to deal with an element
<lengths>, as explained in Section 4.1.3.4 in [BLAP17].

4. Constraint sum. Contrary to 2017, handling view extensions is authorized for sum in
Standard tracks. It means that instead of a list of variables in the element <list>, it is
possible to have a list of integer expressions (trees). This is shown at the end of Section
4.1.4.1 in [BLAP17].

5. Constraint nValues. Contrary to 2017, note that it is now possible to deal with the
special case where the condition is composed of the operator gt and the (right) operand
is the value 1, which corresponds to the global constraint notAllEqual.

11



6. Constraint element. Contrary to 2017, it is now possible to have a list of values (instead
of variables) inside <list>. See Section 4.1.5.3 in [BLAP17].

7. Constraint channel. Contrary to 2017, for the form of channel involving two lists, it
is now possible that these two lists have different sizes. This is discussed at the top of
Page 79 in Section 4.1.5.4 in [BLAP17].

8. Constraint circuit. This constraint is introduced in 2018. See restrictions in Section
3.

9. For some instances (series), the set of decision variables will be specified, by means of
annotations.

5 Resources: Benchmarks and Tools

Many benchmarks can be found at:

www.xcsp.org/series

The organizers invite anybody to submit new benchmarks. The organizers are particularly
interested in new problem instances originating from real-world applications. For generating
new XCSP3 instances, one can use the Java-based modeling API, called MCSP3. See its
description in this directory; once a model is developed, it is easy to generate XCSP3 instances
by compiling it while providing data.

Some tools are also provided. They can be found at:

www.xcsp.org/tools

Currently, you can find:

• a C++ parser

• a Java parser

• a tool for checking solutions and costs

• a Java-based modeling API

6 Execution Environment

Solvers will run on a cluster of computers using the Linux operating system. They will
run under the control of another program (called runsolver) that will enforce some limits
on both used memory and total CPU time. Solvers will be run inside a sandbox that will
prevent unauthorized use of the system (network connections, file creation outside the allowed
directory, among others).

Solvers can be run as either 32 bits or 64 bits applications. If you submit an executable,
you are required to provide us with an ELF executable (preferably statically linked). Authors
submitting solvers in source form will have to specify if it should be compiled in 32 bits or 64
bits mode.

Two executions of a solver with the same parameters and system resources are expected
to output the same result in approximately the same time (so that the experiments can be
repeated).

12

http://www.xcsp.org/series
https://github.com/xcsp3team/XCSP3-Java-Tools/tree/master/doc
http://www.xcsp.org/tools


6.1 Command Line

During the submission process, you will be asked to provide the organizers with a suggested
command line that should be used to run your solver. In this command line, you will be asked
to use the following placeholders, which will be replaced by the actual information by the
evaluation environment.

• BENCHNAME will be replaced by the name of the file containing the XCSP3 in-
stance to solve. Obviously, the solver must use this parameter or one of the following
variants: BENCHNAMENOEXT (name of the file with path but without extension),
BENCHNAMENOPATH (name of the file without path but with extension), BENCH-
NAMENOPATHNOEXT (name of the file without path nor extension).

• RANDOMSEED will be replaced by a random seed which is a number between 0 and
4294967295. This parameter MUST be used to initialize the random number generator
when the solver uses random numbers. It is recorded by the evaluation environment and
will allow to run the program on a given instance under the same conditions if necessary.

• TIMELIMIT (or TIMEOUT) represents the total CPU time (in seconds) that the solver
may use before being killed. May be used to adapt the solver strategy.

• MEMLIMIT represents the total amount of memory (in MiB) that the solver may use
before being killed. May be used to adapt the solver strategy.

• NBCORE will be replaced by the number of processing units that have been allocated
to the solver. Note that, depending on the available hardware, a processing unit may
be either a processor, a core of a processor or a “logical processor” (in hyper-threading).

• TMPDIR is the name of the only directory where the solver is allowed to read/write
temporary files

• DIR is the name of the directory where the solver files will be stored

Examples of command lines:

DIR/mysolver BENCHNAME RANDOMSEED
DIR/mysolver --mem-limit=MEMLIMIT --time-limit=TIMELIMIT --tmpdir=TMPDIR BENCHNAME
java -jar DIR/mysolver.jar -c DIR/mysolver.conf BENCHNAME

As an example, these command lines could be expanded by the evaluation environment as:

/solver10/mysolver /tmp/zebra.xml 1720968
/solver10/mysolver --mem-limit=900 --time-limit=1200 --tmpdir=/tmp/job12345 /tmp/zebra.xml
java -jar /solver10/mysolver.jar -c /solver10/mysolver.conf /tmp/zebra.xml

The command line provided by the submitter is only a suggested command line. Organizers
may have to modify this command line (e.g., memory limits of the Java Virtual Machine (JVM)
may have to be modified to cope with the actual memory limits).

The solver may also (optionally) use the values of the following environment variables:

• TIMELIMIT (or TIMEOUT) (the number of seconds it will be allowed to run)

• MEMLIMIT (the amount of RAM in MiB available to the solver)

13



• TMPDIR (the absolute pathname of the only directory where the solver is allowed to
create temporary files)

After TIMEOUT seconds have elapsed, the solver will first receive a SIGTERM to give it
a chance to output the best solution it found so far (in the case of an optimization problem).
One second later, the program will receive a SIGKILL signal from the controlling program to
terminate the solver.

The solver cannot write to any file except standard output, standard error
and files in the TMPDIR directory. A solver is not allowed to open any network
connection or launch unexpected external commands. Solvers may use several
processes or threads. Children of a solver process are allowed to communicate
through any convenient means (Pipes, Unix or Internet sockets, IPC, ...). Any
other communication is strictly forbidden. Solvers are not allowed to perform
actions that are not directly related to the resolution of the problem.

6.2 Output Format

To communicate their answers, solvers must print messages to the standard output and those
messages will be used to check the results. The first two characters of a line allow us to classify
it into different categories, which indicate the meaning of the line. With the exception of "o "
lines, there is no specific order imposed on the lines output by solvers.

• status line
This line starts by the two characters: lower case s followed by a space (ASCII code 32).
Only one such line is allowed, and it is mandatory. This line gives the answer of the
solver. It must be one of the following answers:

– s UNSUPPORTED
This line should be printed by the solver when it discovers that the XCSP3 instance
contains a non-supported feature. As an example, a solver that cannot deal with a
global constraint should print this line when such a constraint is present.

– s SATISFIABLE
This line indicates that the solver has found a solution, and in such a case, a "v "
line (see below) is mandatory. For CSP, the solver answers SATISFIABLE when
it has found a solution. For COP, the solver answers SATISFIABLE when it has
found a solution that it couldn’t prove to be optimal.

– s OPTIMUM FOUND
This line must be printed when the solver has found an optimal solution for a COP
instance, and in such a case, a "v " line (see below) is mandatory. This answer
implies that the solver has proved that no other solution can give a better value of
the objective function. This answer must not be used for CSP instances.

– s UNSATISFIABLE
This line must be output when the solver can prove that the instance has no
solution.

– s UNKNOWN
This line may be output in any other case, i.e. when the solver is not able to tell
anything about the instance.

14



It is of uttermost importance to respect the exact spelling of these answers. Any mistake
in the writing of these lines will cause the answer to be disregarded.

Solvers are not required to provide any specific exit code corresponding to their answer.

If the solver does not output a status line, or if the status line is misspelled, then
UNKNOWN will be assumed.

• values line
This line starts by the two characters: lower case v followed by a space (ASCII code 32).
It is mandatory when the instance is satisfiable. More than one "v " line is allowed but
the evaluation environment will act as if their content was merged.

If the solver finds a solution (i.e., if the solver outputs "s SATISFIABLE" or "s OP-
TIMUM FOUND"), it must provide a solution. For CSP or COP, this solution is an
instantiation that satisfies every constraint. For COP, this instantiation must be such
that the value of the objective function corresponds to the best one that the solver was
able to find.

Solutions must respect the format described in Section 2.11 of [BLAP17]. However, it
is important to note that the attributes type and cost that can be associated with the
element <instantiation> are not required in the context of the competition. These
attributes, if present, will simply be ignored.

Importantly, the solution can be output on several successive "v " lines, provided that
each "v " line must be terminated by a Line Feed character (the usual Unix line termi-
nator ’\n’). A "v " line that does not end with that terminator will be ignored because
it will be considered that the solver was interrupted before it could print a complete
solution.
As an illustration, the following output is valid for the COP instance (Example 4) given
in Chapter 1 of [BLAP17]:

v <instantiation type="optimum" cost="1700">
v <list> b c </list>
v <values> 2 2 </values>
v </instantiation>

and the following output is valid for the CSP instance (Example 25) given in Section
2.11 of [BLAP17]:

v <instantiation type="solution">
v <list> x[] </list>
v <values> 1 1 2 * </values>
v </instantiation>

As the attributes type and cost are not required (and simply ignored by our environ-
ment), we could have written:

v <instantiation>
v <list> b c </list>
v <values> 2 2 </values>
v </instantiation>

and

15



v <instantiation>
v <list> x[] </list>
v <values> 1 1 2 * </values>
v </instantiation>

• objective line
These lines start by the two characters: lower case o followed by a space (ASCII code
32). These lines are mandatory for incomplete solvers. As far as complete solvers
are concerned, they are not strictly mandatory but solvers are strongly invited to print
them. These lines are only relevant for COP instances.

Whenever the solver finds a solution with a better value of the objective function, it is
asked to print an "o " line with the current value of the objective function. Therefore,
an "o " line must contain the lower case o followed by a space and then by an integer
that represents the better value of the objective function. "o " lines should be output as
soon as the solver finds a better solution and be ended by a standard Unix end of line
character (’\n’). Programmers are advised to flush immediately the output stream.
As an example; let us consider Example 2 in Chapter 1 of [BLAP17]. Let us assume
that the solver finds first this solution:

<instantiation id=’sol1’ type=’solution’ cost=’450’>
<list> b c </list>
<values> 0 1 </values>

</instantiation>

and later:

<instantiation id=’sol2’ type=’solution’ cost=’1700’>
<list> b c </list>
<values> 2 2 </values>

</instantiation>

which is finally proved to be optimal by the solver. The output by the solver can be
(using this time only one "v " line):

o 450
o 1700
s OPTIMUM FOUND
v <instantiation> <list> b c </list> <values> 2 2 </values> </instantiation>

The evaluation environment will automatically timestamp each of these lines so that
it is possible to know when the solver has found a better solution and how good the
solution was. The goal is to be able to analyze the way solvers progress toward the best
solution. As an illustration, here is a sample of the output of a solver, with each line
timestamped (first column, expressed in seconds of wall clock time since the start of the
program).

0.00 c Time Limit set via TIMEOUT to 1800
0.51 c Initial problem consists of 6774 variables and 100 constraints.
0.55 c preprocess terminated. Elapsed time: 0.45
0.55 c Initial Lower Bound: 0
0.63 o 235947

16



0.63 o 226466
0.63 o 217758
0.75 o 186498
1.16 o 178319
2.42 o 168389
3.13 c Restart #1 #Var: 6774 LB: 0 @ 3.03
4.89 c Restart #2 #Var: 6774 LB: 0 @ 4.79
5.73 o 160358
6.44 o 159206
7.52 o 150077
9.09 o 149533
12.14 o 140853
17.74 o 140264
19.61 o 131636
29.81 o 15450
34.00 o 7066
41.66 o 5000
84.01 o 3905
84.01 c NEW SOLUTION FOUND: 3905 @ 83.873
84.61 s OPTIMUM FOUND
84.61 v ... // solution not shown here for space reasons
84.61 c Total time: 84.478 s

and here is an example of graph which can be generated from such ’o ’ lines:

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  10  20  30  40  50  60  70  80  90

va
lu

e 
of

 th
e 

ob
je

ct
ive

 fu
nc

tio
n

time (wall clock seconds)

Value of the objective function during the search

• diagnostic line
These lines are optional and start with the two following characters: lower case d followed
by a space (ASCII code 32). Then, a keyword followed by a value must be given on this
line.

More precisely, a diagnostic is a (name,value) pair that gives an information about the
work carried out by the solver. As indicated above, each diagnostic is a line of the form

17



’d NAME value’, where NAME is a sequence of letters describing the diagnostic, and value
is a sequence of characters defining its value. The following diagnostic is predefined:

WRONG_DECISIONS: The total number of wrong decisions which have been carried out
(as defined in [BZF04]).

Contestants wishing to record other diagnostics than the one listed before above should
inform the organizers.

• comments line
A line which is not one the special lines defined above, or which explicitly starts with
the two characters: lower case c followed by a space (ASCII code 32) is a comment line,
and is ignored. These lines are thus optional and may appear anywhere in the solver
output.

They contain any information that authors want to emphasize, such as #backtracks,
#flips,... or internal CPU time. They are recorded by the evaluation environment for
later viewing but are otherwise ignored. At most one megabyte of solver output will be
recorded. So, if a solver is very verbose, some comments may be lost.

Submitters are advised to avoid printing comment lines which may be useful in an
interactive environment but otherwise useless in a batch environment. For example,
printing comment lines with the number of constraints read so far only increases the size
of the logs with no benefit.

If a solver is really too verbose, the organizers will ask the submitter to remove some
comment lines.

6.3 Special Considerations for Incomplete Solvers

Complete solvers are solvers which can always decide the satisfiability of a CSP instance and
the optimality of a COP instance, provided that enough time and memory are given. Incom-
plete solvers may loop endlessly in a number of cases; local search algorithms are examples
of incomplete solvers. Both kinds of solvers are welcome in this competition. Submitters will
have to indicate if their solver is complete or incomplete on the submission form.

6.3.1 Complete solvers

There is no special requirement about complete solvers. See the input and output format that
all solvers must respect for details.

6.3.2 Incomplete solvers

Incomplete solvers are definitely welcome in the competition.
For CSP, an incomplete solver will stop as soon as it finds a solution and will time out if it

can’t find one. The only difference with a complete solver is that it will time out systematically
on unsatisfiable instances.

For COP, an incomplete solver will systematically time out because it will be unable to
prove that it has found the optimum solution. Yet, it may have found the optimum value well
before the time out. In order to get relevant information in these categories, an incomplete
solver must fulfill two requirements:

18



1. it must intercept the SIGTERM signal sent to the solver on timeout and output either
"s UNKNOWN" or "s SATISFIABLE" with the "v " line(s) corresponding to the best
solution it has found

2. it MUST output an "o " line whenever it finds a better solution so that, even if the solver
always timeouts, the timestamp of the last "o " line indicates when the best solution
was found. Keep in mind that it is the evaluation environment which is in charge of
timestamping "o " lines.

6.4 Special Considerations for Parallel Solvers

The execution environment will bind the solvers to a subset of all available processing units.
The environment variable NBCORE will indicate how many processing units have been
granted to the solver. The solver will not have access to more processing units than NBCORE.
This implies that if the solver uses x threads or processes (with x >NBCORE), x−NBCORE
threads or processes will necessarily sleep at one time.

As an example, if the competition is run on hosts with 2 quad-core processors (8 cores in
total), several scenarios are possible:

• one single solver is run on the host, it is allowed to use all 8 cores (NBCORE=8).

• two solvers are run simultaneously, each one being assigned to a given processor (which
means that a solver is assigned 4 cores, hence NBCORE=4).

• 4 solvers are run simultaneously, each one being assigned to a fixed set of 2 cores (be-
longing to the same CPU), hence NBCORE=2.

• more generally, a single solver may be assigned any number x of cores (from 1 to 8 in
this example) to simulate the availability of x processing units.

The solver might use the NBCORE environment variable to adapt itself to the number of
available processing units.

A solver must not modify its processor affinity (calls to sched_setaffinity(2) or taskset(1))
to get access to a processing unit that was not initially allocated to the solver. It may however
modify its processor affinity to use a subset of the initially allocated processing units.

7 Entering the Competition

Contestants can enter the competition with one or two solvers per track. Contestants are ex-
pected to submit their solver(s) and contribute some instances (as many instances as wished).
Submitted instances will be made available on the evaluation web site shortly after the ac-
tual beginning of the competition. We cannot accept benchmarks which cannot (for various
reasons) be publicly available (because anyone must be able to reproduce the experiments
of the competition). Each contestant will have the possibility to select 5 instances with the
guarantee that they will be used for the competition. In a second stage, they will also have to
submit a position paper (at least 2 pages) indicating the main components of the submitted
solver(s).

Of course, we expect that contestants propose solvers that recognize XCSP3 (either na-
tively or by embedding a conversion procedure).

19



The deadline for submitting both benchmarks and solvers is April 29, 2018. Submission
of solvers and benchmarks will be possible online in March 2018 at http://www.cril.fr/
XCSP18/.

8 Ranking

Basically, solvers will be ranked on the number of times a solver is able to give the best answer
obtained during the competition. Ties will be broken on the cumulated CPU/wall-clock time
to give these answers. Other ranking schemes may be introduced to help identify remarkable
features.

Wrong Answers. Note that a solver is declared to give a wrong answer in the following
cases:

• It outputs UNSATISFIABLE for an instance which can be proved to be satisfiable.

• For CSP and COP, it outputs SATISFIABLE or OPTIMUM FOUND, but provides an
instantiation that does not satisfy every constraint. The only exception is when the
solver outputs an incomplete "v " line (which does not end by ’\n’) in which case it is
assumed that the solver was interrupted before it could output the complete model and
the answer will be considered as UNKNOWN.

• It outputs OPTIMUM FOUND but there exists an instantiation with a better value of
the objective function/cost that the one corresponding to the printed solution.

When a solver provides even one single wrong answer in a given track, the
solver’s results in that track will be excluded from the final evaluation results
because they cannot be trusted. Exceptionally, the organizers may decide to present
separately the results of such a solver but only if it obtained particularly good results and if
a detailed explanation of the problem as well as a correction is provided by the submitters.

A solver that ends without giving any solution, or just crashes for some reason (internal
bugs...), is simply considered as giving an UNKNOWN result.

9 Committees

9.1 Organization

Olivier Roussel and Christophe Lecoutre from CRIL.

They can be reached at roussel@cril.fr and lecoutre@cril.fr.

9.2 Judges

The competition jury is composed of three judges who are in charge of taking decisions when
rules are unclear and of validating the results of the competition. The three judges will be
announced later.

We recall that anybody is welcome to submit new benchmarks (to the judges), and that
each participant has the possibility of selecting exactly 5 instances (while proposing many
more instances that may finally be selected or not), and must inform the jury of his/her
selection. Submiting instances will be made possible through the competition website.

20

http://www.cril.fr/XCSP18/
http://www.cril.fr/XCSP18/
http://www.cril.univ-artois.fr/~roussel
http://www.cril.fr/~lecoutre
http://www.cril.univ-artois.fr/
mailto:roussel@cril.fr
mailto:lecoutre@cril.fr


References

[BLAP17] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette, XCSP3: An inte-
grated format for benchmarking combinatorial constrained problems, Tech. Re-
port arXiv:1611.03398, Specifications 3.0.5, CoRR, 2016-2017, Available from
http://www.xcsp.org/format3.pdf.

[BZF04] C. Bessiere, B. Zanuttini, and C. Fernandez, Measuring search trees, Proceedings
of ECAI’04 workshop on Modelling and Solving Problems with Constraints, 2004,
pp. 31–40.

21

http://www.xcsp.org/format3.pdf

	Timetable
	Tracks
	Format
	Constraints for Standard Tracks
	Constraint intension
	Constraint extension
	Constraint regular
	Constraint mdd
	Constraint allDifferent
	Constraint allEqual
	Constraint ordered
	Constraint lex
	Constraint sum
	Constraint count
	Constraint nValues
	Constraint cardinality
	Constraint maximum
	Constraint minimum
	Constraint element
	Constraint channel
	Constraint noOverlap
	Constraint cumulative
	Constraint instantiation
	Constraint circuit
	Meta-Constraint slide

	Constraints for Mini-solver Tracks
	Constraint intension
	Constraint extension
	Constraint allDifferent
	Constraint sum
	Constraint element


	Differences between 2017 and 2018 Competitions
	Resources: Benchmarks and Tools
	Execution Environment
	Command Line
	Output Format
	Special Considerations for Incomplete Solvers
	Complete solvers
	Incomplete solvers

	Special Considerations for Parallel Solvers

	Entering the Competition
	Ranking
	Committees
	Organization
	Judges


