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Preface
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Sitting at the heart of a constraint solver, it consumes a significant portion of the time
that is required for problem solving.

TheThird International Workshop on Constraint Propagation and Implementation
(CPAI’06) was convened to study the design and analysis of new propagation algo-
rithms as well as any related practical issue. The implementation and evaluation of
constraint propagation algorithms is studied in contexts ranging from special purpose
solvers to programming language systems.

These proceedings are dedicated to the CPAI’06 workshop. They include an ab-
stract of an invited talk, deliverd by Chris Jefferson, and seven contributed papers. In his
talk Chris Jefferson presents his solver Minion. The contributed papers present filtering
algorithms for precedence and dependency constraints, a new global meta-constraint
called SLIDE, a study of residual supports in arc consistency, algorithms for maintain-
ing singleton arc consistency, algorithms for probabilistic singleton arc consistency,
improvements and simplifications of the SPREAD constraint, and filtering algorithms
for the graph isomorphism problem.
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Constants Matter: Implementing Minion, a fast
Constraint Solver

Chris Jefferson

Uversity of Oxford, Oford, UK, Chris.Jefferson@comlab.ox.ac.uk

This talk will deal with many of the practical matters of implementing am
efficient constraint solver using existing algorithms and methods. SAT solvers
have historically been able to solve much larger problems than CSP solvers
and search thousand of times more nodes per second. This talk will discuss the
implementation of constraint solver Minion, which is one of the fastest constraint
solvers available and has gone some way to reducing this gap. Most of Minion’s
speed come from better data structures and careful use templates in C++.

A recent extension to Minion uses the algorithms which make SAT solvers so
successful. This talk discusses the difficulties of implementing these algorithms
in a general CSP framework.

Chris Jefferson is a Research Fellow at the University of Oxford, where he
collaborates with Pete Jeavons on using Gröbner Bases to solve CSPs. Chris
wrote Minion with Ian Gent and Ian Miguel while a Research Assistant at St
Andrews University, and continues to work on it. He is currently registered as a
PhD student under the supervision of Alan Frish at the University of York. His
PhD thesis is on the topic of representations in CP.
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Incremental Filtering Algorithms for
Precedence and Dependency Constraints

Roman Barták1 and Ondřej Čepek12

1 Charles University in Prague,
Faculty of Mathematics and Physics,

Malostranské nám. 25, 118 00 Praha 1, Czech Republic,
{roman.bartak,ondrej.cepek}@mff.cuni.cz

2 Institute of Finance and Administration, Estonská 500, 101 00 Praha 10, Czech
Republic

Abstract. Precedence constraints play a crucial role in planning and
scheduling problems. Many real-life problems also include dependency
constraints expressing logical relations between the activities – for ex-
ample, an activity requires the presence of another activity in the plan.
For such problems a typical objective is a maximization of the number of
activities satisfying the precedence and dependency constraints. In the
paper we propose new incremental filtering rules integrating propagation
through both precedence and dependency constraints. We also propose
a new filtering rule using the information about the requested number
of activities in the plan. We demonstrate efficiency of the proposed rules
on the log-based reconciliation problems and min-cutset problems.

1 Introduction

Planning and scheduling belong among the most successful application areas of
constraint satisfaction. Solving these problems depends on efficient handling of
temporal and resource constraints. Temporal networks play an important role
in planning but they are not used as frequently in scheduling where resource re-
strictions traditionally play a stronger role. This is reflected in scheduling global
constraints, where techniques like edge-finding or not-first/not-last combine re-
strictions on time windows with a limited capacity of the resource. Recently, a
new category of propagation techniques combining information about relative
position of activities with capacity of resources appeared [6, 7]. Also techniques
combining information about precedence relations and time windows have been
proposed [1, 6]. We believe that integration of temporal networks with reasoning
on resources [7, 8] will play even more important role as planning and schedul-
ing technologies are becoming closer. In addition to precedence relations, many
problems include dependency constraints between the activities. This is typical
for planning problems where an existence of an activity in the plan depends on
the presence of other activities in the plan. Similar constraints appear in oversub-
scribed problems where the task is to schedule the maximal number of activities
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and inclusion of an activity in the schedule may require presence of other activi-
ties in the schedule. Such problems can be modelled using optional activities; the
system then decides about validity or invalidity of optional activities respecting
all the constraints. This is similar to solving over-constrained problems with the
goal to maximize the number of satisfied constraints. The important difference
is that constraints are grouped in our problem and all constraints in the group
must be satisfied together (for example, the group corresponds to constraints
related to a single activity).

In this paper we focus on modelling precedence constraints using a precedence
graph and on integrating reasoning on dependency constraints in this model. In
particular, we propose a new constraint-based model of the precedence graph
with optional activities and we design new filtering rules for incremental main-
tenance of transitive closure for such precedence graphs. In the filtering we also
use information about dependency constraints. This is, we believe, the first time
when filtering through precedence and dependency constraints is realised in an
integrated way. We also propose new objective-based filtering for these problems.
This filtering uses information about the requested number of valid activities in
the final plan.

The paper is organized as follows. We will first introduce the problem more
formally and survey the existing solving approaches. Then we will describe the
filtering rules for maintaining a transitive closure of the precedence graph with
optional activities. We will also show their theoretical time complexity and prove
their soundness. After that, we will describe the propagation rule doing filtering
based on requested number of valid activities. We will conclude the paper with
experimental comparison of our approach with the existing model.

2 Problem Description and Related Works

In this paper we address the problem of modelling precedence constraints be-
tween the activities in over-subscribed problems. We do not assume activity
duration or time windows here and the activities can run in parallel, if allowed
by the precedence constraints. The precedence constraint A ≺ B specifies that
activity A must be before activity B in the schedule. To model over-subscribed
problems, we assume optional activities. An optional activity has one of the
following three statuses. If the activity is not yet known to be or not to be in-
cluded in the schedule then it is called undecided. If the activity is included in
the schedule then it is called valid. If the activity is known not to be included
in the schedule then it is called invalid. We also assume dependency constraints
between the activities. The dependency constraint A⇒ B specifies that if activ-
ity A is valid then activity B must be valid as well. In other words, if activity A
is included in the schedule then activity B must be included as well. This is one
of the dependency constraints proposed in the general model for manufacturing
scheduling [9]. The task is to decide about (in)validity of the undecided activi-
ties and to find a set of valid activities satisfying the precedence and dependency
constraints. The precedence constraints are satisfied if there is no cycle between
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valid activities. Usually, the problem is formulated as an optimization problem,
where the task is to find a feasible solution in the above sense that maximizes
the number of valid activities.

Though our motivation is mainly in the area of scheduling, the above problem
is also known as a log-based reconciliation problem in databases. The straight-
forward constraint model for this problem has been proposed in [2]. The model
uses n integer variables p1, . . . , pn which give the positions of activities in the
schedule (n is the number of activities). The initial domain of these variables is
1, . . . , n. There are also n Boolean (0/1) variables a1, . . . , an describing whether
the activity is valid (1) or invalid (0). The precedence constraint between activ-
ities i and j is then described using the formula:

(ai ∧ aj)⇒ (pi < pj) or equivalently (ai ∗ aj ∗ pi < pj).

The dependency constraint between activities i and j can be formulated as:

ai ⇒ aj .

The solver uses standard constraint propagation over above constraints combined
with enumeration of the Boolean variables ai’s. The paper [2] also proves that
the log-based reconciliation problem is NP-hard – if there are no dependency
constraints then the problem reduces to the problem of finding the smallest
cutset in a directed graph (that is, the smallest set of vertices whose removal
makes the input graph acyclic) [4].

In [3] an improvement of the above precedence constraint has been pro-
posed using the reasoning on graph properties. Namely a global cutset constraint
has been proposed that uses graph contraction techniques to infer some simple
Boolean constraints. Still, this model assumes the dependency constraints sepa-
rately; in particular the constraints are modelled in the above implication form.

The paper [5] also studies the log-based reconciliation problem, but rather
than proposing a new filtering algorithm, a decomposition technique is used. The
technique is again motivated by the minimal cutset problem and the dependency
constraints are handled separately. Moreover, as opposed to the above described
models, the technique from [5] is incomplete – meaning that it does not guarantee
optimality.

Our approach is different from the above techniques by integrating reasoning
on both precedence and dependency constraints. We cannot use the contraction
techniques from [3], because our aim is to eventually use the designed filtering
algorithm in a scheduler where the precedence graph is used by other constraints
like the constraint that integrates reasoning on precedence relations and time
windows. Such a constraint assumes activity durations and time windows so it
can deduce new precedences using time windows and, vice versa, it can shrink
time windows using information about precedences. For details see [1].
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3 Filtering Rules for Precedence and Dependency
Constraints

Precedence relations among activities define a precedence graph that is an acyclic
directed graph where nodes correspond to activities and there is an arc from A
to B if A ≺ B. If access to all predecessors and successors of a given activity is
frequently requested, like in [1, 6], then it is more efficient to keep a transitive
closure of the graph where this information is available in O(1) time, rather
than to look for predecessors/successors on demand. We propose the following
definition of transitive closure of the precedence graph with optional activities.

Definition 1. We say that a precedence graph G with optional activities is tran-
sitively closed if for any two arcs A to B and B to C such that B is a valid activity
and A and C are either valid or undecided activities there is also an arc A to C
in G.

It is easy to prove that if there is a path from A to B such that A and B are
either valid or undecided and all inner nodes in the path are valid then there
is also an arc from A to B in a transitively closed graph (by induction on the
path length). Hence, if no optional activity is used (all activities are valid) then
Definition 1 corresponds to a standard definition of the transitive closure.

We propose to realise reasoning on precedence relations using constraint sat-
isfaction technology. This allows integration of our model with other constraint
reasoning techniques, namely the one proposed in [1]. This integration requires
the model to provide full information about precedence relations to all other
constraints. We index each activity by a unique number from the set 1, . . . , n,
where n is the number of activities. For each activity we use a 0/1 variable
Valid indicating whether the activity is valid (1) or invalid (0). If the activity
is undecided (not yet known to be valid or invalid) then the domain of Valid is
{0, 1}. The precedence graph is encoded in two sets attached to each activity.
CanBeBefore(A) is a set of indices of activities that can be before activity A.
CanBeAfter(A) is a set of indices of activities that can be after activity A. For
simplicity reasons we will write A instead of the index of A. To simplify descrip-
tion of the propagation rules we also define for every activity A the following
derived sets:

MustBeAfter(A) = CanBeAfter(A) \ CanBeBefore(A)
MustBeBefore(A) = CanBeBefore(A) \ CanBeAfter(A)
Unknown(A) = CanBeBefore(A) ∩ CanBeAfter(A).

MustBeAfter(A) and MustBeBefore(A) are sets of those activities that must
be after and before the given activity A respectively. Unknown(A) is a set of
activities that are not yet known to be before or after activity A (Figure 1).

Note on representation. The main reason for using sets to model the
precedence graph is their possible representation as domains of variables in con-
straint satisfaction packages. Recall that domains of variables can only shrink
as problem solving proceeds. The sets in our model are also shrinking as new
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Fig. 1. Representation of the precedence graph

arcs ≺ are added to the precedence graph. Hence a special data structure is
not necessary to describe the precedence graph in constraint satisfaction pack-
ages. Moreover, these packages usually provide tools to manipulate the domains,
for example membership and deletion operations. In the subsequent complexity
analysis, we will assume that these operations require time O(1), which can be
realised for example by using a bitmap representation of the sets. Note finally,
that empty domain implies inconsistency in constraint satisfaction that may be
a problem for the very first and very last activity which has no predecessors and
successors respectively. To solve the problem we can simply leave activity A in
both sets CanBeAfter(A) and CanBeBefore(A). Then no domain of CanBeBe-
fore and CanBeAfter will ever be empty but we can detect inconsistency via the
empty domain of Valid variables.

The goal of propagation rules is to remove inconsistent values from the above
described sets – this is called domain filtering in constraint satisfaction. In the
first stage, we will focus on making a transitive closure of the precedence graph
according to Definition 1. Note that the transitive closure of the precedence
graph also simplifies detection of inconsistency of the graph. The precedence
graph is inconsistent if there is a cycle of valid activities. In a transitively closed
graph, each such cycle can be detected by finding two valid activities A and B
such that A ≺ B and B ≺ A. Our propagation rules prevent cycles by making
invalid the last undecided activity in each cycle. This propagation is realised by
using an exclusion constraint. As soon as there is a cycle A ≺ B and B ≺ A
detected, the following exclusion constraint can be posted:

Valid(A) = 0 ∨Valid(B) = 0.

This constraint ensures that each cycle is broken by making at least one activity
in the cycle invalid. Instead of posting the constraint directly to the constraint
solver, we propose keeping the set Ex of exclusions. The above exclusion con-
straint is modelled as a set {A,B} ∈ Ex. Now, the propagation of exclusions is
realised explicitly – if activity A becomes valid then all activities C such that
{A,C} ∈ Ex are made invalid (see rule /1/ below).
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In addition to precedence constraints, there are also dependency constraints
in the problem. The dependency A ⇒ B can be easily described using the
constraint:

(Valid(A) = 1)⇒ (Valid(B) = 1).

Similarly to exclusions, we propose to keep the set Dep of dependencies instead
of posting the above constraints, and to realise the propagation of dependencies
explicitly. In particular, if activity A becomes valid then all activities C such
that (A ⇒ C) ∈ Dep are made valid. Reversely, if activity A becomes invalid
then all activities C such that (C ⇒ A) ∈ Dep are made invalid (see rule /1/
below).

Keeping the exclusions and dependencies explicitly has the advantage of
stronger filtering (Table 1). In particular, if exclusion {A,B} is to be added
to Ex and there is a dependency (A ⇒ B) ∈ Dep then we can make activ-
ity A invalid (and the exclusion is resolved so it does not need to be kept in
Ex). Note that A must be invalid in any solution satisfying the above exclusion
and dependency constraints which justifies the proposed filtering. Moreover, if
{A,B} is added to Ex and there is an activity C such that (C ⇒ A) ∈ Dep and
(C ⇒ B) ∈ Dep then we can make activity C invalid. Again, C must be invalid
in any solution satisfying the above exclusion and dependency constraints which
justifies the proposed filtering. This reasoning is used in both filtering rules /1/
and /2/ below. Keeping explicit dependencies and exclusions will also help us
later to deduce a better estimate of the number of valid/invalid activities that
is used in cost-based filtering (see rule /3/ below).

Table 1. Reasoning on exclusions and dependencies.

Condition Effect

{A,B} ∈ Ex ∧ (A⇒ B) ∈ Dep Valid(A) = 0

{A,B} ∈ Ex ∧ (C ⇒ A), (C ⇒ B) ∈ Dep Valid(C) = 0

The above described reasoning is realised by the following propagation rule
that is invoked when the validity status of the activity becomes known. ”Valid(A)
is instantiated” is its trigger. The part after −→ is a propagator describing prun-
ing of domains. ”exit” means that the constraint represented by the propagation
rule is entailed so the propagator is not further invoked (its invocation does not
cause further domain pruning). We will use the same notation in all rules.

Valid(A) is instantiated --> /1/
if Valid(A) = 0 then

for each C s.t. (C=>A) in Dep do Valid(C):= 0
Ex := Ex \ {{A,X} | X is an activity}

else // Valid(A)=1
for each C s.t. (A=>C) in Dep do Valid(C):= 1
for each C s.t. {A,C} in Ex do Valid(C):= 0
for each B in MustBeBefore(A) s.t. Valid(B) <> 0 do

for each C in MustBeAfter(A) \ MustBeAfter(B)
s.t. Valid(C) <> 0 do
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CanBeAfter(C):= CanBeAfter(C) \ {B} //add arc from B to C
CanBeBefore(B):= CanBeBefore(B) \ {C}
if C not in CanBeAfter(B) then // break the cycle

if (C=>B) in Dep then Valid(C):= 0
else if (B=>C) in Dep then Valid(B):= 0

else Ex:= Ex + {{B,C}} // add {B,C} into Ex
for each X s.t. (X=>B) in Dep

and (X=>C) in Dep do Valid(X):= 0
exit

Note that rule /1/ maintains symmetry of sets modelling the precedence
graph for all valid and undecided activities because the domains are pruned
symmetrically in pairs. We shall show now, that if the entire precedence graph
is known in advance (no arcs are added during the solving procedure), then rule
/1/ is sufficient for keeping the transitive closure according to Definition 1.

Proposition 1. Let A0, A1, . . . , Am be a path in the precedence graph such that
Valid(Aj) = 1 for all 1 ≤ j ≤ m − 1 and Valid(A0) 6= 0 and Valid(Am) 6= 0
(that is, the endpoints of the path are not invalid, and all inner points of the
path are valid). Then A0 ≺ Am, that is, A0 6∈ CanBeAfter(Am) and Am 6∈
CanBeBefore(A0).

Proof. We shall proceed by induction on m. The base case m = 1 is trivially true
after initialisation (we assume that for every arc (X,Y ) in the precedence graph
X is removed from CanBeBefore(Y ) and Y is removed from CanBeAfter(X) in
the initialisation phase). For the induction step let us assume that the statement
of the lemma holds for all paths (satisfying the assumptions of the lemma) of
length at most m − 1. Let 1 ≤ j ≤ m − 1 be an index such that Valid(Aj):= 1
was set last among all inner points A1, . . . , Am−1 on the path. By the induction
hypothesis we get

– A0 6∈ CanBeAfter(Aj) and Aj 6∈ CanBeBefore(A0) using the path A0, . . . , Aj
– Aj 6∈ CanBeAfter(Am) and Am 6∈ CanBeBefore(Aj) using Aj , . . . , Am

We shall distinguish two cases. If Am ∈MustBeAfter(A0) (and by symmetry also
A0 ∈ MustBeBefore(Am)) then by the definition (of the MustBeBefore sets) we
get Am 6∈ CanBeBefore(A0) and A0 6∈ CanBeAfter(Am) and so the claim is
true trivially. Thus, let us in the remainder of the proof assume that Am 6∈
MustBeAfter(A0).

Now let us show that A0 ∈ CanBeBefore(Aj) must hold, which in turn (to-
gether with A0 6∈ CanBeAfter(Aj)) implies A0 ∈ MustBeBefore(Aj). Let us as-
sume by contradiction that A0 6∈ CanBeBefore(Aj). However, at the time when
both A0 6∈ CanBeAfter(Aj) and A0 6∈ CanBeBefore(Aj) became true, that is,
when the second of these conditions was made satisfied by rule /1/, rule /1/
must have done one the following things

– in case of a dependency constraint between A0 and Aj , make one of these
activities invalid

– in case of no dependency between A0 and Aj , add the pair (A0, Aj) into the
set Ex of exclusions.
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The latter case moreover implies that at the moment when Aj is made valid A0

is made invalid and hence both cases contradict the assumptions of the lemma.
By a symmetric argument we can prove that Am ∈ MustBeAfter(Aj). Thus

when rule /1/ is triggered by setting Valid(Aj):= 1 both A0 ∈MustBeBefore(Aj)
and Am ∈MustBeAfter(Aj) hold (and Am 6∈MustBeAfter(A0) is assumed), and
therefore rule /1/ removes Am from the set CanBeBefore(A0) as well as A0 from
the set CanBeAfter(Am), which finishes the proof.

Proposition 2. If implemented properly, the worst-case time complexity of the
propagation rule /1/ including all possible recursive calls is O(n3), where n is
the number of activities.

Proof. If an activity A is made invalid then it is necessary to find all the activities
it is dependent on. This can be done in O(n) if the dependency graph as well
as its transposed graph (where edges are reversed) is represented by adjacency
lists, or if it is represented by an adjacency matrix (one matrix is then sufficient
as it is easy to read out both predecessors and successors of A). Also the removal
of all exclusion pairs that include A can be done in O(n) if the exclusion pairs
are kept in memory as a symmetric n×n binary matrix. The recursive calls that
make other activities invalid thus take O(n) per activity and at most n activities
can be made invalid, so the total time for all the recursive calls is O(n2).

If activity A becomes valid then the detection of dependencies and exclusions
(not counting the recursive calls) can be handled in O(n) as above. The recursive
calls that make activities invalid take O(n) per activity (as proved above), which
gives a total O(n2) for all such activities. The recursive calls that make activities
valid take O(n2) per activity (as will be proved below), which gives a total O(n3)
for all such activities.

In the two nested loops where new arcs may be added to the graph up to
Θ(n2) pairs B,C may be inspected for activity A, so this inspection (deciding
for which pairs B,C an arc should be added) can take up to Θ(n2) for each
activity A. This gives the O(n2) bound used above for each recursive call that
makes an activity valid.

It is important to note, that only O(n2) arcs can be added to the graph
during all recursive calls, so the part of the code inside the two nested loops is
executed O(n2) times over all recursive calls (using this bound individually for
each activity A which is made valid would yield an overall O(n4) time bound).
The part of the code inside the two nested loops (excluding the recursive calls)
takes O(n) time (because of the for loop, all other tests can be performed in O(1)
time). Thus we get a total O(n3) bound for all executions of the code inside the
two nested loops (excluding the recursive calls) and a total O(n2) bound for all
recursive calls that make activities invalid.

In some situations arcs may be added to the precedence graph during the
solving procedure, either by the user, by the scheduler/planner, or by other
filtering algorithms like in [1]. The following rule /2/ updates the precedence
graph to keep transitive closure when an arc is added to the precedence graph.
We can also use the same rule for the initialisation of precedence graph – the
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known arcs are added using this rule rather than added by explicit changes of
sets CanBeBefore and CanBeAfter.

arc (A,B) is added into G --> /2/
if A in MustBeBefore(B) then exit // the arc is already present
CanBeAfter(B):= CanBeAfter(B) \ {A}
CanBeBefore(A):= CanBeBefore(A) \ {B}
if A not in CanBeBefore(B) then // break the cycle

if (A=>B) in Dep then Valid(A):= 0
else if (B=>A) in Dep then Valid(B):= 0

else Ex:= Ex + {{A,B}} // add {A,B} into Ex
for each X s.t. (X=>A) in Dep and (X=>B) in Dep do

Valid(X):= 0
else // transitive closure

for each C in MustBeBefore(A) \ MustBeBefore(B) do
if Valid(A)=1 or (C=>A) in Dep or (B=>A) in Dep then

add arc (C,B) into G
for each C in MustBeAfter(B) \ MustBeAfter(A) do

if Valid(B)=1 or (C=>B) in Dep or (A=>B) in Dep then
add arc (A,C) into G

exit

Rule /2/ does the following. If a new arc A ≺ B is added then we first
check whether the arc is not already present in the graph. If it is a new arc then
the corresponding sets are updated and a possible cycle is detected (we use the
same reasoning as in rule /1/). Finally, if any end point of the arcs is valid, then
necessary arcs are added to update the transitive closure according to Definition
1. Moreover, we can add more arcs using information about dependencies – this
is useful for earlier detection of possible cycles. Assume that arc A ≺ B has been
added. If (B ⇒ A) ∈ Dep then all predecessors of A can be connected to B
like in the case when A is valid. This is sound because if B becomes valid then
A must be valid as well and such arcs will be added anyway and if B becomes
invalid then any arc related to B is irrelevant. For the same reason, if there is
any predecessor C of A such that (C ⇒ A) ∈ Dep then C can be connected to B.
The same reasoning can be applied to successors of B. Note that the propagators
for new arcs are evoked after the propagator of the current rule finishes. The
following proposition shows that all necessary arcs are added by rule /2/.

Proposition 3. If the precedence graph G is transitively closed (in the sense
specified by Definition 1) and arc A ≺ B is added to G then rule /2/ updates the
precedence graph G to be transitively closed again.

Proof. Assume that arc A ≺ B is added into G at a moment when arc B ≺ C
is already present in G. Moreover assume that Valid(A) 6= 0, Valid(B)=1, and
Valid(C) 6= 0. We want to show that A ≺ C is in G after rule /2/ is fired by the
addition of A ≺ B. The presence of arc B ≺ C implies that C ∈MustBeAfter(B)
(and by symmetry also B ∈ MustBeBefore(C)). Now there are two possibilities.
Either C 6∈ MustBeAfter(A) in which case rule /2/ adds the arc A ≺ C into G,
or C ∈ MustBeAfter(A) (and by symmetry also A ∈ MustBeBefore(C)) which
means that arc A ≺ C was already present in G when arc A ≺ B was added.

The case when arc A ≺ B is added into G at a moment when arc C ≺ A is
already present in G and Valid(C) 6= 0, Valid(A)=1, Valid(B) 6= 0 holds can be
handled similarly.
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Thus when an arc is added into G, all paths of length two with a valid
midpoint which include this new arc are either already spanned by a transitive
arc, or the transitive arc is added by rule /2/. In the latter case this may invoke
adding more and more arcs. However, this process is obviously finite (cannot
cycle) as an arc is added into G only if it is not present in G, and no arc is
ever removed from G. More on the time complexity of arc additions follows in
Proposition 4.

Therefore, it is easy to see, that when the process of recursive arc additions
terminates, the graph G is transitively closed. Indeed, for every path of length
two in G with a valid midpoint one of the arcs on the path is added later than
the other, and we have already seen that at a moment of such an addition the
transitive arc is either already in G or is added by rule /2/ in the next step.

Proposition 4. The worst-case time complexity of the propagation rule /2/
(adding a new arc) including all recursive calls to rules /1/ and /2/ is O(n3),
where n is the number of activities.

Proof. Every recursive call to rule /1/ is making some activity invalid, so follow-
ing the arguments from the proof of Proposition 2, we get that the total time
needed to process all such calls is O(n2). The rest of the code, excluding the
recursive calls to itself (to rule /2/), can be executed in O(n) time. To see this
it is enough to realize that each test for dependency or exclusion can be handled
in O(1) time (if the dependency graph and exclusion pairs are stored using a
matrix representation as in the proof of Proposition 2) and therefore each of the
three ”for each” loops can be handled in O(n) time. Because only O(n2) arcs
can be added over all recursive calls the total O(n3) time bound follows.

4 Objective-Based Filtering Rule

As we mentioned in the introduction, a typical objective in problems with op-
tional activities is a maximization of the number of valid activities. In constraint
solvers, an objective function is usually converted into a constraint with a new
variable Obj:

Obj =
∑
A

Valid(A)

where the task is to maximize the value of variable Obj. Then, computing bounds
of the objective function and propagating the bounds to problem variables is
realised as propagation through this constraint. The above constraint can be
realized as it stands, that is, as the sum of variables Valid. In this section, we
will present a filtering rule realizing stronger propagation through this constraint.
Namely, the rule can deduce better bounds for variable Obj and the rule can
also deduce values of some not-yet decided Valid variables.

The proposed filtering rule is based on ideas of constructive disjunction. If
activity A is still undecided, we will explore both alternatives, namely Valid(A)
= 1 and Valid(A) = 0, to find out their influence on variable Obj and vice versa.
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Recall, that variables Valid participate in dependency and exclusion constraints
and these constraints are explicitly available via sets Dep and Ex. We will use
these constraints to estimate bounds of variable Obj. In particular, if activity A
becomes valid (Valid(A)=1) then all undecided activities B such that (A⇒ B) ∈
Dep must also become valid and, similarly, all undecided activities C such that
{A,C} ∈ Ex must become invalid. Symmetrically, if activity A becomes invalid
(Valid(A) = 0) then all undecided activities B such that (B ⇒ A) ∈ Dep must
also become invalid. Using this deduction and taking into account the numbers
of known valid and invalid activities we can estimate bounds for variable Obj.
These computed bounds are then used to define better bounds for Obj and vice
versa, by comparing the computed bounds with the current bounds of Obj, we
can deduce that one of the alternatives is not viable and hence the remaining
alternative is forced (unless, both alternatives are not viable and then a failure
is detected). For example, if the computed lower bound of Obj for Valid(A) = 1
is greater than the current upper bound of Obj then it is not possible to assign
value 1 to Valid(A).

The following filtering rule /3/ realises the above described reasoning. Note,
that the filtering rule is not idempotent, that is, the rule is expected to be called
again if it proposes a change to any Valid variable or a change to Obj variable.
An idempotent version of the rule would be possible but then the rule should
integrate propagation rule /1/ and the code would become more complicated
(while the pruning power would be the same).

bounds of Obj changed or any Valid(X) instantiated --> /3/
NumValid := |{X : Valid(X)=1}|
NumInvalid := |{X : Valid(X)=0}|
MinObj := lb(Obj) // current lower bound of Obj
MaxObj := ub(Obj) // current upper bound of Obj
LB := max( MinObj, NumValid)
UB := min( MaxObj, N - NumInvalid)//N = the number of activities
for each A s.t. Valid(A)={0,1} do

ValidLB := 1 + NumValid +
+ |{C : Valid(C)={0,1} and (A=>C) in Dep }|

ValidUB := N - NumInvalid -
- |{C : Valid(C)={0,1} and {A,C} in Ex }|

InvalidLB := NumValid
InvalidUB := N - 1 - NumInvalid - |{C : (C=>A) in Dep }|
if (ValidLB <= MaxObj) and (ValidUB >= MinObj) then

if (InvalidLB <= MaxObj) and (InvalidUB >= MinObj) then
LB := max( LB, min(ValidLB,InvalidLB) )
UB := min( UB, max(ValidUB,InvalidUB) )

else
Valid(A) := 1
LB := max( LB, ValidLB )
UB := min( UB, ValidUB) )

else if (InvalidLB <= MaxObj) and (InvalidUB >= MinObj) then
Valid(A) := 0
LB := max( LB, InvalidLB )
UB := min( UB, InvalidUB) )

else fail
end for
lb(Obj) := LB
ub(Obj) := UB
if NumValid + NumInvalid = N then exit

It may seem that the filtering power of rule /3/ can be further strengthen
by the following deduction. Irrespectively of assigning 0 or 1 to Valid(A), the
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activities from the set {C : V alid(C) = {0, 1}∧{A,C} ∈ Ex∧ (C ⇒ A) ∈ Dep}
must become invalid and hence their Valid variables can be set to 0. This is
surely true but notice that exclusion {X,Y } is added to set Ex by rules /1/
and /2/ only if neither (X ⇒ Y ) nor (Y ⇒ X) are elements of Dep. If this is
ensured for any exclusion {X,Y } then the above mentioned set will always be
empty and hence the deduction based on this set is useless.

5 Experimental Results

To evaluate the practical applicability of the proposed filtering rules, we did
some preliminary experiments with log-based reconciliation problems and min-
cutset problems. The proposed filtering rules were implemented in SICStus Pro-
log 3.12.3 using the standard interface for the definition of global constraints.
The experiments run under Windows XP Professional on 1.1 GHz Pentium-M
processor with 1280 MB RAM.

5.1 Log-based Reconciliation Problems

Though our original motivation to introduce dependency constraints into a
precedence graph is in scheduling, log-based reconciliation problems fit perfectly
our problem specification where precedence and dependency constraints are com-
bined. We took the problem set from [3] and we compared our approach with
the constraint model proposed in [2]. Unfortunately implementation of the cut-
set global constraint proposed in [3] was not available to us so we have no direct
comparison of runtimes yet. Nevertheless, for two problems, where neither ap-
proach found (proved) an optimal solution, our technique improved significantly
the lower bound of the objective function. Table 2 presents the results for the
CLP model (Original) from [2] and our approach (Precedence). We compare
both the runtime (measured in milliseconds) and the number of backtracks to
find and prove an optimal solution. We used a limit of 50 minutes to cut the
search and we report the best solution found within this time limit (recall that
the task is to maximize the number of valid activities).

We have found most of the problems quite easy; frequently the first found so-
lution was the optimal solution. The runtime of our approach for these problems
is slightly longer than in the original model; this is due to overhead for building
more complex data structures. Nevertheless, the table clearly demonstrates that
our approach requires significantly less backtracks to find the solution so the
filtering power of the proposed propagation rules pays off there. The table also
demonstrates that as soon as the problems are becoming harder, the difference
between our approach and the original model is more significant (see problems
r200v2 and r800v2). For two problems, r800v1 and r1000v2, neither approach
was able to find/prove an optimal solution within the fifty minutes limit. Nev-
ertheless, our propagation rules lead to much better lower bound within a given
time limit. The lower bounds for these problems reported in [3] are 771 for r800v1
and 943 for r1000v2, so we also improved the best lower bounds reported there.
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Table 2. Computation results on log-based reconciliation benchmarks from [3].

Original Precedence

Bench Best Runtime Backtracks Best Runtime Backtracks

r100v1 98 141 16 98 438 1

r100v2 77 250 85 77 125 3

r100v3 95 156 49 95 313 7

r100v4 100 31 1 100 360 1

r100v5 52 16 3 52 62 5

r200v1 65 63 13 65 78 5

r200v2 191 74657 8015 191 3313 42

r500v1 198 219 3 198 407 5

r500v2 498 1265 32 498 2547 2

r800v1 770 - - 780 - -

r800v2 318 3828 327 318 984 10

r1000v1 389 672 3 389 1266 5

r1000v2 935 - - 957 - -

To support the above claim that our approach is prevailing over the original
model for harder problems, we did a second set of experiments using pseudo-
real log-based reconciliation problems proposed in [5]. These problems have a
structure typical for real-life problems so the results are more interesting from
the practical point than using completely random problems. Table 3 shows the
specification of problems used in our experiment – this specification is identical
to problems used in [5], though we generated own problems because the problems
from [5] were not available. The table also shows the best solutions obtained in
our experiments.

Table 3. Pseudo-real log-based reconciliation problems.

Bench Activities Precedences Dependencies Original best Precedence best

p50-3 150 162 175 146 146

p50-4 200 229 211 193 193

p50-5 250 290 346 244 244

p50-6 300 375 377 288 290

p50-7 350 451 468 333 333

p50-8 400 527 593 376 378

p50-9 450 630 680 404 406

We again compared the CLP model proposed in [2] with our filtering rules.
We used the time limit of four hours (14 400 000 milliseconds) to cut search,
Table 3 reports the best solution found within this time limit. Starting with
p50-6, the original model was not able to find/prove the optimal solution within
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the time limit while our technique found and proved optimal solutions for all the
problems. Figure 2 shows the comparison of runtimes and the number of back-
tracks for both approaches (we use a logarithmic scale). Our approach requires
more than an order of magnitude less backtracks to find the solution and it also
requires much less time.

1000

10000

100000

1000000

10000000

100000000

100 200 300 400 500

Number of activities

R
un

tim
e 

(m
s)

Original
Precedence

10

100

1000

10000

100000

1000000

100 200 300 400 500

Number of activities

B
ac

kt
ra

ck
s

Original
Precedence

 

Fig. 2. Computation results on pseudo-real log-based reconciliation problems

5.2 Min-Cutset Problems

We believe that using a precedence graph is better than using absolute posi-
tioning in a sequence for modelling problems with precedence relations. Though
our approach is proposed for problems with both precedence and dependency
constraints, we decided to demonstrate superiority of the precedence graph over
absolute positioning on a well known min-cutset problem. The min-cutset prob-
lem consists of precedence relations only and the task is to find the largest set of
vertices such that the sub-graph induced by these vertices does not contain any
cycle (or equivalently to find the smallest set of vertices such that all cycles are
broken if these vertices are removed from the graph). This problem is known to
be NP-hard [4].

We use the data set from [10] to compare our approach based on the prece-
dence graph with the CLP model from [2] based on absolute positioning in the
sequence of activities. All the problems in the data set consist of 50 activities
while the number of precedence constraints varies. Table 4 shows the specifica-
tion of problems used in our experiment and the best solutions obtained. Note
that the solutions obtained by our approach (Precedence) are optimal.

Figure 3 shows the comparison of runtimes and the number of backtracks
for both approaches (we use a logarithmic scale). Again our approach requires
more than an order of magnitude less backtracks and less runtime to find and
prove the optimal solution. In fact, with the exception of problems with 50 and
100 precedence constraints, the original CLP model was not able to find the
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Table 4. Min-cutset problems.

Bench Activities Precedences Original best Precedence best

P50-100 50 100 47 47

P50-150 50 150 41 41

P50-200 50 200 35 37

P50-250 50 250 31 33

P50-300 50 300 28 31

P50-500 50 500 21 22

P50-600 50 600 17 19

P50-700 50 700 16 17

P50-800 50 800 16 16

P50-900 50 900 14 14

optimal solution (or to prove optimality) within the time limit of 50 minutes.
Note finally, that concerning the runtime we cannot compete with the GRASP
heuristic proposed in [10], but this was not our original ambition as we tackle
different problems. Moreover, opposite to the GRASP approach our technique
is complete and, indeed, for some problems we have found better solutions than
reported in [10].
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Fig. 3. Computation results on min-cutset problems

6 Conclusions

In the paper we proposed new incremental filtering rules for precedence and de-
pendency constraints. These rules were based on maintaining a transitive closure
of the precedence graph with optional activities. Opposite to existing approaches,
we proposed to use information about dependency constraints within the filter-
ing rules for the precedence constraints rather than propagating dependencies
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separately. We also proposed a filtering rule that uses information about the re-
quested number of valid activities in the precedence graph. This rule belongs to
the developing area of cost-based filtering. We experimentally demonstrated that
our approach is prevailing over the existing model of precedence and dependency
constraints on log-based reconciliation problems and min-cutset problems.

Though we focused on a particular form of dependencies, we believe that our
approach is extendable to other dependency constraints, for example, those in
[9] where existence of some activity forces removal of another activity. Moreover,
with the exception of cost-based filtering, our model can be extended to open
precedence graphs where the number of activities is not known in advance.
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Abstract. We study the Slide meta-constraint. This slides a constraint
down one or more sequences of variables. We show that Slide can be
used to encode and propagate a wide range of global constraints. We
consider a number of extensions including sliding down sequences of set
variables, and combining Slide with a global cardinality constraint. We
also show how to propagate Slide. Our experiments demonstrate that
using Slide to encode constraints can be just as efficient and effective
as using specialized propagators.

1 Introduction

In scheduling, rostering and related problems, we often have a sequence of deci-
sion variables and a constraint which applies down the sequence. For example,
in the car sequencing problem (prob001 in CSPLib), we need to decide the se-
quence of cars on the production line. We might have a constraint on how often
a particular option is met along each sequence (e.g. only 1 out of 3 cars can
have the sun-roof option). As a second example, in a nurse rostering problems,
we need to decide the sequence of shifts worked by each nurse. We might have a
constraint on how many consecutive night shifts any nurse can work. To model
such problems, we consider a meta-constraint, Slide which ensures that a con-
straint repeatedly holds down a sequence of variables. This is a special case of the
previously introduced CardPath constraint [1]. Although Slide is very simple,
we demonstrate that it is surprisingly powerful. In addition, we describe meth-
ods to propagate such constraints, which unlike the previous methods proposed
for CardPath, can prune all possible values.

The rest of the paper is organised as follows. After presenting the necessary
formal background, we introduce the simplest form of the Slide meta-constraint.
In later sections, we consider a number of generalizations and give examples
of global constraints that can be encoded using these various forms of Slide.
These encodings therefore provide a simple and easy way to implement these
global constraints. In most cases, propagating our encoding is as efficient and as
effective as a specialized propagator.
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2 Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for some subset of variables. We use capital letters for variables (e.g. X, Y
and S), and lower case for values (e.g. d and di). We consider both finite domain
and set variables. A set variable can be represented by its lower bound which
contains the definite elements in the set and an upper bound which contains
the definite and potential elements. Constraint solvers typically explore partial
assignments enforcing a local consistency property. A constraint is generalized
arc consistent (GAC ) iff when a variable is assigned any of the values in its
domain, there exist compatible values in the domains of all the other variables.
For binary constraints, generalized arc consistency is often called simply arc
consistency (AC).

3 Slide constraint

We start with the simplest form of the Slide meta-constraint. If C is a constraint
of arity k then we consider the meta-constraint:

Slide(C, [X1, . . . , Xn])

This holds iff C(Xi, . . . , Xi+k−1) itself holds for 1 ≤ i ≤ n−k+1. That is, we slide
the constraint C down the sequence of variables, X1 to Xn. This simple form of
Slide is a special case of the CardPath(N, [X1, . . . , Xn], C) meta-constraint,
which holds iff C holds N times on the sequence [X1, . . . , Xn] [1]. As we shall
see, its simple structure will permit us to enforce GAC. Also, we will consider
more complex forms of Slide that, for instance, slide over multiple sequences or
over set variables.

We illustrate this simple form of Slide with an example of a global con-
straint used in car sequencing problems. In Section 11, we discuss how to propa-
gate such encodings into Slide. The AmongSeq constraint ensures that values
occur with some given frequency. For instance, we might want that no more
than 3 out of every sequence of 7 shift variables be a “night shift”. More pre-
cisely, AmongSeq(l, u, k, [X1, . . . , Xn], v) holds iff between l and u values from
the ground set v occur in every k sequence of variables [2]. We can decom-
pose this using a Slide; AmongSeq(l, u, k, [X1, . . . , Xn], v) can be encoded as
Slide(Dk,v

l,u , [X1, . . . , Xn]) where Dk,v
l,u is an instance of the Among constraint

[2]. That is, Dk,v
l,u (Xi, . . . , Xi+k−1) holds iff l ≤

∑i+k−1
j=i (Xj ∈ v) ≤ u.

For example, suppose 2 of every 3 variables along a sequence X1 . . . X5 should
take the value a, where X1 = a and X2, . . . , X5 ∈ {a, b}. Then we can encode this
as Slide(E, [X1, X2, X3, X4, X5]) where E(Xi, Xi+1, Xi+2) is an instance of the
Among constraint that ensures two of its three variables take a. This Slide

constraint ensures that the following three constraints hold: E(X1, X2, X3),
E(X2, X3, X4) and E(X3, X4, X5). Note that each ternary constraint is GAC.
However, enforcing GAC on the Slide constraint will set X4 = a as there are
only two satisfying assignments for X1 to X5 and neither of them have X4 = b.
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4 Slide over multiple sequences

We often wish to slide a constraint down two or more sequences of variables at
once. We therefore consider a more complex form of Slide. If F is a constraint
of arity 2k then:

Slide(F, [X1, . . . , Xn], [Y1, . . . , Yn])

holds iff F (Xi, . . . , Xi+k−1, Yi, . . . , Yi+k−1) itself holds for 1 ≤ i ≤ n − k + 1.
We can slide down three or more sequences of variables in a similar way. Note
we could view these as syntactic sugar for a Slide down a single sequence of vari-
ables where the different sequences are interleaved (e.g., [X1, Y1, X2 . . . , Yn−1, Xn,
Yn]) , and the constraint is loosened so it trivially holds if it is applied with the
wrong offset. This loosening is direct if all Xi and Yi have distinct domains (the
constraint is satisfied for all tuples starting by a value from Yi). Otherwise an
extra sequence of marking variables Si with a dummy value can be added, and
the constraint sliding on [S1, X1, Y1, S2, . . . , Yn] enforces E on the Xi and the Yi
only when its first argument takes the dummy value.

As an example of sliding down multiple sequences of variables, consider the
constraint Regular(A, [X1, . . . , Xn]). This ensures that the values taken by a
sequence of variables form a string accepted by a deterministic finite automaton
[14]. This global constraint is useful in scheduling, rostering and sequencing
problems to ensure certain patterns do (or do not) occur over time. It can be
used to encode a wide range of other global constraints including: Among [2],
Contiguity [13], Lex and Precedence [12].

To encode the Regular constraint with Slide, we introduce finite domain
variables, Qi to record the state of the automaton. We then post the constraint
Slide(F, [X1, . . . , Xn+1], [Q1, . . . , Qn+1]) where Xn+1 is a “dummy” variable,Q1

is assigned to the starting state of the automaton, Qn+1 is restricted to any of the
accepting states, and F (Xi, Xi+1, Qi, Qi+1) holds iff Qi+1 = δ(Xi, Qi) where δ is
the transition function of the finite automaton. Note that F is independent of its
second argument so is effectively ternary. Since the automaton is deterministic,
F is also functional on Xi and Qi. Enforcing GAC on this encoding takes O(ndQ)
time where d is the number of values for the Xi and Q is the number of states
of the automaton. This is identical to the specialized propagator for Regular

proposed in [14].
One advantage of our encoding of the Regular constraint it that it gives us

explicit access to the states of the automaton. Consider, for example, a rostering
problem where workers are allowed to work for up to three consecutive shifts
and then must take a break. This can be specified with a simple Regular

language constraint. Suppose now we want to minimize the number of times a
worker has to work for three consecutive shifts. To model this, we can post an
Among constraint on the state variables to count the number of times we visit
the state representing three consecutive shifts, and minimize the value taken by
this variable.
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5 Slide with counters

We often wish to slide a constraint down one or more sequences of variables
computing some count. We can use Slide to encode such constraints by in-
crementally computing the count in an additional sequence of variables. As an
example, consider the meta-constraint CardPath(C, [X1, . . . , Xn], N) where C
is any constraint of arity k [1]. This holds iff C(Xi, . . . , Xi+k−1) holds N times
down the sequence of variables. As we observed earlier, Slide is a special case
of CardPath where N = n− k+ 1. However, as we show here, CardPath can
itself be encoded into a Slide constraint using a sequence of counters.

The CardPath constraint is useful in rostering problems. For example, we
can count the number of changes in the type of shift given to a single worker using
CardPath(6=, [X1, . . . , Xn], N). CardPath can also be used to model a range
of Boolean connectives since N ≥ 1 gives disjunction, N = 1 gives exclusive
or, and N = 0 gives negation. For notational simplicity, we will consider the
case when k = 2 and C is a binary constraint. The generalization to other k
is straightforward. We introduce a sequence of integer variables Mi in which to
accumulate the count. More precisely we decompose a CardPath constraint
on a binary constraint C into Slide(G, [X1, . . . , Xn+1], [M1, . . . ,Mn+1]) where
Xn+1 is a “dummy” variable, M1 = 0, Mn+1 = N , and G(Xi, Xi+1,Mi,Mi+1)
holds iff C(Xi, Xi+1) implies Mi+1 = Mi + 1 else Mi+1 = Mi.

6 Slide over sets

In some cases, we want to slide a constraint down one or more sequences of
set variables. We therefore consider Slide meta-constraints which involve set
variables. We give an example useful for breaking symmetry in problems like the
social golfer’s problem (prob010 in CSPLib).

Law and Lee have introduced the idea of value precedence for breaking the
symmetry of indistinguishable values [12]. They proposed a global constraint
to deal with set variables containing indistinguishable values. More precisely,
Precedence([v1, . . . , vm], [S1, . . . , Sn]) holds iff min{i | (vj ∈ Si∧vk 6∈ Si)∨ i =
n + 1} ≤ min{i | (vk ∈ Si ∧ vj 6∈ Si) ∨ i = n + 2} for all 1 ≤ j < k ≤ m, where
[v1, . . . , vm] are the indistinguishable values. That is, the first time we distinguish
vj and vk (because both don’t occur in a given set variable), we have vj occurring
and not vk. For example, the following sequence of sets satisfies value precedence:
{1, 2, 3}, {4, 5, 6}, {1, 4, 5}. The first two sets distinguish apart 1, 2, and 3 from
4, 5 and 6, whilst the third set distinguishes apart 1 from 2 and 3, and 4 and 5
from 6. However, this next sequence of sets does not satisfy value precedence as
we distinguish apart 3 before 2: {1, 2, 3}, {1, 3, 4}.

We can encode such a symmetry breaking constraint using a Slide. For
simplicity, we consider just two indistinguishable values, vj and vk. However,
we can deal with multiple values using Slide but it is notationally more messy.
We introduce 0/1 variables, Bi to record whether the two values have been
distinguished apart so far. We then post Slide(H, [S1, . . . , Sn+1], [B1, . . . , Bn+1])
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where Sn+1 is a “dummy” set variable, B1 = 0 and H(Si, Si+1, Bi, Bi+1) holds
iff Bi = Bi+1 = 1, or Bi = Bi+1 = 0 and vj ∈ Si and vk ∈ Si, or Bi = Bi+1 = 0
and vj 6∈ Si and vk 6∈ Si, or Bi = 0 and Bi+1 = 1 and vj ∈ Si and vk 6∈ Si. Note
that H is again independent of its second argument.

7 Other examples of Slide

There are many other examples of global constraints which can be encoded
using Slide. For example, we can encode the lexicographical ordering con-
straint Lex using Slide. Lex holds iff a vector of variables [X1..Xn] is lexi-
cographically smaller than a vector [Y1..Yn]. We introduce a sequence of n + 1
Boolean variables Bi to indicate if the vectors have been ordered yet at posi-
tion i (B0 is set to 0). We slide the constraint U(Xi, Yi, Bi−1, Bi) which holds
iff (Bi−1 = Bi = 0 ∧ Xi = Yi) or (Bi−1 = 0 ∧ Bi = 1 ∧ Xi < Yi) or
(Bi−1 = Bi = 1). This gives us a linear time propagator as efficient and incre-
mental as the specialized algorithm in [8]. As a second example, we can encode
many types of channeling constraints using Slide like the Domain constraint
[15], the LinkSet2Booleans constraint [4] and the Element constraint [10].
As a final example, we can encode “optimization” constraints like the soft form
of the Regular constraint which measures the Hamming or edit distance to a
regular string [19].

There are, however, global constraints that can be encoded using Slide which
do not give us as efficient and effective propagators as specialized algorithms. As
an example, the AllDifferent constraint can easily be specified using Slide

(we just need a Slide which accumulates in a sequence of set variables the values
used so far and ensure the final set variable has cardinality n). However, this is
not as effective as a specialized flow-based propagator [17]. There are also global
constraints like the inter-distance constraint [18] which Slide provides neither
a good propagator nor it seems even a simple encoding.

8 Slide with Gcc

We often have a constraint on the values which should occur across the whole
sequence. For example, in car sequencing problems, to ensure we build the cor-
rect orders, we have a constraint on the total number of occurrences of each
value along the sequence. The global sequencing constraint (Gsc) [16] augments
an AmongSeq constraint with a global cardinality constraint (Gcc) on the total
number of occurrence of different values. More precisely, Gsc([X1, . . . , Xn], a, b, q,
v, [l1, . . . , lm], [u1, . . . , um]) is satisfied iff for each i ∈ [1..m], li ≤ |{j | Xj = i}| ≤
ui (that is, the value i occurs between li and ui times in total), and for each
k ∈ [1..n], a ≤ |{j | Xj ∈ v & k ≤ j ≤ k + q − 1}| ≤ b (that is, values in v occur
between a and b times in each sequence of q consecutive variables). In [16], an
algorithm that partially propagates Gsc is proposed. Another way to propagate
Gsc is to decompose it into a separate Slide and Gcc. Enforcing GAC on such
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a decomposition hinders propagation and is incomparable to the pruning of the
algorithm in [16].

We prove here that adding cardinality constraints to a Slide makes prop-
agation intractable. In fact, we shall prove that enforcing GAC on the Gsc

constraint is intractable. As Gsc can easily be encoded into a Slide and a
Gcc, the result follows immediately. This also settles the open question of the
complexity of propagating Gsc.

Theorem 1 Enforcing GAC on Gsc is NP-hard.

Proof: We reduce the 1in3-SAT problem on positive clauses to finding support
for a particular Gsc. Consider a 1in3-SAT problem inN variables andM positive
clauses in which the Boolean variables are numbered from 1 to N . We let n =
2NM . The basic idea of the reduction is that each consecutive block of 2N
CSP variables represents a given truth assignment. The even numbered CSP
variables will represent the truth assignment. The odd numbered CSP variables
will essentially be “junk” and serve only to ensure we have exactly N non-zero
values in each 2N block. That is, X2jN+2i will be non-zero iff the ith Boolean
variable is true in the given truth assignment. To achieve this, we set a = b = N ,
q = 2N and v = {1, . . . ,M + 1}. Each 2N block thus contains the same pattern
of N zeroes and N non-zeroes.

The jth block of 2N CSP variables will ensure that the jth clause is satisfied
by the truth assignment. That is, just one of its positive literals is true. Suppose
the jth clause is r ∨ s ∨ t. Then we let X2jN+2r, X2jN+2s and X2jN+2t have
the domain {0, j + 1}. All other CSP variables in the block have 0/1 domains.
We set lj+1 = uj+1 = 1 to ensure only one of X2jN+2r, X2jN+2s and X2jN+2t

is set to j + 1. Finally, we let l0 = u0 = NM , and l1 = u1 = NM −M . An
assignment for Xi then corresponds to a satisfying assignment for the original
1in3-SAT problem. Deciding if the Gsc has support is thus NP-hard. 2

The proof can be generalized to show that enforcing bounds consistency on
such a constraint is NP-hard, as well as to the case where ui = 1 (in other words,
when we have an AmongSeq with an AllDifferent constraint).

9 Circular Slide

Another generalization of Slide is when we wish to ensure that a constraint
applies at any point round a cycle of variables. Such a meta-constraint is useful
in scheduling and rostering problems where we need to ensure the schedule can
be repeated, say, every two weeks. If C is a constraint of arity k then we consider
the meta-constraint:

SlideO(C, [X1, . . . , Xn])

This holds iff C(Xi, . . . , X1+(i+k−1modn)) itself holds for 1 ≤ i ≤ n.
As an example, we encode the circular form of the Stretch constraint [9].

First, let us consider the non-cyclic Stretch constraint. In a Stretch con-
straint, we are given a sequence of shift variables X1 to Xn, each having domain
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a set of shift types τ , a set π ⊂ τ × τ of ordered pairs (called patterns), and
the function shortest(t) (resp. longest(t)) denoting the minimum (resp. maxi-
mum) length of any stretch of type t. Stretch([X1, . . . , Xn]) holds iff (1) each
stretch (i.e., a sequence of variables having the same type) of type t is feasi-
ble, i.e., each stretch has length between shortest(t) and longest(t); and (2)
each pair of consecutive types of stretches is in π. We can encode Stretch as
Slide(C, [X1, . . . , Xn], [Q1, . . . , Qn]) where Q1 = 1 and C[Xi, Xi+1, Qi, Qi+1)
holds iff (1) Xi = Xi+1, Qi+1 = 1 + Qi, and Qi+1 ≤ longest(Xi); or (2)
Xi 6= Xi+1, 〈Xi, Xi+1〉 ∈ π, Qi ≥ shortest(Xi) and Qi+1 = 1. Circular Stretch

is simply SlideO(C, [X1, . . . , Xn], [Q1, . . . , Qn]) in which we do not force Q1 = 1.

10 A Slide algebra

When we negate a Slide, we get a disjunctive sequence of constraints. We there-
fore propose the SlideOr meta-constraint. More precisely, if C is a constraint
of arity k then:

SlideOr(C, [X1, . . . , Xn])

holds iff one or more of C(Xi, . . . , Xi+k−1) holds. We can also slide down multi-
ple sequences simultaneously as with Slide. SlideOr can itself be encoded using
Slide since SlideOr(C, [X1, . . . , Xn]) is equivalent to CardPath(C, [X1, . . . , Xn], N)
where 1 ≤ N ≤ n, and CardPath can itself be encoded into Slide. One appli-
cation of the SlideOr meta-constraint is to encode the global not all equals
constraint, NotAllEqual([X1, . . . , Xn]). This holds iff Xi 6= Xj for some
1 < j ≤ n.

In fact, we can build up more complex sliding constraints using Boolean
operators. We can simplify such complex constraint expressions by exploiting
associativity, commutativity and De Morgan’s identities. For example:

¬Slide(C1, [X1, ., Xn])↔ SlideOr(¬C1, [X1, ., Xn])
¬SlideOr(C1, [X1, ., Xn])↔ Slide(¬C1, [X1, ., Xn])

Slide(C1, [X1, ., Xn])∧
∧Slide(C2, [X1, ., Xn])↔ Slide(C1 ∧ C2, [X1, ., Xn])

11 Propagating Slide

A meta-constraint like Slide is only really useful if we can propagate it easily.
The simplest possible way to propagate Slide(C, [X1, . . . , Xn]) is to decompose
it into the sequence of constraints, C(Xi, . . . , Xi+k−1) for 1 ≤ i ≤ n−k+1 and let
the constraint solver propagate the decomposition. Surprisingly, this is enough
to achieve GAC in many cases. For example, we can achieve GAC this way using
our Slide encoding of the Regular constraint. In such a case, propagating the
decomposition is also an efficient means to achieve GAC. Only those constraints
in the decomposition which have variables whose domains change need wake up.
It thus provides an efficient incremental propagator for Slide.
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Theorem 2 Enforcing GAC on the decomposition of Slide achieves GAC on
Slide if the slid constraints overlap on just one variable.

Proof: The constraint graph of the decomposition is Berge-acyclic [7]. 2

Similarly, enforcing GAC on the decomposition achieves GAC on Slide if
the constraints being slid are monotone. A constraint C is monotone iff there
exists a total ordering ≺ of the domain values such that for any two values v, w,
if v ≺ w then v is substitutable to w in any support for C. For instance, the
constraints Among and Sum are monotone if either no upper bound, or no lower
bound is given.

Theorem 3 Enforcing GAC on the decomposition of Slide achieves GAC on
Slide if the slid constraints are monotone.

Proof: For an arbitrary value v ∈ D(X), we show that if every constraint is
GAC, then we can build a support for (X, v) on Slide. For any variable other
than X, we choose the first value in the total order, that is, the value which can
be substituted to any other value in the same domain. The tuple built this way
satisfies all the constraints being slid since we know that there exists a support
for each (they are GAC), and the values we chose can be substituted to this
support. 2

On the other hand, in the general case, if constraints overlap on more than
one variable (e.g. in the Slide encoding of AmongSeq). we need to do more
work to achieve GAC. For reasons of space, we only have room here to outline
how to propagate Slide in these circumstances. We consider two cases. If the
arity of the constraint being slid is fixed, then we show that propagation is
polynomial. On the other hand, if the arity of the constraint is not fixed, then
propagation is intractable even if the constraint being slid is itself polynomial to
propagate. In other words, enforcing GAC on Slide is fixed parameter tractable.

When the arity of the constraint being slid is fixed, we can use dynamic
programming to compute support along the Slide. This is similar to the propa-
gators for the Regular and Stretch constraints [14, 9]. Alternatively, we can
use a dual encoding [7]. We sketch how such a dual encoding works. We introduce
dual variables to contain the supports for each constraint in the decomposition
of the Slide. Between consecutive dual variables, we have binary compatability
constraints to ensure the supports agree on overlapping dual variables. As the
constraint graph of the dual variables is Berge-acyclic, enforcing AC on these
dual variables, achieves GAC on the original Slide constraint. Using such a
dual encoding, Slide can be easily added to any constraint solver. In general,
enforcing GAC on a Slide constraint takes in O(ndk+1) time and O(ndk) space
where k is the overlap between successive constraints in the decomposition of
Slide and d is the maximum domain size.

When the arity of the constraint being slid is not fixed, enforcing GAC is
NP-hard.

Theorem 4 Enforcing GAC on Slide(C, [X1, . . . , Xn]) is NP-hard when the
arity of C is not fixed even if enforcing GAC on C is itself polynomial.
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Proof: A simple reduction from 3-SAT in N variables and M clauses. We let
n = (N + 1)M . Each block of N + 1 variables represents a clause and a truth
assignment. We will have Xj(N+1)+i+1 = 1 iff the Boolean variable xi is true
(1 ≤ i ≤ N). If the k+ 1th clause is xa ∨¬xb ∨xc then Xk(N+1) ∈ {xa,¬xb, xc}.
Finally C(Xi, . . . , Xi+N+1) holds iff Xi 6∈ {0, 1} and Xi+N+1 = Xi, or Xi =
xd and Xi+d = 1, or Xi = ¬xd and Xi+d = 0. An assignment for Xi then
corresponds to a satisfying assignment for the original 3-SAT problem. 2

12 Experiments

We wish to show that encoding problems using the Slide meta constraint can
be just as efficient and effective as using specialized propagators. Experiments
are done using ILOG Solver 5.3.

12.1 Balanced Incomplete Block Design Generation

Balanced Incomplete Block Design (BIBD) generation is a standard combinato-
rial problem from design theory with applications in cryptography and experi-
mental design. A BIBD is specified by a binary matrix of b columns and v rows,
with exactly r ones per row, k ones per column, and a scalar product of λ be-
tween any pair of distinct rows. Our model consists of sum constraints on each
row and each column as well as the scalar product constraint between every pair
of rows. Any pair of rows and any pair of columns of a solution can be exchanged
to obtain another symmetrical solution. We therefore impose lexicographic or-
dering constraints on rows and columns and look for a solution, following the
details in [11]. We propagate the Lex constraints either using the specialised
algorithm GACLex given in [8] or the Slide encoding described in Section 7.

Table 1 shows the results on some large instances described as v, b, r, k, λ.
As both propagators maintain GAC, we report the runtime results. We observe
that the Slide encoding of Lex is as efficient (and sometimes even slightly more
efficient than) the specialised algorithm.

12.2 Nurses Scheduling Problem

We consider a variant of the Nurse Scheduling Problem [6] that consists of gen-
erating a schedule for each nurse of shifts duties and days off within a short-term
planning period. There are three types of shifts (day, evening, and night). We
ensure that (1) each nurse should take a day off or be assigned to an available
shift; (2) each shift has a minimum required number of nurses; (3) each nurse
work load should be between specific lower and upper bounds; (4) each nurse
can work at most 5 consecutive days; (5) each nurse must have at least 12 hours
of break between two shifts; (6) each nurse should have at least two consecutive
days on any shift. We wrote two models to solve this problem. In both models,
we introduce one variable for each nurse and each day, indicating to what type
of shift, if any, this nurse is affected on this day. The constraints (1)-(3) are
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GACLex algorithm Slide encoding
Instance time (s) time (s)

7,91,39,3,13 0.59 0.55
9,72,24,3,6 0.57 0.53
9,96,32,3,8 2.20 2.16
9,108,36,3,9 2.13 2.11
10,90,27,3,6 1.26 1.28
10,120,36,3,8 3.38 3.50
11,110,30,3,6 2.55 2.65
12,88,22,3,4 1.28 1.25
13,78,18,3,3 0.98 1.00
13,104,24,3,4 2.15 2.13
15,21,7,5,2 26.78 26.60
15,70,14,3,2 0.97 0.91
16,32,12,6,4 452.25 450.96
16,80,15,3,2 1.49 1.39
19,57,9,3,1 2.70 2.63
22,22,7,7,2 73.97 71.81

Table 1. BIBD generation.

Slide encoding No Slide encoding
Instance time (s) backtracks time (s) backtracks

10×14 82.32 271,348 133.44 776,019
12×14 4.52 13,484 11.57 58,709
14×14 0.37 1,356 0.29 1,877
10×16 0.83 4,116 1.35 10,017

Table 2. Nurse Schedule generation.

enforced using a set of global cardinality constraints. Constraints (4), (5) and
(6) form sequences of respectively 6-ary, binary and ternary constraints. Notice
that (4) is monotone, hence we simply posted these constraints in both models.
However, the conjunction of constraints (4) and (5) is slid in the first model
whilst it is decomposed in the second.

To test the two models, we generated by hand four instances respecting
common sense criteria, such as lower demand during evening and night shifts. We
observe that in the four instances the slide model outperforms the other model in
terms either of backtracks or both cpu time and backtracks. It manages to solve
the four instances in less time (cpu time ratio of 1.37 in average) and with fewer
backtracks (backtrack ratio of 2.75 in average). This shows the effectiveness of
Slide both as a modelling construct and as well as a specialised propagator.
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13 Related work

Beldiceanu and Carlsson introduced the CardPath meta-constraint [1]. They
showed that it can be used to encode a wide range of constraints like Change,
Smooth, AmongSeq and SlidingSum. They provided a propagator for CardPath

that greedily constructs upper and lower bounds on the number of (un)satisfied
constraints by posting and retracting (the negation of) each of the constraints.
This propagator does not achieve GAC.

Pesant introduced the Regular constraint, and gave a propagation algo-
rithm based on dynamic programming that enforces GAC [14]. As we saw, the
Regular constraint can be encoded using a simple Slide. There are, how-
ever, a number of important differences between the two. First, Regular only
slides a ternary constraint down a sequence of variables. Slide, however, can
slide a constraint of any arity. This permits us to deal with constraints like
AmongSeq. Second, Pesant proposed a specialized propagator for Regular

based on dynamic programming. This is unnecessary as we can achieve GAC by
simply decomposing the Slide constraint into a sequence of ternary constraints.
Third, as we described earlier, our encoding introduces variables for representing
the states and access to these state variables can be useful (e.g. for expressing
objective functions).

Beldiceanu, Carlsson and Petit have also proposed specifying global con-
straints by means of deterministic finite automata augmented with counters [3].
Propagators for such automata are constructed automatically by decomposing
the specification into a sequence of signature and transition constraints. If the
automaton uses counters, this decomposition hinders propagation so pairwise
consistency is needed in general to guarantee GAC. We can encode such au-
tomata using a Slide where we introduce an additional sequence of variables for
each counter. Our methods thus provide a GAC propagator for such automata.

Hellsten, Pesant and van Beek proposed a propagator for the Stretch con-
straint that achieves GAC based on dynamic programming similar to that for
the Regular constraint [9]. We can again encode the Stretch constraint using
a simple Slide.

14 Conclusions

We have studied the Slide meta-constraint. This slides a constraint down one
or more sequences of variables. We have shown that Slide can be used to en-
code and propagate a wide range of global constraints including AmongSeq,
CardPath, Precedence, and Regular. We have also considered a number
of extensions including sliding down sequences of set variables, and combining
Slide with a global cardinality constraint. When the constraint being slid over-
lap on just one variable, we argued that decomposition does not hinder propaga-
tion and Slide can be propagated simply by posting the sequence of constraints.
Our experiments demonstrated that using Slide to encode constraints can be
just as efficient and effective as specialized propagators. There are many direc-
tions for future work. One promising direction is to use binary decision diagrams
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to store the supports for the constraints being slid when they have many satis-
fying tuples. We believe this could improve the efficiency of our propagator in
many cases.
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Abstract. In an Arc Consistency (AC) algorithm, a residual support, or residue,
is a support that has been stored during a previous execution of the procedure
which determines if a value is supported by a constraint. The point is that a
residue is not guaranteed to represent a lower bound of the smallest current
support of a value. In this paper, we study the theoretical impact of exploiting
residues with respect to the basic algorithm AC3. First, we prove that AC3r (AC3
with uni-directional residues) and AC3rm (AC3 with multi-directional residues)
are optimal for low and high constraint tightness. Second, we show that when
AC has to be maintained during a backtracking search (the well-known MAC
algorithm), MAC2001 presents, with respect to MAC3r and MAC3rm, an over-
head in O(µed) per branch of the binary tree built by MAC, whereµ denotes
the number of refutations of the branch,e the number of constraints andd the
greatest domain size of the constraint network. One consequence is that, MAC3r
and MAC3rm admit a better worst-case time complexity than MAC2001 for a
branch involvingµ refutations when eitherµ > d2 or µ > d and the tightness
of any constraint is either low or high. Our experimental results clearly show that
exploiting residues allows enhancing MAC and SAC algorithms.

1 Introduction

It is well-known that Arc Consistency (AC) plays a central role in solving instances
of the Constraint Satisfaction Problem (CSP). Indeed, the MAC algorithm [17], i.e.,
the algorithm which maintains arc consistency during the search of a solution, is still
considered as the most efficient generic approach to cope with large and hard problem
instances. Furthermore, AC is at the heart of a stronger consistency called Singleton
Arc Consistency (SAC) which has recently attracted a lot of attention (e.g., [2, 9]).

For more that two decades, many algorithms have been proposed to establish arc
consistency. Today, the most referenced algorithms are AC3 [13] because of its simplic-
ity and AC2001/3.1 [3] because of its optimality (while being not too complex). The
worst-case time complexities of AC3 and AC2001 are respectively O(ed3) and O(ed2)
wheree denotes the number of constraints andd the greatest domain size. The inter-
est of an optimal algorithm such as AC2001 resides in its robustness. It means that, on
some instances, AC2001 can largely be faster than an algorithm such as AC3 whereas
the reverse is not true. This situation occurs when the tightness of the constraints is
high, as it is the case for the equality constraint (i.e. constraint of the formX = Y ).
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Indeed, as naturally expected and demonstrated later, AC3 admits then a practical be-
haviour which is close to the worst-case, and the difference by a factord between the
two theoretical worst-case complexities becomes a reality.

In this paper, we are interested in residues for AC algorithms. A residue is a support
that has been stored during a previous execution of the procedure which determines if
a value is supported by a constraint. The point is that a residue is not guaranteed to
represent a lower bound of the smallest current support of a value. The basic algorithm
AC3 can be refined by exploiting residues as follows: before searching a support for a
value from scratch, the validity of the residue associated with this value is checked. We
then obtain an algorithm denoted AC3r, and when multi-directionality is exploited, an
algorithm denoted AC3rm.

In fact, AC3r is an algorithm which can be advantageously replaced by AC2001
when AC must be established stand-alone on a given constraint network. However,
when AC has to be maintained during search, MAC3r which corresponds to mac3.1-
residue [11] becomes quite competitive. On the other hand, AC3rm is interesting of
its own as it exploitsmulti-directionalresidues just like AC3.2 [8]. But, let us see the
interest of exploiting residues.

First, we prove in this paper that AC3r and AC3rm, contrary to AC3, admits an op-
timal behaviour when the tightness of the constraints is high. To illustrate this, let us
consider the Domino problem introduced in [3]. All but one constraints of this prob-
lem correspond to equality constraints. The results that we obtain when running AC3,
AC2001, AC3.2 and the new algorithm AC3rm on some instances of this problem are
depicted in Table 1. We do not consider AC3r as it is always outperformed by AC2001
(even if, on these very special instances, they have the same behaviour). The time in
seconds (cpu) and the number of constraint checks (ccks) is given for each instance of
the formdomino-n-d wheren corresponds to the number of variables andd the num-
ber of values in each domain. Clearly, AC3rm largely compensates the weakness of the
basic AC3.

Next, we analyse the cost of managing data structures with respect to backtracking.
On the one hand, it is easy to embed AC3, AC3r or AC3rm in MAC and SAC algorithms
as these algorithms do not not require any maintenance of data structures during MAC
search and SAC inference. On the other hand, embedding an optimal algorithm such
as AC2001 entails an extra development effort, with, in addition, an overhead at the
execution. For MAC2001, this overhead is O(µed) per branch of the binary tree built
by MAC as we have to take into account the reinitialization of a structure (calledlast)

Instances AC3 AC3rm AC2001 AC3.2

domino-100-100
cpu 1.81 0.16 0.23 0.18
ccks 18M 990K 1485K 990K

domino-300-300
cpu 134 3.40 6.01 3.59
ccks 1377M 27M 40M 27M

domino-500-500
cpu 951 15.0 21.4 15.2
ccks 10542M 125M 187M 125M

domino-800-800
cpu 6144 60 87 59
ccks 68778M 511M 767M 511M

Table 1.Establishing Arc Consistency on Domino instances
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which contains smallest found supports. Here,µ denotes the number of refutations of
the branch,e denotes the number of constraints andd the greatest domain size of the
constraint network.

The paper is organized as follows. First, we introduce constraint networks and
present a new algorithm denoted AC3rm. Then, we show the theoretical interest of
using AC3/AC3rm in MAC and SAC algorithms. After presenting the results of an ex-
perimentation that we have conducted, we conclude.

2 Constraint Networks

A (finite) Constraint Network (CN)P is a pair(X ,C ) whereX is a finite set ofn
variables andC a finite set ofe constraints. Each variableX ∈ X has an associated
domain, denoteddom(X), which contains the set of values allowed forX. Each con-
straintC ∈ C involves a subset of variables ofX , called scope and denotedvars(C),
and has an associated relation, denotedrel(C), which contains the set of tuples allowed
for the variables of its scope. The initial (resp. current) domain of a variableX is de-
noteddominit(X) (resp.dom(X)). For eachr-ary constraintC such thatvars(C) =
{X1, . . . , Xr}, we have:rel(C) ⊆

∏r
i=1 dom

init(Xi) where
∏

denotes the Cartesian
product. Also, for any elementt = (a1, . . . , ar), called tuple, of

∏r
i=1 dom

init(Xi),
t[Xi] denotes the valueai. It is also important to note that, assuming a total order on
domains, tuples can be ordered using a lexicographic order≺. To simplify the presen-
tation of some algorithms, we will use two special values⊥ and> such that any tuple
t is such that⊥ ≺ t ≺ >.

Definition 1. LetC be ar-ary constraint such thatvars(C) = {X1, . . . , Xr}, ar-tuple
t of

∏r
i=1 dom

init(Xi) is said to be:

– allowed byC iff t ∈ rel(C),
– valid iff ∀Xi ∈ vars(C), t[Xi] ∈ dom(Xi),
– a support inC iff it is allowed byC and valid.

A tuple t will be said to be a support of(Xi, a) in C whent is a support inC such
thatt[Xi] = a. Determining if a tuple is allowed is called a constraint check. A solution
to a constraint network is an assignment of values to all the variables such that all the
constraints are satisfied. A constraint network is said to be satisfiable iff it admits at
least one solution. The Constraint Satisfaction Problem (CSP) is the NP-complete task
of determining whether a given constraint network is satisfiable. A CSP instance is then
defined by a constraint network, and solving it involves either finding one (or more)
solution or determining its unsatisfiability. Arc Consistency (AC) remains the central
property of constraint networks and establishing AC on a given networkP involves
removing all values that are not arc consistent.

Definition 2. Let P = (X ,C ) be a CN. A pair(X, a), with X ∈ X and a ∈
dom(X), is arc consistent (AC) iff∀C ∈ C | X ∈ vars(C), there exists a support
of (X, a) in C. P is AC iff∀X ∈X , dom(X) 6= ∅ and∀a ∈ dom(X), (X, a) is AC.

The following definitions will be useful later to analyze the worst-case time com-
plexity of some algorithms.
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Definition 3. A cn-value is a triplet of the form (C,X,a) whereC ∈ C ,X ∈ vars(C)
anda ∈ dom(X).

Definition 4. Let (C,X,a) be a cn-value such thatvars(C) = {X,Y }.

– The number of supports of(X, a) in C, denoteds(C,X,a), corresponds to the size
of the set{b ∈ dom(Y ) | (a, b) ∈ rel(C)}.

– The number of conflicts of(X, a) in C, denotedc(C,X,a), corresponds to the size of
the set{b ∈ dom(Y ) | (a, b) /∈ rel(C)}.

Note that the number of cn-values that can be built from a binary constraint network
is O(ed). To sum up all evaluations of an expressionExpr(C,X, a) wrt all the cn-values
of a given CN, we will write:

∑
C,X,a

Expr(C,X, a).

3 Coarse-grained AC algorithms

In this section, we introduce AC3 and AC3rm, and we propose a detailed analysis of
their complexities. It is important to remark that our algorithms are given in the general
case (i.e. they can be applied to instances involving constraints of any arity). Hence,
strictly speaking, their descriptions correspond to GAC3 and GAC3rm since for non
binary constraints, one usually talks about Generalized Arc Consistency (GAC). How-
ever, to simplify, theoretical complexities will be given for binary instances. More pre-
cisely, for all theoretical results, we will consider given a binary constraint network
P = (X ,C ) such that, to simplify and without any loss of generality, each domain
exactly containsd values.

To establish (generalized) arc consistency on a given CN,doAC (Algorithm 1)
can be called. It returnstrue when the given constraint network can be made arc-
consistent and it is described in the context of a coarse-grained algorithm. Initially,
all pairs(C,X), called arcs, are put in a setQ. OnceQ has been initialized, each arc
is revised in turn (line4), and when a revision is effective (at least one value has been
removed), the setQ has to be updated (line6). A revision is performed by a call to the
function revise specific to the chosen coarse-grained arc consistency algorithm, and
entails removing values that have become inconsistent with respect toC. This function
returnstrue when the revision is effective. The algorithm is stopped when a domain
wipe-out occurs (line5) or the setQ becomes empty.

Algorithm 1 doAC (P =(X ,C ) : Constraint Network): Boolean
1: Q← {(C,X) | C ∈ C ∧X ∈ vars(C)}
2: while Q 6= ∅ do
3: pick and delete(C,X) fromQ
4: if revise(C,X) then
5: if dom(X) = ∅ then return false
6: Q← Q ∪ {(C′, Y ) | C′ ∈ C , C′ 6= C, Y 6= X, {X,Y } ⊆ vars(C′)}
7: return true
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Algorithm 2 revise3(C : Constraint, X : Variable) : Boolean
1: nbElements← | dom(X) |
2: for eacha ∈ dom(X) do
3: if seekSupport3(C,X, a) = > then
4: removea from dom(X)
5: return nbElements6= |dom(X) |

Algorithm 3 seekSupport3(C, X, a) : Tuple
1: t← ⊥
2: while t 6= > do
3: if C(t) then returnt
4: t← setNextV alid(C,X, a, t)
5: return>

3.1 AC3

For AC3 [13], each revision is performed by a call to the functionrevise3(C,X), de-
picted in Algorithm 2. This function iteratively calls the functionseekSupport3 which
determines from scratch whether or not there exists a support of(X, a) in C. It uses
setNextV alid which returns either the smallest valid tuplet′ built from C such that
t ≺ t′ andt′[X] = a, or> if it does not exist. For binary constraints, we assume that
any call tosetNextV alid is performed in constant time (e.g., see [10]). Note thatC(t)
must be understood as a constraint check and thatC(⊥) returns false.

AC3 has a non-optimal worst-case time complexity ofO(ed3) [14]. However, it is
possible to refine this result by focusing on the cumulated cost of seeking successive
supports of a value (X,a) in a constraintC. We have the following results1:

Proposition 1. In AC3, the worst-case cumulated time complexity ofseekSupport3
for a given cn-value (C,X,a) is O(cd+ s) with c = c(C,X,a) ands = s(C,X,a).

Proof.Let us evaluate the maximum number of constraint checks that can be performed
(during the full process of propagation) when iteratively callingseekSupport3(C,X, a).
Let us consider vars(C) = {X,Y }, c = c(C,X,a) ands = s(C,X,a). Note thatd = c + s.
The worst-case is when:
1) only one value is removed from dominit(Y ) between two calls torevise3(C,X),
2) values of dominit(Y ) are ordered in such a way that thec first values correspond to
values which do not supporta and thes last values correspond to values which support
a,
3) the firsts− 1 values removed from dominit(Y ) correspond to values which support
a and thec next values removed from dominit(Y ) correspond to values which do not
supporta.
Hence, for the firsts calls toseekSupport3(C,X, a), we obtains ∗ (c+ 1) constraint
checks. For the nextc calls, we obtainc + (c − 1) + · · · + 1 checks. Then, we have a
worst-case cumulated complexity in O(sc+ s+ c2) = O(c(s+ c) + s) = O(cd+ s). ut

1 Note thats cannot be ignored sincec can be equal to0.
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It is interesting to note thatc represents a tightness parameter (see also [6], page
61). When the constraint tightness is low (more precisely, whenc is O(1)), the worst-
case cumulated time complexity becomesO(d), which is optimal. However, when the
constraint tightness is high (whenc is O(d)), it becomesO(d2). Unsurprisingly, this
result indicates that AC3 is adapted to instances involving constraints of low tightness.
We can now deduce the following result.

Proposition 2. The worst-case time complexity of AC3 is:
O(d ∗

∑
C,X,a

c(C,X,a) +
∑

C,X,a

s(C,X,a)).

3.2 AC3rm

Following the principle used in AC3.2 [8], we propose a mechanism to partially benefit
from (positive) multi-directionality. The idea is that, when a supportt is found, it can be
recorded for all values occurring int. For example, let us consider a binary constraint
C such thatvars(C) = {X,Y }. If (a, b) is found inC when looking for a support
of either (X, a) or (Y, b), in both cases, it can be recorded as being the last found
support of(X, a) in C and the last found support of(Y, b) in C. In fact, one can simply
record for any cn-value (C,X,a) the last found support of (X,a) in C. However, here,
unlike AC2001, by exploiting multi-directionality, we cannot benefit anymore from uni-
directionality. It means that, when the last found support is no more valid, one has to
search for a new support from scratch. Indeed, by using multi-directionality, we have
no guarantee that the last found support corresponds to the last smallest support. This
new algorithm requires the introduction of a a three-dimensional array, denotedsupp.
This data structure is used to store for any cn-value (C,X,a) the last found support of
(X,a) in C. Initially, any element of the structuresuppmust be set to⊥. Each revision
(see Algorithm 4) involves testing for any value the validity of the last found support
(line 3) and if, it fails, a search for a new support is started from scratch (note the call to
seekSupport3). If this search succeeds, structures corresponding to last found supports
are updated (line6).

To summarize, the structuresuppallows to record what we callmulti-directional
residues. Of course, it is possible to exploit simpler residues [11], called hereuni-
directional residues, by not exploiting multi-directionality. We can derive a new al-
gorithm, denoted AC3r, by replacing line8 of Algorithm 4 with: supp[C,X, a]← t

Algorithm 4 revise3rm(C : Constraint, X : Variable) : Boolean
1: nbElements← | dom(X) |
2: for eacha ∈ dom(X) do
3: if supp[C,X, a] is valid then continue
4: t← seekSupport3(C,X, a)
5: if t = > then
6: removea from dom(X)
7: else
8: for eachY ∈ vars(C) do supp[C, Y, t[Y ]]← t
9: return nbElements6= |dom(X) |
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However, with AC3r, when AC must be established stand-alone, rather than search-
ing a new support from scratch when the residue is no more valid, it is more natural and
more efficient to perform the search using the value of the residue as a resumption point.
This is exactly what is done by AC2001. It means that, in practice, AC3r is interesting
(as we will see) only when it is embedded in MAC [11] or a SAC algorithm.

AC3rm has a space complexity ofO(ed) and a non-optimal worst-case time com-
plexity ofO(ed3). However, it is possible to refine this result as follows:

Proposition 3. In AC3rm (and AC3r), the worst-case cumulated time complexity of
seekSupport3 for a cn-value (C,X,a) is O(cs+ d) with c = c(C,X,a) ands = s(C,X,a).

Proof.As for AC3, the worst-case in terms of constraint checks is when:
1) only one value is removed from dominit(Y ) between two calls to revise3rm(C,X),
2) values of dominit(Y ) are ordered in such a way that thec first values correspond to
values which do not supporta and thes last values correspond to values which support
a.
But, unlike AC3, the worst-case in terms of constraint checks is when the firsts val-
ues removed from dominit(Y ) systematically correspond to the last found supports
recorded by AC3rm (until a domain wipe-out is encountered). For theses + 1 calls
(note the initial call) toseekSupport3(C,X, a), we obtains ∗ (c + 1) + c constraint
checks. On the other hand, the number of other operations (validity checks and updates
of the supp structure) in revise3rm performed with respect toa is bounded byd. Then,
we have a worst-case cumulated complexity in O(sc+ s+ c+ d) = O(cs+ d). ut

What is interesting with AC3rm is that, even if this algorithm is not optimal, it is
adapted to instances involving constraints of low or high tightness. Indeed, when the
constraint tightness is low (more precisely, whenc is O(1)) or high (whens is O(1)),
the worst-case cumulated time complexity becomesO(d), what is optimal. On the other
hand,sc is maximized whenc = s = d/2, what corresponds to a medium constraint
tightness. However, AC3rm can also be expected to have a good (practical) behavior for
medium constraint tightness since, on average (i.e. asymptotically), considering random
constraints,2 constraint checks are necessary to find a support when the tightness is0.5.
We can deduce the following result.

Proposition 4. The worst-case time complexity of AC3rm (and AC3r) is:
O(ed2 +

∑
C,X,a

c(C,X,a) ∗ s(C,X,a)).

Finally, remark that we have not introduced AC3rm with respect to the framework
AC-* [15] as AC3rm is not an instance of AC-*. However, we think that it should be
possible to extend this framework to include the concept of residues.

3.3 Overview of Complexities

Table 2 indicates the overall worst-case complexities to establish arc consistency with
algorithms AC3, AC3r(m)2, AC2001 and AC3.2 (due to lack of space, AC2001 and
AC3.2 are not described in this paper).

2 AC3r(m) will interchangeably denote both algorithms AC3r and AC3rm.



38 Lecoutre and Hemery

Space Time

AC3 O(e+ nd) O(d ∗
∑

C,X,a

c(C,X,a) +
∑

C,X,a

s(C,X,a))

AC3r(m) O(ed) O(ed2 +
∑

C,X,a

c(C,X,a) ∗ s(C,X,a))

AC2001 O(ed) O(ed2)

AC3.2 O(ed) O(ed2)

Table 2.Worst-case complexities to establish AC.

Tightness
Any Low Medium High

AC3 O(cd+ s) O(d) O(d2) O(d2)

AC3r(m) O(cs+ d) O(d) O(d2) O(d)

AC2001 O(d) O(d) O(d) O(d)

AC3.2 O(d) O(d) O(d) O(d)

Table 3.Cumulated worst-case time complexities to seek successive supports for a given cn-value
(C,X,a). We havec+ s = d.

It is also interesting to look at worst-case cumulated time complexities to seek suc-
cessive supports for a given cn-value (C,X,a). Even if it has not been introduced earlier,
it is easy to show that optimal algorithms admit a cumulated complexity in O(d). By
observing Table 3, we do learn that AC3 and AC3r(m) are optimal when the tightness
is low (i.e. c is O(1)), and that, unlike AC3, AC3r(m) is also optimal when the tightness
is high (i.e. s is O(1)).

4 Maintaining Arc Consistency

In this section, we focus on maintaining arc consistency during search. More precisely,
we study the impact, in terms of time and space, of embedding some AC algorithms in
MAC. The MAC algorithm aims at solving a CSP instance and performs a depth-first
search with backtracking while maintaining arc consistency. At each step of the search,
a variable assignment is performed followed by a filtering process that corresponds to
enforcing arc-consistency.

When mentioning MAC, it is important to indicate which branching scheme is em-
ployed. Indeed, it is possible to consider binary (2-way) branching or non binary (d-
way) branching. These two schemes are not equivalent as it has been shown that binary
branching is more powerful (to refute unsatisfiable instances) than non-binary branch-
ing [7]. With binary branching, at each step of the search, a pair (X,a) is selected where
X is an unassigned variable anda a value indom(X), and two cases are considered:
the first one corresponds to the assignmentX = a and the second one to the refuta-
tionX 6= a. Figure 4 depicts a branch in a binary tree built by MAC. This branch that
leads to a solution (represented by a square) involves two variable assignments (Y = b
andX = b) and two value refutations (X 6= a andX 6= c). These refutations are the
consequences of two explored sub-trees (fromX = a andX = c).
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Fig. 1.Branch in a binary tree

Also, it is important to remark that all known AC algorithms (including AC3r and
AC3rm) are incremental. An arc-consistency algorithm is incremental if its worst-case
time complexity is the same when it is applied one time on a given networkP and
when it is applied up tond times onP where between two consecutive executions at
least one value has been deleted. By exploiting incrementality, one can get the same
complexity, in terms of constraint checks, for any branch of the search tree as for only
one establishment of AC.

For AC3 and AC3r(m), the (non optimal) worst-case time complexity for any branch
of the search tree is guaranteed (by incrementality) even if, meanwhile, sub-trees have
been explored and then backtracking has occurred. However, for optimal algorithms
AC2001 and AC3.2, it is important to manage the data structure, denotedlast, in order
to restart search, after exploring a sub-tree, as if backtracking never occurred. In this
paper, MAC2001 and MAC3.2 correspond to the algorithms that record the smallest
supports that have been successively found all along the current branch. Note that it is
at the price of a space complexity in O(min(n,d)ed) [18]. Although an elegant approach
to avoid such additional cost has been proposed in [16], the proposed method, which
involves recomputing last smallest supports, is complex and the preliminary results
given by the author are disappointing. In any case (that is to say, for any variant), one has
to be careful of also taking into account the time cost associated with the requirement of
maintaining (initializing) the data structurelast whenever the AC algorithm is called.

Proposition 5. In MAC2001 and MAC3.2, the worst-case cumulated time complexity
of reinitializing the structurelast is O(µed) for any branch involvingµ refutations.

Proof.For any refutation occurring in a branch, we need to restore the data structure
last since, otherwise, we could not keep exploring the search tree. In the worst-case, we
have at moste ∗ 2 ∗ d operations since for each cn-value (C,X,a), we have to reinitial-
ize last[C,X, a] to a stacked value (or, for variants, to⊥ or a new recomputed value).
Hence, we obtain (µed). ut

Whenµ = 0, it means that a solution has been found without any backtracking.
In this case, there is no need to restore the structurelast as the instance is solved.
At the opposite, we know that the longest branch that can be built containsnd edges as
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Space Time (per branch)

MAC3
O(e+ nd) O(ed2 + d ∗

∑
C,X,a

c(C,X,a))

MAC3r(m)
O(ed) O(ed2 +

∑
C,X,a

c(C,X,a) ∗ s(C,X,a))

MAC2001 O(min(n, d)ed) O(ed(d+ µ))

MAC3.2 O(min(n, d)ed) O(ed(d+ µ))

Table 4.Worst-case complexities to run MAC. Time complexity is given for a branch involving
µ refutations.

follows: for each variableX, there are exactlyd−1 edges that correspond to refutations
and only one edge that corresponds to an assignment. Then, we obtain a worst-case
cumulated time complexities of reinitializing the structurelast in O(end2) and although
it is omitted here, we can also show that it isΩ(end2).

One nice feature of AC3r(m) is that, when they are embedded in MAC, no initial-
ization is necessary at each step (when going forward and when backtracking) since the
principle of this algorithm is to record the last found support which does not systemati-
cally correspond to the last smallest one. In fact, we reported in [8] that it is worthwhile
to leave unchanged last found supports (using AC3.2) while backtracking, having the
benefit of a so-called memorization effect. It means that a support found at a given
depth of the search has the opportunity to be still valid at a higher depth of the search
(when going forward) but also at a lower depth (after backtracking). In other words, it
is worthwhile to exploit residues during search. The importance of limiting in MAC the
overhead of maintaining the data structures employed by the embedded AC algorithm
was pointed out in [11] (but no complexity result was given). In fact, MAC3r corre-
sponds to the algorithm mac3.1residue introduced in [11]. Another elegant proposal,
denoted ADO, involves reordering domains after each backtrack [12] in order to avoid
the overhead of maintaining the structurelast. Unluckily, the optimality of the algo-
rithm, given in the paper, does not hold (Likitvivatanavong, Personal Communication).

By taking into account Proposition 5 and Table 2, we obtain the results given in
Table 4. It appears that, for the longest branch, whenµ > d2, MAC3 and MAC3r(m)
have a better worst-case time complexity than other MAC algorithms based on optimal
AC algorithms since we know that, for any branch, due to incrementality, MAC3 and
MAC3r(m) are O(ed3). Also, if the tightness of any constraint is either low or high
(more precisely, if for any cn-value (C,X,a), eitherc(C,X,a) is O(1) or s(C,X,a) is O(1)),
then MAC3r(m) admits an optimal worst-case time complexity in O(ed2) per branch.
In this case, MAC3r(m) outperforms MAC2001 as soon asµ > d. These observations
suggest that MAC3r(m) should be very competitive.

5 Establishing Singleton Arc Consistency

There is a recent focus about singleton consistencies, and more particularly about SAC
(Singleton Arc Consistency), as illustrated by some recent works [2, 9]. A constraint
network is singleton arc consistent iff any singleton check does not show unsatisfiabil-
ity, i.e., iff after performing any variable assignment, enforcing arc consistency on the
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resulting network does not entail a domain wipe-out. One interesting question is: what
about the cost of reinitializing AC structures in the context of SAC algorithms?

Due to lack of space, in this paper, we will focus on SAC-1 [5]. In fact, as any AC
algorithm can be embedded in SAC-1, the question asked above is relevant when an
optimal AC algorithm such as AC2001 is considered. The worst-case is obtained by
considering O(n2d2) singleton checks, each of them having a cost in O(ed2). However,
in order to use an optimal AC algorithm without sacrificing space, one has to reinitial-
ize the structurelast whenever a singleton check has to be performed. In SAC-1, the
cumulated worst-case time complexity of reinitializing the AC2001 structures is then
O(en2d3). The same result holds for SAC-2 [1]. Although is it less than O(en2d4), it
can have a significant impact on the average time complexity, as shown below.

6 Experiments

To compare the different algorithms mentioned in this paper, we have performed a vast
experimentation (run on a PC Pentium IV 2.4GHz 512MB under Linux) with respect
to random, academic and real-world problems. Performances3 have been measured in
terms of the CPU time in seconds (cpu) and the number of constraint checks (ccks). In
MAC (equipped withdom/deg4) and SAC-1, we have used a slightly modified version
of AC3r(m): the smallest supports found at preprocessing are recorded in order to save
more constraint checks. A new search for a support does not start from scratch but from
these recorded values. Note that space and time complexities remain the same.

To start, we have tested MAC by considering7 classes of binary random instances
situated at the phase transition of search. For each class〈n,d,e,t〉, defined as usually,
100 instances have been generated. The tightnesst denotes the probability that a pair
of values is allowed by a relation. What is interesting here is that a significant sam-
pling of domain sizes, densities and tightnesses is introduced. In Table 5, we can ob-
serve the results obtained with MAC embedding the various AC algorithms. As ex-
pected, the best embedded algorithms are AC3 and AC3r(m) when the tightness is
low (here0.1) and AC3r(m) when the tightness is high (here,0.9). Also, AC3r(m)
is the best when the tightness is medium (here0.5) as expected on random instances.
All these results are confirmed for some representative selected academic and real-
world instances. Clearly, MAC3r(m) outperform all other MAC algorithms in terms
of cpu while MAC3.2 is the best (although beaten on a few instances by MAC3rm)
in terms of constraint checks. Interestingly, in an overall analysis, we can remark that
MAC3r(m) and MAC2001 roughly perform the same number of constraint checks. As,
on the other hand, MAC3r(m) does not require any data structure to be maintained,
it explains why it is the quickest approach. These results confirm those obtained for
MAC3r (mac3.1residue) in [11].

Here, we have to mention that MAC3rm and MAC3r (mac3.1residue) [11] are close
in terms of performance with respect to binary instances. Considering all results (not in-
cluded, here) obtained for instances used as benchmarks of the first CSP solver compe-

3 In our experimentation, all constraint checks are performed in constant time and are as cheap
as possible since constraints are represented in extension (using arrays).

4 We used this simple heuristic to allow an easy reproduction of our results.
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MAC embedding
AC3 AC3r AC3rm AC2001 AC3.2

Classes of random instances (mean results for100 instances)

〈40-8-753-0.1〉 cpu 22.68 21.71 22.96 34.38 33.35

ccks 81M 17M 17M 24M 16M

〈40-11-414-0.2〉 cpu 21.19 18.76 19.23 27.91 26.34

ccks 97M 23M 22M 28M 19M

〈40-16-250-0.35〉 cpu 21.86 18.03 18.31 25.18 23.38

ccks 121M 28M 28M 33M 24M

〈40-25-180-0.5〉 cpu 37.35 24.52 25.53 35.30 32.27

ccks 233M 57M 56M 60M 45M

〈40-40-135-0.65〉 cpu 37.62 26.74 26.62 35.98 34.45

ccks 344M 85M 83M 82M 64M

〈40-80-103-0.8〉 cpu 89.01 50.37 51.62 67.74 61.48

ccks 1072M 243M 240M 225M 180M

〈40-180-84-0.9〉 cpu 166.12 75.12 76.99 98.69 87.50

ccks 2540M 514M 506M 479M 381M

Academic instances

ehi-85-12
cpu 394 362 377 557 511

ccks 642M 58M 60M 190M 83M

geo-50-20-19
cpu 194 148 157 278 263

ccks 1117M 249M 244M 284M 199M

qa-5
cpu 31.60 27.21 28.31 37.49 36.02

ccks 130M 37M 36M 38M 27M

qcp-819
cpu 139 136 143 215 208

ccks 116M 21M 21M 41M 25M

Real-world instances

fapp01-0200-9
cpu 0.54 0.39 0.37 0.60 0.60

ccks 6905K 3310K 3080K 3018K 2778K

js-enddr2-3
cpu 53.66 28.24 29.08 39.24 29.60

ccks 596M 104M 104M 88M 48M

scen-11
cpu 15.67 10.92 11.88 16.26 14.58

ccks 92M 18M 18M 15M 10M

graph-10
cpu 0.64 0.53 0.54 0.69 0.68

ccks 4842K 2563K 2216K 2228K 1925K

Table 5.Cost of running MAC

tition [19, 4], it appears that MAC3r is5% faster than MAC3rm on some series (bqwh,
ehi, frb, geo, qa, qk) whereas MAC3rm is5% faster onhanoi andpigeons, and20%
faster ondomino instances (where MAC3rm takes advantage of multidirectionality).

We have then embedded the AC algorithms in SAC-1. In Table 6, one can observe
that, for domino instances which involve constraints of high tightness, AC3r(m) clearly
shows its superiority to AC3. For real-world instances, the gap between AC3r(m) and
the other AC algorithms, increases. For example, SAC-1 embedding AC3r(m) is about
three times more efficient than SAC-1 embedding AC2001 onscen11 and about four
time more efficient than SAC-1 embedding AC3 onfapp01-0200-9.

7 Residues for Non Binary Constraints

One can wonder what is the behaviour of an algorithm that exploits residues when
applied to non binary instances. First, it is important to remark that seeking a support
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SAC − 1 embedding
AC3 AC3r AC3rm AC2001 AC3.2

Academic instances

domino-300-300
cpu 446.32 14.40 9.56 14.40 9.67
ccks 1376M 40M 26M 40M 26M

domino-500-100
cpu 4.37 0.71 0.53 0.71 0.57
ccks 88M 7425K 4950K 7425K 4950K

geo-50-20-19
cpu 1.18 0.73 0.74 1.49 1.24

ccks 9525K 1032K 1165K 2671K 1157K

qa-5
cpu 1.22 0.82 0.89 1.91 1.34

ccks 10M 2700K 3104K 5001K 3085K

Real-world instances

fapp01-0200-9
cpu 637 153 158 312 192

ccks 10047M 838M 905M 1795M 904M

js-enddr2-3
cpu 58.95 13.11 12.35 24.66 14.38

ccks 980M 55M 54M 128M 55M

graph-10
cpu 980 424 439 836 581
ccks 12036M 1073M 1307M 2467M 1303M

scen-11
cpu 44.89 20.72 21.07 56.03 53.21
ccks 479M 30M 33M 52M 37M

Table 6.Cost of establishing SAC-1

MGAC embedding
Instances GAC3 GAC3r GAC3rm GAC2001 GAC3.2

Random instances (mean results for10 instances)

〈6-20-6-32-0.55〉 cpu 0.75 0.50 0.46 0.58 0.49
ccks 676K 357K 278K 364K 235K

〈6-20-6-36-0.55〉 cpu 13.1 8.7 8.0 10.2 8.5
ccks 12M 6481K 4997K 6825K 4324K

〈6-20-8-22-0.75〉 cpu 2.5 1.5 1.3 1.6 1.3
ccks 2313K 1240K 971K 1232K 804K

〈6-20-8-24-0.75〉 cpu 51.7 31.8 27.7 34.6 26.8
ccks 48M 26M 20M 26M 17M

〈6-20-10-13-0.95〉 cpu 35.2 20.7 15.8 20.8 13.9
ccks 40M 23M 17M 22M 14M

〈6-20-10-14-0.95〉 cpu 220 135 102 135 89
ccks 249M 151M 108M 149M 91M

〈6-20-20-10-0.99〉 cpu 659 392 267 254 177
ccks 1653M 1037M 647M 662M 462M

〈6-20-20-15-0.99〉 cpu 869 489 301 351 220
ccks 2255M 1289M 785M 887M 583M

Structured instances

tsp-20-366
cpu 387 242 243 266 235
ccks 607M 370 364M 387M 333M

gr-44-9-a3
cpu 73.1 37.2 38.4 56.3 43.6
ccks 166M 44M 41M 74M 33M

gr-44-10-a3
cpu 2945 1401 1465 2129 1631
ccks 6819M 1513M 1527M 2914M 1224M

series-14
cpu 233 218 217 312 285
ccks 1135M 531M 490M 618M 422M

renault
cpu 25.0 25.4 16.2 25.2 15.2
ccks 68M 66M 42M 66M 42M

Table 7.Cost of running MGAC
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of a cn-value from scratch requires iterating O(dr−1) tuples in the worst-case for a
constraint of arityr. We then obtain a worst-case cumulated time complexity of seeking
a support of a given cn-value in O(r2dr) for GAC3 and O(rdr−1) for GAC2001 [3]
since we consider that a constraint check is O(r) and since there are O(rd) potential calls
to the specificseekSupport function. Then, we can observe that there is a difference
by a factordr.

On the other hand, if we assume thatc > 0 and s > 0 respectively denote the
number of forbidden and allowed tuples of the constraint, then we obtain, by general-
izing our results of Section 3, a complexity in O(crdr−1) for GAC3 and in O(cs) for
GAC3r(m). We can then deduce that the worst-case cumulated time complexity of seek-
ing a support is O(min(c, rd).rdr−1) for GAC3 and O(min(csr, r2dr)) for GAC3r(m).
If c = O(1) or s = 0(1), we obtain O(rdr−1) for GAC3r(m) asc + s = dr−1, that is
to say optimality. However, we admit that, in practice, the likelihood of having small
values ofc or s when dealing with non binary constraints is weak.

We have performed a preliminary experimentation by maintaining GAC algorithms
during search (withdom/deg) on series of random non binary instances. These in-
stances belong to classes of the form〈r, n, d, e, t〉 wherer denotes the arity of the con-
straints and all other parameters are defined as usual. Here, we chose constraints of arity
6 and studied the behaviour of the algorithm for a tightnesst ∈ {0.55, 0, 75, 0.95, 0.99}.
For small values oft, we observed (as in the binary case) that the difference between
all algorithms was limited. On these random instances, one can observe in Table 7 that
GAC3rm and GAC3.2 are the most efficient embedded algorithms. Of course, when
the tightness is high, GAC3 is penalized and GAC3r is less efficient then GAC3rm as
exploiting multi-directionality pays off. On the non binary structured instances of the
competition, one can observe the good behaviour of GAC3r and GAC3rm. Of course,
we believe that a more extensive experimentation must be performed including struc-
tured instances and constraints of larger arities.

8 Conclusion

In this paper, we have introduced some theoretical results about the use of residual
supports, or residues, in Arc Consistency algorithms. The concept of residue has been
introduced under its multi-directional form in [8] and under its uni-directional form in
[11]. We have first proved that the basic algorithm AC3 which is optimal for low con-
straint tightness, also becomes optimal for high constraint tightness when it is extended
to exploit uni-directional or multi-directional residues. Furthermore, these extensions to
AC3, respectively called AC3r and AC3rm, can be expected to have a good (practical)
behavior for medium tightness as asymptotically, for random constraints,2 constraint
checks are necessary to find a support when the tightness is0.5. Then, we have shown
that MAC3r(m) admit a better worst-case time complexity than MAC2001 for a branch
of the binary search tree when eitherµ > d2 orµ > d and the tightness of any constraint
is low or high, withµ denoting the number of refutations of the branch.

On the practical side, we have run a vast experimentation including MAC and SAC-
1 algorithms on binary and non binary instances. The results that we have obtained
clearly show the interest of exploiting residues as AC3r(m) (embedded in MAC or SAC-
1) were almost always the quickest algorithms (only beaten by AC3.2 on some non
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binary instances). It confirms for MAC3r (mac3.1residue) the results presented in [11].
In terms of constraint checks, it appears that AC3r(m) is quite close to AC2001 (but
usually beaten by AC3.2). We also noted that AC3rm was more robust than AC3r on
non binary instances and constraints of high tightness.

Finally, we want to emphasize that implementing (G)AC3r(m) (and embedding it in
MAC or SAC) is quite easy as no maintenance of data structures upon backtracking is
required. It should be compared with the intricacy of fine-grained algorithms which re-
quires a clever use of data structures, in particular when applied to non binary instances.
The simplicity of AC3r(m) offers another scientific advantage: the easy reproducibility
of the experimentation by other researchers.
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Abstract. Singleton Arc-Consistency (SAC) [8] is a simple and strong level of
consistency but is costly to enforce. To date, research has focused on improving
the performance of algorithms that achieve SAC, and comparing algorithms as a
preprocessing step before actually solving a problem. Here, we show for the first
time how a basic SAC algorithm can be readily incorporated into an open source
constraint programming toolkit and then used within the search process i.e. the
search process maintains SAC. We also present three new levels of SAC: Bound-
SAC where the first and last values in domains are SAC, First-SAC where only the
first value is SAC, and Existential-SAC where some value in the domain is SAC.
Again, we show how these levels of SAC can be maintained by the search process,
and present the first empirical study of their behaviours. This leads us to the point
where we can investigate the effect of maintaining different levels of consistency
on different sets of variables within a problem. We show experimentally that it
can result in significant performance improvements.

1 Introduction

In 1997, Debruyne and Bessière introduced Singleton Arc-Consistency (SAC) [8]. In a
constraint networkP , a valuea in the domain of a variablex is SAC if the variablex can
be assigned the valuea andP can then be made arc-consistent.P is SAC if all values
in the domains of all variables are SAC. This gives a stronger level of consistency than
AC but at a substantially higher cost. The complexity of achieving AC isO(ed2) [17]
whereas the optimal cost of SAC isO(end3) [3], wheree is the number of constraints,
d is the size of the largest domain, andn is the number of variables. In [2], it was proved
that SAC is a non-local property, unlike AC. Consequently, we should expect that it will
be non-trivial to achieve practically efficient algorithms for this consistency. There have
been three notable attempts at proposing practical algorithms. The first one [1] aims at
avoiding some useless singleton checks by recording supports while the two others [3,
13] exploit the incrementality of arc-consistency. However, except for SAC3 [13], all
proposed algorithms either require large data structures or are non-trivial to implement.

To date, SAC has been studied only as a preprocessing step prior to actually solving
a problem, and has been typically applied to random instances, frequency assignment
problems and problems of distance [8, 19, 1, 3, 13]. The study in [19] showed that SAC,
as a preprocess, was rarely cost effective on random instances, but on structured prob-
lems such as networks with small-world graphs or Golomb rulers, SAC was often ben-
eficial. Therefore it appears, so far, that although SAC may be promising it has not yet
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been exploited inside search in the same way AC has [20], and that it has not yet been
practically tested3.

In this paper, we go some way towards putting this right. First, we go back to the
basic SAC algorithm proposed in [8] and incorporate it into a constraint programming
toolkit. We do this showing the actual code, demonstrating just how easily this can
be engineered. This then allows us to investigate, for the first time, the behaviour of
SAC inside search whilst exploiting all of the features of the constraint toolkit. That
is, we maintain SAC within the search process and compare this to the gold standard
of constraint programming, namely MAC [20].4 We then take a pragmatic approach in
our quest for performance improvements and restrict SAC such that only some of the
variables in the problem are made SAC, and further, that only some of the values in the
domains are SAC.

Therefore, we present three partial forms of SAC. The first is Bound-SAC where the
first and last values in the domains of variables are SAC, and all other domain values
are arc-consistent. The second level of SAC follows on immediately and we call it First-
SAC, where the first value in the domain of a variable is SAC and all other values are
AC. Finally we present Existential-SAC (∃-SAC), where we guarantee that some value
in the domain is SAC and all others are AC. These different levels of consistency can
then be maintained on different sets of variables within a problem. For example when
modelling a problem we might maintain SAC on one set of variables, Bound-SAC on
another set of variables, and AC on the remaining variables. That is, we might use
varying levels of consistency across different parts of a problem, attempting to find a
good balance between inference and exploration. It is related to what is calledmixed-
consistencyin [10] andhybrid-consistencyin [4]. We then show how such a feature
might be engineered into a solver so that a constraint programmer can control the mix
of consistency and we present an empirical study that shows how this can be put to good
effect.

The paper is organized as follows. We start by introducing some partial forms of
Singleton Arc-Consistency and show their relations. We then show how to incorpo-
rate SAC, and its partial forms, into an object-oriented constraint programming toolkit.
Next, we present the analysis and results of empirical studies on random, scheduling
and Golomb ruler problems. A new algorithm (using a greedy approach) that checks if
a constraint network is Existential-SAC is then presented along with an empirical study.
Finally we conclude.

3 However, one exception is the Quick Shaving approach of Lhomme [16]. The Quick Shaving
principle is to test when backtracking occurs at depthk the consistency of values that were
shavable (i.e. singleton arc inconsistent) at depthk + 1. Filtering is operational (i.e. a feature
of the search algorithm) and does not correspond to a property of the constraint network.

4 In a sense this part of our work is then somewhat in the spirit of [20] where MAC was compared
to forward checking. Now we compare maintaining SAC against maintaining AC.
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2 Partial Singleton Arc Consistencies

In this section, we introduce some technical background about constraint networks
and consistencies. In particular, we introduce three partial forms of Singleton Arc-
Consistency called Bound-SAC, First-SAC and Existential-SAC.

A (finite) Constraint Network (CN)P is a pair(X ,C ) whereX is a finite set of
variables andC a finite set of constraints. Each variableX ∈ X has an associated
domain, denoteddom(X), which contains the set of values allowed forX. Each con-
straintC ∈ C involves a subset of variables ofX , called scope and denotedvars(C),
and has an associated relation, denotedrel(C), which contains the set of tuples allowed
for the variables of its scope. We will respectively denote the number of variables and
constraints of a CN byn ande. For any variableX, min(X) and max(X) represents
the smallest and greatest values indom(X). Note that a value will usually refer to a
pair (X,a) with X ∈ X anda ∈ dom(X). We will note (X, a) ∈ P (respectively,
(X, a) /∈ P ) iff X ∈X anda ∈ dom(X) (respectively,a 6∈ dom(X)).

A CN is said to be satisfiable iff it admits at least one solution. The Constraint Sat-
isfaction Problem (CSP) is the NP-complete task of determining whether a given CN,
also called CSP instance, is satisfiable. To solve a CSP instance, a depth-first search
algorithm with backtracking can be applied, where at each step of the search, a vari-
able assignment is performed followed by a filtering process called constraint propa-
gation. Usually, constraint propagation algorithms are based on domain filtering con-
sistencies [9], among which the most widely studied ones are called arc-consistency,
max-restricted path consistency and singleton arc-consistency. Arc-Consistency (AC)
is the basic property of CNs. It guarantees that each value admits at least one support in
each constraint.

Definition 1. Let P = (X ,C ) be a CN. A pair(X, a), with X ∈ X and a ∈
dom(X), is arc consistent (AC) iff∀C ∈ C | X ∈ vars(C), there exists a support
of (X, a) in C, i.e., a tuplet ∈ rel(C) such thatt[X] = a and t[Y ] ∈ dom(Y )
∀Y ∈ vars(C)5. A variableX ∈ X is AC iff dom(X) 6= ∅ and∀a ∈ dom(X), (X, a)
is AC.P is AC iff∀X ∈X ,X is AC.

Singleton Arc-Consistency (SAC) is a stronger consistency than AC. It means that
SAC can identify more inconsistent values than AC can. SAC guarantees that enforc-
ing arc-consistency after performing any variable assignment does not show unsatis-
fiability, i.e., does not entail a domain wipe-out. To give a formal definition of SAC,
we need to introduce some notations. AC(P ) denotes the CN obtained after enforcing
arc-consistency on a given CNP . AC(P ) is such that all values ofP that are not arc
consistent have been removed. If there is a variable with an empty domain in AC(P ),
denoted AC(P ) =⊥, thenP is clearly unsatisfiable.P |X=a is the CN obtained fromP
by restricting the domain ofX to {a}.

Definition 2. Let P = (X ,C ) be a CN. A pair(X, a), with X ∈ X and a ∈
dom(X), is singleton arc consistent (SAC) iff AC(P |X=a) 6= ⊥. X is SAC iff∀a ∈
dom(X), (X, a) is SAC.P is SAC iff∀X ∈X ,X is SAC.

5 t[X] denotes the value assigned to X int.
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Fig. 1.Relationships between consistencies.A→ B means consistencyA is stronger thanB

A consistencyφ is stronger than a consistencyλ iff wheneverφ holds on a CN,λ
holds too.φ is strictly stronger thanλ iff φ is stronger thanλ and there exists a CN
on whichλ holds andφ does not hold. It is possible to define partial forms of SAC
(i.e. consistencies weaker than SAC) still stronger than AC by restricting SAC to some
values.

Definition 3. LetP = (X ,C ) be a CN.

– P is First-SAC iff∀X ∈X ,X is AC and min(X) is SAC.
– P is Last-SAC iff∀X ∈X ,X is AC and max(X) is SAC.
– P is Bound-SAC iffP is both First-SAC and Last-SAC.
– P is Existential-SAC iff∀X ∈X ,X is AC and∃b ∈ dom(X) s.t. (X,b) is SAC.

Figure 1 shows the relations existing between the consistencies introduced just
above, SAC and AC. An arrow from a consistencyφ to another consistencyλ indicates
thatφ is strictly stronger thanλ.

It is natural to conceive algorithms to enforce First-SAC, Last-SAC and Bound-
SAC on CNs. Indeed, it suffices to remove all values detected as arc inconsistent and
bound values (only the minimal ones for First-SAC and the maximal ones for Last-
SAC) detected as singleton arc inconsistent. When enforcing a CNP to be First-SAC,
Last-SAC or Bound-SAC, one then obtains the greatest sub-network ofP which is
First-SAC, Last-SAC or Bound-SAC. As a consequence, if a consistencyφ is stronger
than another consistencyλ, then it means that all values removed when enforcingλ on
a given network are also removed when enforcingφ [9].

In fact, this last statement is true for all (known) consistencies, except for Existential-
SAC. Indeed, enforcing Existential-SAC on a CN is meaningless. Either the network is
(already) Existential-SAC, or the network is singleton arc inconsistent. It is then better
to talk about checking Existential-SAC. An algorithm to check Existential-SAC will
have to find a singleton arc consistent value in each domain. As a side-effect, if single-
ton arc inconsistent values are encountered, they will be, of course, removed. However,
we have absolutely no guarantee about the network obtained after checking Existential-
SAC due to the non-deterministic nature of this consistency.

3 Maintaining Singleton Arc Consistencies

We now show how SAC can be incorporated into a constraint programming toolkit so
that the search process maintains SAC on a specified set of variables. This then leads us
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to naturally introduce Bound-SAC and First-SAC. These different levels of consistency
(AC, SAC, Bound-SAC, First-SAC) can then be applied selectively across different
sets of variables in a problem by the constraint programmer, allowing the programmer
to control the blend of mixed-consistency maintained during search. We use the JChoco
constraint programming toolkit [12] to demonstrate this.

3.1 Engineering SAC into JChoco

JChoco [12] is a freely available constraint programming toolkit, using the java pro-
gramming language. Most of the methods used to model and solve problems are called
via theProblem class. Constrained variables (be they enumerated, bound, real, or set
variables) are added to a problem, and constraints between those variables are posted to
it. A problem instance (i.e. an object of classProblem) can then be made arc-consistent
via thepropagate method and solutions found via thesolve method. Therefore, in or-
der to incorporate SAC into JChoco we merely produce a new subclass ofProblem
calledSacProblem and over-ride thepropagation method. All theProblem meth-
ods are inherited and we can then use the constraint toolkit as usual, but rather than
maintaining AC, we maintain SAC.

The java code for this is shown below. The boolean methodisSac determines if a
valuea for a variablex is SAC. The methodpropagate now maintains SAC rather than
AC, and the method callsuper.propagate() is a call to the inherited arc-consistency al-
gorithm used within JChoco. Therefore, if constraints are expressed explicitly as tuples
(allowed or disallowed), JChoco will use the optimal algorithm reported in [5], and if
a specialised constraint is used, then the appropriate specialised propagator will be ap-
plied. The code for the methodpropagate below should be compared to the procedure
SingletonAC given in [8] and the SAC1 procedure in [1]. Our java code is a straight-
forward translation of these procedures. However, the complexity of this procedure is
O(en2d4) [19], clearly far worse than the optimalO(end3) [3].

public class SacProblem extends Problem {

private boolean isSac(IntVar x,int a) throws ContradictionException {
boolean consistent = true;
worldPush();
try{x.setVal(a);super.propagate();}
catch (ContradictionException e) {consistent = false;}
worldPop();
return consistent;

}

public void propagate() throws ContradictionException {
super.propagate();
boolean change = true;
while (change) {

change = false;
for (int i=0;i<getNbIntVars();i++){

IntVar x = getIntVar(i);
IntDomain d = x.getDomain();
IntIterator domIter = d.getIterator();
while (domIter.hasNext()){

int a = domIter.next();
if (!isSac(x,a))

{x.remVal(a);change = true;super.propagate();}
}

}}}}
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We believe that SAC can be similarly incorporated in other constraint toolkits that take
an object oriented approach (e.g. Koalog’s constraint solver [11]). Therefore, we ex-
pect that the above engineering approach could be quite generic. However, one obvious
limitation of theSacProblem class above is that it will only work on variables with
enumerated domains. How can we handle bound integer variables?

3.2 Bound-SAC and First-SAC

In [15], an algorithm is proposed for establishing Bound-SAC. Bound-SAC means that
the first and last values in any domain is SAC while all other values are arc consis-
tent. Again we can produce yet another subclass ofProblem which we might call
BoundSacProblem with apropagate method as shown below.

public void propagate() throws ContradictionException {
super.propagate();
boolean change = true;
while (change) {

change = false;
for (int i=0;i<getNbIntVars();i++){

IntVar x = getIntVar(i);
if (x.getDomainSize()>1){

while (!isSac(x,x.getInf()))
{x.remVal(x.getInf());change = true;super.propagate();}

while (!isSac(x,x.getSup()))
{x.remVal(x.getSup());change = true;super.propagate();}

}
}}}

The method callx.getInf() above gets the lower bound ofx andx.getSup() gets the
upper bound ofx. The innerwhile loops find respectively the smallest and largest SAC
values in the domain ofx. In addition we can decide to only make the first value in the
domain SAC, and we call this First-SAC. To engineer First-SAC all that need be done
is to delete the second innerwhile loop in the code above.

3.3 Mixed-Consistency

If we adopt the implementations above we are then in the position that we can either
model problems with enumerated domains or bound domains, but not both. An obvious
engineering fix is to be able to detect inside thepropagate method the class of vari-
able and then either apply AC, SAC, Bound-SAC or First-SAC. Another approach is to
associate three lists with ourSacProblem: one for enumerated variables to be made
SAC, another for enumerated and bound variables to be made Bound-SAC, and a third
for enumerated and bound variables to be made First-SAC. Any other variables will be
made arc-consistent due to the default call to the AC propagator viasuper.propagate().
This is what we in fact do (but don’t show), and have an additional method such that
we explicitly add to aSacProblem the variables to be made SAC, Bound-SAC, and
First-SAC. This then allows the programmer to blend the level of mixed-consistency
across variables in a problem.
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4 Empirical Studies

We now present experimental studies showing the effects of maintaining different levels
of SAC during search. First, we investigate problems with no structure (random prob-
lems), then we look at problems with obvious structure and demonstrate the effect of
blending mixed-consistency.

4.1 A Study of Maintaining Levels of SAC on Random Problems

First, we study the effect of maintaining SAC during search on random instances of
the class〈20, 10, 0.5〉 (i.e. problems with 20 variables, each with domain size 10, with
a probability of 0.5 that there is a constraint between a pair of variables), answering
the decision problem “Is there a solution?”. Our problems are modelled in JChoco
using enumerated integer variables, constraints represented as allowed tuples, and arc-
consistency achieved via the optimal coarse grained algorithm proposed in [5]. We com-
pare MAC against different restrictions of SAC. We realise MAC within our framework
as a problem with no SAC or Bound-SAC variables. Consequently, in thepropagate
method only the callsuper.propagate() is made. The next experiment is of SAC, where
all the values in the domains of variables are maintained singleton arc-consistent. In
our third experiment all the variables are maintained Bound-SAC. Finally, we maintain
First-SAC on all variables.

Experiments were performed on a domestic machine with a 2.79 GHz processor,
with 512 MB RAM, and Windows XP. Measurements were taken of average runtime
in milliseconds and the number of nodes explored. We could not measure consistency
checks, as is the norm, as these are not available within the JChoco toolkit. However, we
consider run times to be as reliable and meaningful a measure as consistency checks.
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In Figure 2, we show the average run time in milliseconds to answer the decision
problem, with a sample size of 100. We see the familiar complexity peak at the phase
transition, with MAC outperforming the other consistency levels in all but the easy
insoluble region (p2 > 0.45). However, we do see that in the easy soluble region (p2 <
0.3) Bound-SAC and First-SAC perform quite well, at least when compared to SAC. In
previous studies, it was shown that SAC was a very expensive preprocess in the easy
soluble region, and now we see quite acceptable costs for Bound and First-SAC, at least
when applied to the decision problem.

Figure 3 shows the average number of nodes visited. We see that there is very little
difference in the number of nodes visited between our three versions of SAC. MAC
again shows typical phase transition behaviour, with a complexity peak at the crossover
point. However the SAC algorithms do not show this behaviour, but instead a gradual
fall in nodes visited as we increase constraint tightness. Therefore, we do continue to see
a complexity peak in terms of runtime, but this takes place within the SAC algorithms,
i.e. it takes longer to reach the SAC fixed point as we approach the phase transition.

This raises an interesting question: if we do not see a complexity peak in the size
of the search tree, and the cost of SAC is polynomial, will we actually fail to see a
complexity peak as problems get larger? Put another way, will search cost scale polyno-
mially at the phase transition? Of course, our intuition suggests that the answer would
be no, and that nodes would rise again. However, to answer (at least, partially) this
question, we have investigated the problem classes〈20, 20, 0.5〉 and〈50, 10, 0.1〉 using
JChoco and abscon [14]. The results were similar to those for〈20, 10, 0.5〉 with MAC
being dominant in runtime. However in the class〈20, 20, 0.5〉 a small but noticeable
complexity peak in nodes visited begins to emerge whilst maintaining SAC.
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4.2 A Study of Mixed-Consistency Applied to Scheduling Problems

We performed experiments on 15 of the Lawrence Job-Shop scheduling instances, la01
to la15, available at ORLIB. The instances la01 to la05 are10 × 5 (i.e. 10 jobs and
5 resources), la06 to la10 are15 × 5, and la11 to la15 are20 × 5. Experiments were
performed to determine if any particular blend of SAC was beneficial with respect to
the quality of solution found when CPU time was bounded. Experiments were run on
a 1.3 GHz machine with 256 MB RAM. CPU time was limited to 600 seconds (10
minutes) on each instance. The scheduling problems were represented conventionally,
as a disjunctive graph. That is, for a job-shop instance withn jobs andm resources
there would bem.n(n − 1)/2 zero/one variables to decide the order of operations on
resources and(n.m+1) bound integer variables to represent operation start times along
with the optimisation variable. Therefore we have two distinct sets of variables: the set
of 0/1 variables that control disjunctive precedence constraints on resources and the set
of start times attached to operations. Consequently, this is a good model to explore the
effects of mixed-consistency, i.e. we can maintain different levels of consistency across
different sets of variables. The problem specific objective is to find the schedule that
minimises the makespan. The results of four of our experiments are shown in Table 1.

The first experiment used MAC (all variables were maintained arc-consistent) and
is tabulated as column MAC. Again, MAC was realised by using our SAC solver but
with an empty list of variables to make SAC. The second experiment used Bound-SAC
on the 0/1 decision variables (it then corresponds to use SAC) and MAC on all other
variables, and this is column B-SACdn. Experiment three maintains Bound-SAC on the
start times of operations and the optimisation variable, and this is column B-SACst.
Finally, in experiment four, all variables are made Bound-SAC, and this is column B-
SAC. In all the experiments, the search variables were the 0/1 decision variables. In
Table 1, we report the cost of the best solution found within the CPU time limit, and a
entry of− signifies that no solution was found in the time limit.

What we see is that Bound-SAC can indeed be beneficial, allowing us to frequently
find better solutions than just using MAC on its own. In particular, the B-SACdn results
show that more often than not Bound-SAC on the decision variables alone results in
significantly lower makespans than does MAC. However, too much SAC appears to be
a bad thing. In experiments B-SACst and B-SAC we see that too much time is spent
in SAC processing compared to time spent in search. Consequently solution quality
suffers. In fact, as instance size increases from la11 onwards no solutions were found
as all the CPU time was spent in SAC and none in search.

These experiments have demonstrated that a small amount of SAC can be a good
thing. But this raises the question: why? In experiment B-SACdn, we maintain Bound-
SAC on the 0/1 decision variables. This might be thought of as a weak form of edge-
finding [7], i.e. attempting to determine what operations must come first or last on a
resource. In experiment B-SACst we maintain Bound-SAC on the start times of opera-
tions, and this in turn is similar to shaving [18]. And finally, in experiment B-SAC we
are maintaining weak edge-finding and shaving, but at the expense of reduced explo-
ration.
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Maintaining
InstanceMAC B-SACdn B-SACst B-SAC

la01 666 666 666 666
la02 655 655 655 655
la03 653 597 603 603
la04 628 598 590 590
la05 593 665 665 665
la06 1245 1146 1233 1237
la07 1214 897 1336 1359
la08 1161 1084 1400 1393
la09 1498 1049 1527 1520
la10 1658 972 1192 1259
la11 1453 1787 − −
la12 1467 1504 − −
la13 2899 2310 − −
la14 1970 1784 − −
la15 2368 2200 − −

Table 1.Cost of best solution found for Lawrence scheduling instances, given 10 minutes CPU.

4.3 A Study of Mixed-Consistency on Golomb Rulers

In [19], experiments were performed on Golomb rulers. In particular, given the lengthl
of the shortest ruler withn ticks (or marks), the objective is to find that ruler and prove
it optimal. The study showed that SAC preprocessing and restricted SAC preprocessing
could lead to a modest reduction in run-times. We repeat those experiments, but now
maintain a mix of SAC during the search process.

The problem was represented in JChoco usingn tick variables with enumerated
domains whose values range from0 to l, and, in additionn(n−1)/2 diff variables with
similar domains. Constraints posted to the problem are:diff [i][j] = tick[j] − tick[i]
andtick[i] < tick[j] for any pair (i,j) such that1 ≤ i < j ≤ n, and aboundAllDiff
constraint enforcing all thediff variables to be different. Thetick variables are the
decision variables and these were instantiated in a static lexicographic order. Again we
have a problem with two obviously different sets of variables, thetick variables and
thediff variables, and this again gives us an opportunity to investigate the effects of
blending mixed-consistency. Our experiments were run on a 3.01 GHz processor with
512 MB of RAM using Windows XP.

The results of the experiments are given in Table 2 which clearly shows that main-
taining Bound-SAC on thetick variables (denoted B-SACtk) dominates MAC, whereas
maintaining SAC on thetick variables (denoted SACtk) is far too expensive. We also
experimented with maintaining restricted Bound-SAC on thetick variables (denoted
RB-SACtk), i.e. thepropagate method for Bound-SAC was edited such that the outer
while(change)... loop was deleted, consequently only a single pass is made over the
variables. This is the same as the restriction proposed in [19]. Table 2 shows that this
results in our best performance.

Although not tabulated, we also investigated maintaining SAC, Bound-SAC, and
First-SAC on all the variables (tick’s anddiff ’s) but run-times did not compete with
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Maintaining
Instance MAC SACtk B-SACtk RB-SACtk

5/11 0.01 (5) 0.12 (3) 0.08 (3) 0.08 (3)
6/17 0.1 (18) 0.27 (5) 0.14 (5) 0.14 (5)
7/25 0.47 (116) 0.81 (6) 0.30 (7) 0.34 (11)
8/34 3.6 (904) 14.6 (19) 1.8 (23) 1.6 (33)
9/44 29.1 (5502) 136 (62) 11.3 (68) 9.6 (103)
10/55 217.3 (30097)1075 (218) 68.8 (245) 59 (479)
11/72 7200 (773560) — 5534 (11742)4645 (20056)

Table 2. The runtime in seconds (and in brackets number of nodes visited) to find and prove
optimal a Golomb rulern/l, with n ticks of lengthl. Restricted Bound-SAC on thetick variables
(RB-SACtk) is fastest.

MAC over all instances. Also, First-SAC on thetick variables was competitive with
MAC except on the largest problem11/72 taking 12371 seconds and 41334 nodes,
much slower than MAC.

Some of the experiments were also repeated but using a different model, i.e. we
replaced theboundAllDiff constraint with a clique of not-equals constraints. In this
model MAC was dominant, typically running three times or more faster than Bound-
SAC on thetick variables. Similar behaviour was noted over the quasigroup completion
problems in [19]. This is due to the weak propagation of the not-equals constraint, and
that values will tend to be SAC until the domain of an adjacent variable is reduced to a
singleton. Therefore, we see that when maintaining SAC, we not only have to consider
the level of SAC to maintain and the variables over which to maintain that level, but
also the model itself.

5 Checking Existential SAC

Existential-SAC is the weakest (see Figure 1) partial form of SAC that we have intro-
duced. We now propose an algorithm to check existential-SAC and we present some
empirical results.

5.1 ∃-SAC3

We have presented limited forms of SAC on the basis of the most simple algorithm,
SAC1 [8]. SAC1 checks the singleton arc-consistency of all variables whenever a sin-
gleton arc-inconsistent value is detected and removed. Assuming an underlying optimal
arc-consistency algorithm, worst-case space and time complexities of SAC1 are respec-
tively O(ed) and O(en2d4).

In [13], an original approach to establish SAC has been proposed. The principle of
this is to perform several runs of a greedy search, where at each step arc-consistency
is maintained. As a result, the incrementality of arc-consistency algorithms is exploited
but in a different manner to that proposed in [3]. Unfortunately, a bound-SAC ver-
sion of this approach does not seem to be feasible. Indeed, the main goal is to build
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Algorithm 1 buildBranch()
1: branchSize← 0
2: Pbefore ← P
3: repeat
4: pick and removeX fromQ
5: select a valuea ∈ dom(X)
6: P ← AC(P |X=a,{X})
7: if P = ⊥ then
8: addX toQ
9: else

10: branchSize← branchSize+ 1
11: end if
12: until P = ⊥ ∨Q = ∅
13: P ← Pbefore
14: if branchSize = 0 then
15: removea from dom(X)
16: P ← AC(P,{X})
17: Q← {X | X ∈ X }
18: end if

Algorithm 2 E-SAC-3(P = (X ,C ) : CN)
1: P ← AC(P ,X )
2: Q← {X | X ∈ X }
3: while P 6= ⊥ ∧Q 6= ∅ do
4: buildBranch()
5: end while

branches (corresponding to greedy runs) as long as possible in order to benefit from
incrementality, and potentially to find solutions during inference. When we are exclu-
sively maintaining Bound-SAC via this approach the resultant propagation branches
tend to be short, and therefore uneconomical. However, using a greedy approach to
check Existential-SAC seems to be quite appropriate. In particular, it is straight forward
to adapt the algorithm SAC3 [13] to guarantee∃-SAC. As mentioned in Section 2, such
an algorithm can generate different constraint networks depending on the order that
variables and values are considered i.e. it might have multiple fixed points.

Below, we give the description of this new algorithm, denoted∃-SAC3. It is given
in the context of using an underlying coarse-grained arc-consistency algorithm such as
AC2001/3.1 [5]. But first, we introduce some notations. IfP = (X ,C ), then AC(P ,Q)
with Q ⊆X means enforcing arc-consistency onP from the given propagation setQ.
For a description of AC, see, for instance, the functionpropagateAC in [3]. Q is the
set of variables whose existential consistency must be checked. Finally, an instruction
of the formPbefore ← P should not be systematically considered as a duplication of
the problem. Most of the time, it correspond to store or restore the domain of a network
(and the structures of the underlying arc-consistency algorithm)

Algorithm 2 starts by enforcing arc-consistency on the given network (line1). Then,
all variables are put in the structureQ (line 2) and in order to check Existential-SAC,
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successive branches are built (line4). The process continues until Existential-SAC is
checked, or singleton arc inconsistency detected (line3). Algorithm 1 allows build-
ing a branch by performing successive variable assignments while maintaining arc-
consistency (line4 to 6). When an inconsistency is detected or the setQ becomes
empty, the greedy run is stopped (line12). If the branch is of size0 (line 14), we have
to manage the removal of a value (since it is singleton arc inconsistent), to reestablish
arc-consistency and to restart checking Existential-SAC from scratch (line17).

Space required specially by∃-SAC3 is O(n) since the only structure introduced isQ
which is O(n). The time complexity of∃-SAC3 is that of SAC3, that is to say O(bed2)
whereb denotes the number of branches built by the algorithm (using an optimal AC
algorithm such as AC2001, each branch built is O(ed2) due to the incrementality of
AC2001). In the best case, only one branch will be built (leading then directly to a
solution), and then we obtain O(ed2). In the worst-case, before detecting a singleton arc
inconsistent value,n − 1 branches of size1 can be built. As the number of values that
can be removed is O(nd), we obtain O(en2d3). Finally, when no inconsistent value is
detected, the worst-case time complexity of∃-SAC3 is O(end2).

5.2 Experimental Results

We believe that it is worth studying the effect of maintaining∃-SAC on satisfiable in-
stances using∃-SAC3, as due to greedy runs solutions can be found at any step of
the search. This is illustrated in Table 3 with some instances of then-queens prob-
lem (we only searched the first solution). These instances were modelled (with binary
constraints) in abscon [14] and run on a PC Pentium IV 2.4GHz 512MB RAM under
Linux. AC2001 was used as the underlying AC algorithm and dom/wdeg [6] as the
variable ordering heuristic. We also show results for forward checking (FC), maintain-
ing arc-consistency (MAC), first-SAC (F-SAC), bound-SAC (B-SAC), and SAC main-
tained using the SAC1 algorithm. It is interesting to note that for all these satisfiable
instances, maintaining SAC3 or∃-SAC3 explore no more than2 nodes. However, one
should expect to find less impressive results with unsatisfiable instances. To check this,
we have tested, using abscon, some difficult (modified) unsatisfiable instances of the
Radio Link Frequency Assignment Problem that came from the CELAR (Centre elec-
tronique de l’armement). Here, we do not consider optimisation, but only satisfaction.
These instances were used as benchmarks for the first CSP solver competition and can
be downloaded athttp://cpai.ucc.ie/05/Benchmarks.html . In Table 3, it
appears that maintaining SAC3 or∃-SAC3 really limits the number of nodes that have
to be visited. It can be explained by the fact that both algorithms learn from failures (of
greedy runs) as the employed heuristic isdom/wdeg.

We then compared maintaining∃-SAC to MAC on the full set of1064 instances in
the benchmark suite. When counting the number of solved instances within10 minutes,
MAC outperforms∃-SAC3 by60 instances when using thedom/wdeg heuristic and
by only23 instances with thedom heuristic. However, regardless of heuristics,∃-SAC3
behaves relatively poorly on random problems with MAC dominating on the majority
of instances in seriesfrb (random instances forced to be satisfiable) andrandom-
{23, 24, 25}. Interestingly, MAC and∃-SAC3 behave quite differently on different se-
ries. One example is all the instances inseries5 to series40 where∃-SAC dominates.
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Maintaining
Instance FC MAC F-SAC B-SAC SAC1 SAC3 ∃-SAC3

100-queens (sat) 0.5 (194) 4.2 (118) 267 (101)421 (101) − 17.4 (0) 18.9 (2)
110-queens (sat) − − − − − 37.9 (0) 22.7 (1)
120-queens (sat) − 1636 (323K) − − − 16.7 (0) 47.3 (2)

scen11-f12 (unsat)69.1 (18K) 3.6 (695) 63.3 (60) 110 (48)1072 (41) 418 (5) 48.3 (30)
scen11-f10 (unsat)131 (34K) 4.4 (862) 84.4 (70) 140 (55)1732 (52) 814 (8) 38.3 (25)
scen11-f8 (unsat)260 (66K) 67.8 (14K)1660 (2K) − − − 290 (213)

Table 3.CPU time (and number of visited nodes) for instances of then-queens and the RLFAP,
given 30 minutes CPU.

6 Conclusion

We have taken what is probably an unusual step, reporting on how we can engineer
the least efficient version of the SAC algorithm into an actual constraint programming
toolkit. By doing this we have been able to perform the first investigation of the be-
haviour of maintaining SAC within the search process. This has led us to proposing
three new levels of SAC, i.e. Bound-SAC, First-SAC and∃-SAC. We have also al-
lowed ourselves to specify the set of variables in a problem that we make full, bound
or first SAC, i.e. we have shown how the programmer can produce a blend of mixed-
consistencies and we have shown empirically the effect this can have on runtime per-
formance. We have shown that maintaining the right blend of consistencies can result
in significant performance improvements.

When maintaining SAC in small random problems we see a peculiar signature when
measuring the size of the search tree (nodes) as we pass through the phase transition. All
of our SAC algorithms do not show a complexity peak. We also note that the size of the
search tree is relatively insensitive to the amount of restriction put upon SAC, and that
when problems are easy and soluble First-SAC and Bound-SAC perform remarkably
well. This is one area where earlier studies have shown that SAC is nothing but an
expense. For larger random problems, our preliminary study suggests that the size of
the search tree should again exhibit a complexity peak, provided that the size of the
problems is sufficiently large.

In the job-shop scheduling problem, restrictions on SAC have been beneficial, lead-
ing us to better solutions than MAC when CPU time is limited. One explanation is that
our restrictions allow us to emulate a weak form of edge-finding or shaving, and that
we can combine both of these. However, this has to be used with caution; we need
to consider just what variables will benefit from SAC (and that was the 0/1 decision
variables).

The Golomb ruler experiments show that we also need to take into consideration
how we model the problem. In a model with weakly propagating constraints, values
will tend to be SAC and SAC processing will tend to be nothing but an expense. How-
ever, with a good model and a well chosen level of SAC (Bound-SAC on the decision
variables) we were able to outperform the gold standard, a MAC solver using state of
the art constraint propagation algorithms.
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The results are surprising when we consider that when using a basic sub-optimal
algorithm for SAC we can frequently beat MAC. From an abstract point of view, we
have demonstrated that rather than using the same level of inference (maintaining arc-
consistency) all the time (during search) everywhere (over all the variables) we can
often do much better by varying the level of inference (mixing the consistency levels
AC, SAC, Bound-SAC, First-SAC) and doing this over only parts of the problem (a
subset of the variables). Finally, we have introduced a simple and efficient implementa-
tion of an algorithm that checks∃-SAC. Empirical results suggests that this represents
a promising generic approach.
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Probabilistic Singleton Arc Consistency
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Abstract. Singleton Arc Consistency (SAC) is a meta-consistency that enhances
the pruning capability of arc consistency. It guarantees that the network can be
made arc consistent after assigning a value to any variable. Establishing single-
ton arc consistency, generally, prunes more inconsistent values from the domains
than establishing arc consistency. However, due to much ineffective constraint
propagation, it often consumes more time and can be a huge overhead. If we can
reduce ineffective constraint propagation, then the performance of the algorithm
can be improved significantly. In order to do so, we use a probabilistic approach
to determine when to propagate and when not to. The idea is to perform only the
useful consistency checking by not seeking a support when there is a high proba-
bility that a support exists. The idea of probabilistic support inference is general
and can be applied to any kind of local consistency algorithm. In this paper we
shall investigate its impact with respect to singleton arc consistency. Experimen-
tal results demonstrate that enforcing probabilisticSAC almost always enforces
SAC but that it requires significantly less time thanSAC. Likewise, maintaining
probabilistic singleton arc consistency requires significantly less time than main-
taining singleton arc consistency.

1 Introduction

Constraint Satisfaction Problems (CSPs) are ubiquitous in Artificial Intelligence. They
involve finding values for problem variables subject to constraints. For simplicity, we
restrict our attention to binaryCSPs. Maintaining some levels of local consistency before
and/or during backtrack search have become the de facto standard to solveCSPs, which
generally reduces the thrashing behavior of a backtrack algorithm. However, as the
strength of local consistency increases, so does the amount of ineffective constraint
propagation, which may penalize the algorithm in terms ofCPU time.

Arc consistency (AC) is the most widely used local consistency algorithm to reduce
the search space ofCSPs. Coarse-grained algorithms such asAC-3 [10], andAC-2001/
AC-3.1[3], are competent, when it comes to transform a problem into its arc consis-
tent equivalent. These algorithms repeatedly carry out revisions, which require support
checks for identifying and deleting unsupported values from the domain of a variable.
However, for difficult problems, in many revisions, some orall values successfully find
some support, that is to say,ineffective constraint propagationoccurs.

Recently, Singleton Arc Consistency (SAC) [6] has been receiving much attention.
SAC is a meta-consistency that enhances the pruning capability of arc consistency.
It guarantees that the network can be made arc consistent after assigning a value to
? Supported by the Boole Centre for Research in Informatics.
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the variable. It is a stronger consistency than arc consistency. Therefore, it can avoid
much unfruitful exploration in the search-tree. Nevertheless, applyingSAC in SAC-1 [6]
style can invoke the underlying arc consistency algorithmn2d2 times in the worst-
case, wheren is the number of variables andd is the maximum domain size. Thus, the
amount of ineffective constraint propagation will be much more in singleton arc consis-
tency than in arc consistency. EstablishingSAC before search can be expensive in terms
of checks and time, and maintaining it during search can be even more expensive.

At the CPAI’ 2005workshop, [11] presented aprobabilistic approachto reduce inef-
fective propagation and studied it with respect to arc consistency on random problems.
This probabilistic approach is toavoid the process of seeking a support, when the prob-
ability of its existence is above some, carefully chosen, threshold. This way a significant
amount of work in terms of support checks and time can be saved.

In this paper, we study the impact of using the probabilistic approach with respect to
SAC andLSAC (limited version ofSAC proposed in this paper) on a variety of problems.
We call the resulting algorithms Probabilistic Singleton Arc Consistency (PSAC), and
ProbabilisticLSAC (PLSAC). We examine the performances ofPSAC andPLSAC when
used as a preprocessor before search. Experimental results demonstrate that enforcing
PSAC and PLSAC almost always enforcesSAC and LSAC but usually require signifi-
cantly less time. Finally, we investigate the impact of maintainingPSACand maintain-
ing PLSAC during search on various problems. Experimental results show a significant
gain in terms of time on quasi-group problems. Overall, empirical results demonstrate
that the original algorithms are outperformed by their probabilistic counterparts.

The remainder of this paper is organised as follows: Section 2 gives an introduc-
tion to constraint satisfaction. Section 3 describes the existing singleton arc consistency
algorithms. Section 4 explains the concept of probabilistic support inference to reduce
ineffective constraint propagation. Experimental results are presented in section 5 fol-
lowed by conclusions in section 6.

2 Preliminaries

A Constraint Satisfaction Problem(V,D, C) is defined as a setV of n variables, a non-
empty domainD(x) ∈ D, for all x ∈ V and a setC of e constraints among subsets
of variables ofV. For simplicity, we restrict our attention to binaryCSPs. However, the
ideas presented in this paper can be extended to non-binaryCSPs. A binary constraint
Cxy between variablesx andy is a subset of the Cartesian product ofD(x) andD(y)
that specifies the allowed pairs of values forx andy. Thedensityof a CSP is defined
as2 e/(n2 − n), wheree is the number of constraints andn is the number of variables.
Thetightnessof the constraintCxy is defined as1− |Cxy |/|D(x)×D(y) |.

A valueb ∈ D(y) (also denoted as, (y, b)) is called asupportfor (x, a) if (a, b) ∈
Cxy. Similarly, (x, a) is called a support for(y, b) if (a, b) ∈ Cxy. A support check
(consistency check) is a test to find if two values support each other.

A valuea ∈ D(x) is arc consistentif ∀y ∈ V constrainingx the valuea is supported
by some value inD(y). A CSP is arc consistentif and only if ∀x ∈ V, D(x) 6= ∅, and
∀a ∈ D(x), (x, a) is arc consistent. We denote theCSPP obtained after enforcing arc
consistency asac(P). If there is a variable with an empty domain inac(P), we denote
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it as ac(P) = ⊥. The CSP obtained fromP by assigning a valuea to the variable
x is denoted byP|x=a. A valuea ∈ D(x) is singleton arc consistentif and only if
ac(P|x=a) 6= ⊥. A CSP is singleton arc consistent if and only if each value of each
variable is singleton arc consistent.

MAC [14] is a backtrack algorithm that maintains arc consistency after every vari-
able assignment. It ensures that each value in the domain ofeachvariable is supported
by at least one value in the domain of every variable by which it is constrained. FC [7]
can be considered a degenerated form ofMAC. It ensures that each value in the domain
of eachfuture variable isFC consistent, i.e. supported by the value assigned to every
past and current variable by which it is constrained. MSAC is a backtrack algorithm that
maintains singleton arc consistency after every variable assignment.

The directed constraint graphof a CSP is a graph having an arc(x, y) for each
combination of two mutually constraining variablesx andy. We will useG to denote
the directed constraint graph of the inputCSP. Usually, an inputCSP is transformed
into its arc consistent equivalent, before starting search. We call the domain ofx in this
initial arc consistent equivalent of the inputCSPthefirst arc consistent domainof x. For
the remainder of this paper for any variablex, We useDac(x) for the first arc consistent
domain ofx, andD(x) for the current domain ofx.

3 Overview of SAC Algorithms

Although there are stronger consistencies than arc consistency, the standard has been to
make the problem full/partial arc consistent before and/or during search. This is because
applying arc consistency has a low overhead and does not change the structure of the
problem. However, recently, there has been a surge of interest inSAC [13, 2, 9] as a
preprocessor ofMAC, i.e. making the problem singleton arc consistent before search.
Various algorithms, for example,SAC-1 [6], SAC-2 [1], SAC-OPT [2], SAC-SDS[2] have
been suggested to use it as a preprocessor. The advantage ofSAC is that it improves the
filtering power of arc consistency without changing the structure of the problem as
opposed to other stronger consistencies such as k-consistency(k > 2) and so on.

The first algorithm that has been proposed in [6] to establish singleton arc consis-
tency is calledSAC-1. EnforcingSAC in SAC-1 style works by having an outer loop
consisting of variable-value pairs. For each(x, a) if ac(P|x=a) = ⊥, then it deletesa
from D(x). Then it enforces arc consistency. Should this fail then the problem is not
SAC. The pseudo-code forSAC-1 is presented in Figure 1. IfSAC-1 uses an optimal
arc consistency algorithm as the underlying arc consistency then its worst-case time
complexity isO(n2d4e). If SAC-1 uses a non-optimal arc consistency algorithm as the
underlying arc consistency then its worst-case time complexity isO(n2d5e). Its space
complexity is same as the space complexity of the underlying arc consistency algorithm.

One problem withSAC-1 is that deleting a single value triggers the addition of
all variable-value pairs in the outer loop, as shown in Figure 1. Therestricted SAC

(RSAC) algorithm proposed in [13] avoids this triggering by considering each variable-
value pair only once. We proposelimited SAC (LSAC) which lies betweenrestricted
SAC andSAC. The idea is that if a variable-value pair(x, a) is found arc-inconsistent,
then only the pairs involving neighbours ofx as a variable are added in the outer-loop.
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Our experience is thatLSAC is more effective thanRSAC. Note thatSAC and limited
SAC will always do the same amount of work if the problem is already singleton arc
consistent or if the density of the inputCSPis 1.

ProcedureSAC-1 (P ) :Boolean;
P ← ac(P)
Repeat

Changed← false
for eachx ∈ V do

for eacha ∈ D(x) do
if ac(P|x=a) = ⊥ then
D(x)← D(x) \ { a }
P ← ac(P)
Changed← true

until not Changed

Fig. 1. SAC-1

The second algorithmSAC-2 has been proposed in [1]. The basic idea ofSAC-2
is to minimize the number of calls to the underlying arc consistency algorithm. More
specifically, the idea is to consider a value(y, b) in the outerloop ofSAC-1 after remov-
ing a value(x, a) only if (x, a) belongs toac(P|y=b). This improves the average time
complexity of SAC-1. However, it does not improve the worst-case time complexity
of SAC-1. In fact, the worst-case space complexity increases toO(n2d2), sinceSAC-2
requires auxiliary data structures.

Both SAC-1 and SAC-2 are non optimal algorithms. The first optimal algorithm
calledSAC-OPT has been presented in [2]. The algorithm basically takes advantage of
the incremental property of arc consistency. It duplicates the problemnd times, one for
each value(x, a). It enforcesSAC in O(end3), the worst-case optimal time complex-
ity. However, its worst-case space complexity isO(end2), which prohibit its use on
large constraint networks. Therefore, [2] proposed another algorithm calledSAC-SDS,
which represents a trade-off between time and space. The worst-case time and space
complexities ofSAC-SDSareO(end4) andO(n2d2) respectively.

ExceptSAC-1, the worst-case space complexity of all the algorithms proposed so
far which enforceSAC in SAC-1 style is at leastO(n2d2). This amount of space can
be prohibitive and may not allow to solve large problems. For example, when Lecoutre
and Cardon [9] conducted experiments,SAC-SDSwith a space complexity ofO(n2d2)
ran out of memory forGRAPH10 andGRAPH14, instances of the radio link frequency
assignment problem taken from the FullRLFAP archive.

Although the space complexity ofSAC-1 is relatively low (O(e+ nd) when a non-
optimal algorithm such asAC-3 is used andO(ed) when an optimal algorithm such as
AC-2001is used), its worst-case time complexity is huge. Thus, establishingSAC using
SAC-1 can be expensive in terms of solution time. One way to overcome this is to avoid
ineffective constraint propagation. The underlying arc consistency algorithm employed
by SAC-1 can be invokedn2d2 times in the worst-case. Moreover, if the underlying arc
consistency algorithm is a coarse-grained algorithm, then in each call, in many revi-
sions, some or all values successfully find some support, that is to say, ineffective con-
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straint propagation occurs. If we can reduce this ineffective constraint propagation then
the average time complexity ofSAC-1 can be improved significantly. We investigate the
application of probabilistic support inference [11] to reduce ineffective propagation in
singleton arc consistency.

4 Probabilistic Support Inference

The traditional approach to infer the existence of a support for a valuea ∈ D(x) in
D(y) is to identifysomeb ∈ D(y) that supportsa. This usually results in a sequence
of support checks. Identifying the support is more than needed: knowing that a support
exists is enough. The notions of asupport condition(SC) and arevision condition(RC)
were introduced in [12] to reduce the task of identifying a support up to some extent
for coarse-grained arc consistency algorithms. IfSC holds for(x, a) with respect toy,
then it guarantees that(x, a) hassomesupport inD(y) and the process of identifying
a support is avoided, since the probability that a support exists isexactly1. If RC holds
for an arc,(x, y), then it guarantees thatall values inD(x) havesome support in
D(y) without identifying them, and the revision ofD(x) is avoided againstD(y), since
the probability that a support exists foreachvalue in the domain isexactly1. In the
following paragraphs, we describe the special versions ofSC andRC which facilitates
the introduction of their probabilistic versions.

LetCxy be the constraint betweenx andy, let a ∈ D(x), and letR(y) = Dac(y) \
D(y) be the values removed fromDac(y), i.e. the first arc consistent domain ofy.
The support countof (x, a) with respect toy, denotedsc(x, y, a ), is the number of
values inDac(y) supportinga. Note that|R(y) | is an upper bound on the number
of lost supports of(x, a) in y. If sc(x, y, a) > |R(y) | then (x, a) is supported by
y. This condition is called a special version of a support condition. For example, if
|Dac(y)| = 20, sc(x, y, a) = 2, and|R(y) | = 1, i.e.1 value is removed fromDac(y),
thenSC holds and(x, a) has a support inD(y) with a probability of1. Hence, there is
no need to seek support fora in D(y).

For a given arc,(x, y), thesupport countof x with respect toy, denotedsc(x, y),
is defined bysc(x, y) = min({sc(x, y, a) : a ∈ D(x)}). If sc(x, y ) > |R(y) | , then
each value inD(x) is supported byy. This condition is a special version of what is
called a revision condition in [12]. For example, if|Dac(y) | = 20, sc(x, y) = 2 and
|R(y) | = 1 then each valuea ∈ D(x) is supported by some value ofD(y) with a
probability of1. Hence, there is no need to reviseD(x) againstD(y).

In the examples considered above, if|R(y)| = 2, thenSC andRC will fail. Despite
of having a high probability of the support existence for(x, a), the algorithm will be
forced to search for a support inD(y). Inferring the existence of a support with a high
probability, but less than 1, may not always guarantee the existence of a support but can
be worthwhile and may prevent many sequences of support checks ultimately leading
to a support. In order to do so, the notions of aprobabilistic support condition(PSC)
and aprobabilistic revision condition(PRC) were recently introduced in [11]. ThePSC

holds for(x, a) with respect toy, if the probability that a support exists for(x, a) in
D(y) is above some, carefully chosen, threshold. ThePRCholds for an arc(x, y), if the
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probability of having some support for each valuea ∈ D(x) in D(y), is above some,
carefully chosen, threshold.

4.1 Probabilistic Support Condition

Let Ps(x,y,a) be the probability that there exists some support for(x, a) in D(y). If we
assume that each value inDac(y) is equally likely to be removed during search, then it
follows that

Ps(x,y,a) = 1−
(
|R(y) |

sc(x, y, a)

)
/

(
|Dac(y) |
sc(x, y, a)

)
. (1)

The justification for this equation is that its right hand side is equal to the probability
that none of the

( |R(y) |
sc(x,y,a)

)
subsets of sizesc(x, y, a ) of R(y) contain all supports of

(x, a). Note that if|R(y) | < sc(x, y, a) (a special version of support condition), then
Equation (1) reduces toPs(x,y,a) = 1. Indeed, if fewer values have been removed from
Dac(y) than there were supports inDac(y) then the probability that a support exists is
equal to1.

LetT , 0 ≤ T ≤ 1, be some desired threshold. IfPs(x,y,a) ≥ T then(x, a) has some
support inD(y) with a probability ofT or more. This condition is called aProbabilistic
Support Condition(PSC) in [11]. If it holds, then the process of seeking a support for
(x, a) is avoided. For example, ifT = 0.9, |Dac(y)| = 20, sc(x, y, a) = 2, and this
time if |R(y) | = 2, then(x, a) has a support inD(y) with a probability of0.994. Thus
PSCholds.

4.2 Probabilistic Revision Condition

Recall that for a given arc,(x, y), the support countof x with respect toy, denoted
sc(x, y), is defined bysc(x, y) = min({sc(x, y, a) : a ∈ Dac(x)}). It is the least sup-
port count of the values ofDac(x) with respect toy. Let Ps(x,y) be the least probability
of the values ofDac(x) that there exists some support iny, then

Ps(x,y) = 1−
(
|R(y) |
sc(x, y)

)
/

(
|Dac(y) |
sc(x, y)

)
. (2)

For any valuea ∈ D(x), we immediately havePs(x,y,a) ≥ Ps(x,y). Note that when
|R(y) | < sc(x, y) (a special version of revision condition presented in [12]), then(|R(y) |

sc(x,y)

)
= 0, and with a probability of1, all values inD(x) are supported byy.

Let T be some threshold. IfPs(x,y) ≥ T then, each value inD(x) is supported
by y with a probability ofT or more. This condition is called aProbabilistic Revision
Conditionin [11]. If it holds then the revision ofD(x) againstD(y) is skipped.

4.3 PAC-3

Both PSCandPRC can be embodied in any coarse-grainedAC algorithm. Figure 2 de-
picts the pseudocode ofPAC-3, the result of incorporatingPSCandPRC into AC-3 [10].
Depending on the threshold, sometimes it may achieve less than full arc consistency. If
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PSCholds then the process of identifying a support is avoided. This is depicted in Fig-
ure 3. If PRC holds then it is exploited eitherafter selecting the arc(x, y) for the next
revision orbeforeadding the arcs to the queue. In the former case the corresponding
revision is not carried out and in the latter case(x, y) is not added to the queue. We will
use thePRC by tightening the condition for adding arcs to the queue: arcs should only
be added if thePRCdoes not hold. This is depicted in Figure 2.

In order to usePSC and PRC, the support count for each arc-value pair must be
computed prior to search. Once these support counts are computed, they remain static.
The algorithm used for computing the support counts is mentioned in [12, Figure 2].
If T = 0 then PAC-3 makes the problemFC consistent i.e. revise the domains of the
variablesconnectedto the current variable usingAC-3’s original revisefunction [10]. If
T = 1 thenPAC-3 makes the problem arc consistent. If0 < T < 1 then the level of
consistency established byPAC-3 is between them. The support counters are represented
in O(e d) space complexity, which exceeds the space-complexity ofAC-3. Thus, the
space-complexity ofPAC-3 becomesO(e d). The worst-case time complexity ofPAC-3
isO(e d3).

Function PAC-3(var current var) :Boolean;
begin
Q := G
whileQ not emptydo begin

select anyx from {x : (x, y) ∈ Q }
effective revisions := 0
for eachy such that(x, y) ∈ Q do

remove(x, y) fromQ
if y = current var then

revise(x, y, changex)
else

revisep(x, y, changex)
if D(x) = ∅ then

return False
else ifchangex then

effective revisions := effective revisions + 1
y′′ := y;

if effective revisions = 1 then
Q := Q∪ { (y′, x) ∈ G : y′ 6= y′′,Ps(y′,x) < T }

else ifeffective revisions > 1 then
Q := Q∪ { (y′, x) ∈ G : Ps(y′,x) < T }

return True;
end;

Fig. 2. PAC-3

Note that the use ofPSCandPRC in PAC-3 is presented in such a way that the idea is
made as clear as possible. This should not be taken as the real implementation. Putting
more effort into estimating the probability of the support existence for each arc-value
pair does not generally pay off in terms of theCPU time. However, there are ways to
overcome this. We will only discuss one of them in the following paragraphs.

Expanding Equation (1) and rearranging the terms, gives:
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Function revisep(x, y, var changex)
begin

changex := False
for eacha ∈ D(x) do

if Ps(x,y,a) ≥ T then
\∗ do nothing∗\

else
if @b ∈ D(y) such thatb supportsa then
D(x) := D(x) \ { a }
changex := True

end

Fig. 3.Algorithm revisep

Ps(x,y,a) = 1−
sc(x,y,a)−1∏

i=0

(
1− |D(y) |
|Dac(y) | − i

)
.

The underestimatePs ′(x,y,a) of the actual probabilityPs(x,y,a) is as follows:

Ps ′(x,y,a) = 1−
(

1− |D(y) |
|Dac(y) |

)sc(x,y,a)

. (3)

Note thatPs(x,y,a) ≥ Ps ′(x,y,a) ≥ T . Substituting the right hand side of Equation
(3) into the conditionPs ′(x,y,a) ≥ T and rearranging terms gives us the following
condition:

|Dac(y) | × (1− T )1/sc(x,y,a) ≥ |R(y) |. (4)

The above condition implies thePSC. It states that if the left hand side of Equation (4)
is at least equal to|R(y)| i.e. number of values removed fromDac(y), thenPs ′(x,y,a)

is at least equal to the threshold valueT and sincePs(x,y,a) ≥ Ps ′(x,y,a), PSCwill also
hold true. The advantage of Equation (4) is that the left hand side isconstantand can be
computed prior to search for each arc-value pair. Instead of recomputing the probability
of the support existence in every iteration and comparing it with the thresholdT during
search, this constant can be compared with|R(y)| to check ifPSCholds. In a similar
way, the overhead of ofPRCcan be brought down.

IntegratingPSC and PRC in arc consistency, results in Probabilistic Arc Consis-
tency1 (PAC) and maintaining it during search, results in Maintaining Probabilistic Arc
Consistency (MPAC). Similarly, using probabilistic arc consistency as the underlying
algorithm of SAC results in probabilistic singleton arc consistency and maintaining it
during search results in maintaining probabilistic singleton arc consitency.

5 Experimental Results

5.1 Introduction

In this section, we present some empirical results demonstrating the practical use of
Probabilistic Singleton Arc Consistency (PSAC), and a limited version ofPSAC(PLSAC).

1 Probabilistic Arc Consistency discussed in this paper has no relation with the one mentioned
in [8]



Probabilistic Singleton Arc Consistency 71

We examine the usefulness ofPSACandPLSAC, when used as a preprocessor and when
maintained during search. We experimented with variety of problems, which were used
as benchmarks for the First InternationalCSPSolver Competition and are described in
[4] and may be downloaded fromhttp://cpai.ucc.ie/05 .

Inferring the existence of a support usingPSCandPRCin such a way that the amount
of ineffective constraint propagation is minimised and simultaneously the least amount
of effective propagation is avoided depends heavily on the threshold valueT . In our
previous investigations [11] on random problems, we found that inferring the existence
of a support with a likelihood, roughly between 0.8 and 0.9, resolves this trade-off
for maintaining probabilistic arc consistency (MPAC). Therefore, we decided to choose
T = 0.9 for the experiments.

AC-3 is used to implement the arc consistency component ofSAC. The reason why
AC-3 is chosen is that it is easier to implement and is also efficient. For example, the best
solvers in the binary and overall category of the First InternationalCSPSolver Compe-
tition were based onAC-3. Similarly, PAC-3 is used to implement the probabilistic arc
consistency component of the probabilistic version ofSAC. SAC-1 is used to implement
singleton arc consistency. All search algorithms were equipped with adom/wdeg [5]
conflict-directed variable ordering heuristic. The performance of the algorithms is mea-
sured in terms of checks (#chks), time in seconds (time), the number of revisions (#re-
visions), and the number of visited nodes (#vn). The experiments were carried out on
a PC Pentium III having 256 MB of RAM running at 2.266 GHz processor with linux.
All algorithms were written in C.

5.2 Results

The algorithmsSAC, LSAC, PSAC, andPLSAC were applied to a variety of known prob-
lems. Table 1 shows the results obtained on some representative instances of variety
of known problems: (1) average of 100 satisfiable instances of balanced Quasigroup
with Holes problemsbqwh15106andbqwh18141(2) three attacking prime queen in-
stancesqa-6, qa-7 andqa-8, (3) two queen-knights instancesK25⊕Q8 andK25⊗Q8,
(4) RLFAP instancesscene5 andscene11, (5) modifiedRLFAP instancescene11 f6, (6)
GRAPH instancesgraph10 andgraph14, (7) two job-shop instancesenddr1-10-by-5-10
andenddr2-10-by-5-2, which are calledjs-1 and js-2 in [9] respectively, and (8) two
sets of composed random instancescomposed-25-10-20andcomposed-75-1-80.

In Table 1 #rem denotes the number of removed values. The intention is not to test
if the preprocessing bySAC has any effect in the global cost of solving the problem, but
to see if the same results can be achieved by doing considerably less computation by
using probabilistic support inference. When the input problem is already singleton arc
consistent,PSACandPLSACavoid most of the unnecessary work. For example, for job-
shop instancesenddr1-10-by-5-10andenddr2-10-by-5-2, bothPSACandPLSAC spend
at least34 times less time than their counterparts. Even when the input problem is not
singleton arc consistent, probabilistic versions of the algorithms are as efficient as the
original versions. For most of the problems, they removeexactlythe same number of
values as removed bySAC andLSAC, but consume significantly less time. For example,
in case of attacking queen problems, all the algorithms remove the same number of
values. However,PSACandPLSACare quicker by an order of at least27. In some cases,
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e.g. forRLFAP 5, probabilistic support inference may not remove all possible values.
However, proper tuning of threshold may eradicate this problem up to a certain extent.

The results shown forcomposed-75-1-80are average of 10 instances. All the in-
stances can be shown insoluble by enforcing singleton arc consistency as a preprocessor.
Though the algorithmsPSAC andPLSAC remove fewer values than their their original
versionsSAC andLSAC, they are able to identify the insolubility of the problem. This is
caused by the different revision orders enforced by probablistic versions.

Note that coarse-grained arc consistency algorithms requireO(ed) revisions in the
worst-case to make the problem arc consistent. Nevertheless, the maximum number
of effective revisions(that is when at least a single value is deleted from a domain)
cannot exceedO(nd), irrespective of whether the algorithm used is optimal or non-
optimal. Thus, in the worst case, a coarse-grained arc consistency algorithm can per-
formO(ed−nd) ineffective revisions. The number of ineffective revisions in the worst-
case increases toO(n2d2(ed−nd)) for aSAC algorithm such asSAC-1, when its under-
lying arc consistency algorithm is a coarse-grained algorithm, since in the worst-case
SAC-1 can call its underlying arc consistency algorithmn2d2 times. One can observe
in Table 1 that probabilistic versions ofSAC algorithm perform revisions far fewer than
their original versions. This clearly shows thatPRC is good in saving many ineffective
revisions.

For easy problems, due to the expense entailed by computing the number of supports
for each arc-value pair, probabilistic support inference may not be beneficial. However,
the time required to initialise the support counters is not much. Furthermore, for all the
harder instances, that require at least1 second to solve, it generally pays off, by avoiding
much ineffective propagation. In summary, inferring the existence of a support with a
high probability slightly affects the pruning capability ofSAC, but allows to save much
ineffective propagation and saves a lot time.

Seeing the good performance ofPSAC andPLSAC, the immediate question arises:
can we afford to maintain them during search? So farSAC has been used only as a pre-
processor. MaintainingSAC can reduce the number of branches significantly but at the
cost of much constraint propagation, which may consume a lot of time. Maintaining it
even for depth 1 within search has been found very expensive in [13]. We investigate
if PSAC andPLSAC can be maintained within search economically. Table 2 shows the
comparison ofMAC, MPAC, MSAC (maintainingSAC), MLSAC (maintainingLSAC), MP-
SAC (maintainingPSAC), andMPLSAC (maintainingPLSAC) on structured problems.
Mean results are shown only for quasigroup with holes (QWH) and quasi-completion
problems (QCP) categorised aseasyandhard. Note that hereeasydoes not mean easy
in the real sense. The results are first of their kind and highlight the following points:
(1) the probabilistic version of the algorithm is better than its corresponding original
version, (2) maintaining full or probabilistic (L)SAC reduces the branches of the search
tree drastically, (3) thoughMLSAC andMPLSAC visit a few nodes more thanMSAC and
MPSAC, their run-times are low, (4)MPLSAC is the best in terms of checks and solution
time when compared to other algorithms.

In our experiments,MPSAC/MPLSAC outperformedMSAC/ MLSAC for almost all the
problems which we have considered. But, when compared toMAC andMPAC, they were
found to be expensive for most of the problems except for quasi-group with holes and
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Table 1.Comparison betweenSAC, LSAC, PSACandPLSAC

problem SAC LSAC PSAC PLSAC

#chks 274,675 186,172 32,394 25,671
bqwh15106 #time 0.026 0.020 0.006 0.005

#rev 71,370 52,295 14,384 11,436
#rem 23 23 23 23
#chks 409,344 299,821 44,534 36,973

bqwh18114 #time 0.040 0.030 0.010 0.008
#rev 108,326 78,969 19,136 14,317
#rem 15 15 15 15
#chks 163,477,129 166,395,478 4,930,448 4,930,448

qa-6 #time 8.095 8.300 0.234 0.232
#rev 4,738,129 4,818,072 109,303 109,303
#rem 48 48 48 48
#chks 872,208,323 895,600,777 17,484,337 17,484,337

qa-7 #time 50.885 52.390 1.929 1.979
#rev 17,198,583 17,627,515 262,493 262,493
#rem 65 65 65 65
#chks 3,499,340,592 3,533,080,066 51,821,816 51,821,816

qa-8 #time 249.696 290.534 9.790 11.496
#rev 52,702,632 53,187,555 605,913 605,913
#rem 160 160 160 160
#chks 206,371,887 206,371,887 16,738,737 16,738,737

K25⊕Q8 #time 2.407 2.446 0.469 0.450
#rev 380,548 380,548 23,299 23,299
#rem 3,111 3,111 3,111 3,111
#chks 1,301,195,918 1,301,195,918 19,252,527 19,252,527

K25⊗Q8 #time 13.473 13.469 0.613 0.635
#rev 724,304 724,304 57,874 57,874
#rem 3,112 3,112 3,112 3,112
#chks 9,896,112 11,791,192 2,793,188 2,348,189

scen5 #time 0.700 0.858 0.126 0.120
#rev 652,816 736,469 269,828 172,054
#rem 13,814 13,814 13,794 13,794
#chks 622,229,041 622,229,041 16,376,619 16,376,619

scen11 #time 21.809 21.809 3.005 3.005
#rev 8,687,412 8,687,412 908,498 908,498
#rem 0 0 0 0
#chks 292,600,735 292,600,735 16,415,998 16,415,998

scen11f6 #time 11.775 11.763 0.811 0.813
#rev 6,399,661 6,399,661 471,902 471,902
#rem 3660 3660 3660 3660
#chks11,399,924,349 12,148,264,696 867,034,524 577,475,869

graph10 #time 464.528 472.398 20.401 14.289
#rev 106,347,157 112,774,481 7,585,779 5,312,567
#rem 2,572 2,572 1,904 1,904
#chks 574,618,356 574,618,356 239,524,782 239,524,782

graph14 #time 12.502 12.840 5.380 5.390
#rev 6,964,869 6,964,869 1,028,732 1,028,732
#rem 0 0 0 0
#chks 600,508,958 600,508,958 14,100,504 14,100,504

enddr1-10-by-5-10#time 15.549 15.411 0.446 0.415
#rev 1,109,813 1,109,813 131,366 131,366
#rem 0 0 0 0
#chks 985,446,461 985,446,461 18,291,441 18,291,441

enddr2-10-by-5-2 #time 24.963 25.393 0.601 0.631
#rev 14299380 14,299,380 160,337 160,337
#rem 0 0 0 0
#chks 5,272,064 6,184,748 744,324 611,475

composed-25-10-20#time 0.258 0.303 0.076 0.061
#rev 649,468 745,463 213,717 168,105
#rem 392 391 392 392
#chks 2,143,350 23,359 184,507 184,507

composed-75-1-80#time 0.087 0.001 0.012 0.013
#rev 200,328 2,121 25,610 25,610
#rem 59 59 56 56
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Table 2. Comparison betweenMAC, MSAC, MLSAC with their probabilistic versions (T = 0.9) on structured problems.
(Checks are in terms of 1000s.)

problem MAC MPAC MSAC MPSAC MLSAC MPLSAC

#chks 5,433 1,220 45,165 3,835 31,580 1,418
qwh-20 #time 2.17 1.34 10.83 3.08 8.69 1.32
(easy) #vn 21,049 21,049 570 570 1,101 1,101

#chks 186,872 42,769 756,948 70,666 293,152 34,330
qwh-20 #time 75.35 51.01 172.23 54.56 76.86 31.39
(hard) #vn 693,662 693,662 3,598 3,598 7,136 7,136

#chks 502,148 93,136 807,478 57,235 656,270 40,650
qwh-25 #time 252.89 154.00 236.20 63.71 221.46 53.506
(easy) #vn 1,348,291 1,348,291 2,525 2,525 10,283 10,283

#chks 600,697 670,3702,090,689 768,556 954,767 211,826
qcp-20 #time 2,753.77 1,990.31 8,242.281,679.015,688.19 877.540
(easy) #vn 26,191,09526,191,095 107,624 107,624 586,342 586,342

quasi-group completion problems. However, this observation is made only for threshold
value0.9. Thorough testing remains to be done with different values ofT . Possibility
also exists to tune the value of threshold at different levels in the search.

6 Conclusions and Future Work

This paper considers the use of probabilistic approach to reduce ineffective constraint
propagation in the singleton arc consistency algorithmSAC-1. The central idea is to
avoid the process of seeking a support when there is a high probability of support exis-
tence. Inferring the existence of a support with a high probability allows an algorithm
to save a lot of checks and time and slightly affects its ability to prune values. Enforc-
ing probabilisticSAC almost always enforcesSAC, but it requires significantly less time
thanSAC. Overall, experiments highlight the good performance of probabilistic support
condition and probabilistic revision condition.

We believe that the idea of probabilistic support inference deserves further investi-
gation. The notions ofPSCandPRCcan further be enhanced by taking into account the
semantics of the constraints. Also, in future we would like to determine the extent to
which maintaining probabilisticSAC could be a possible alternative toMAC. Recently,
Lecoutre et al. [9] introduced a greedy approach to establish singleton arc consistency
and based on that proposed two algorithms, particularlySAC-3 andSAC-3+. One certain
perspective would be to study their probabilistic versions.
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constraints. InProceedings of the 13th European Conference on Artificial Intelligence, 2004.

6. R. Debruyne and C. Bessière. Some practical filtering techniques for the constraint satis-
faction problem. InProceedings of the 15th International Joint Conference on Artificial
Intelligence, pages 412–417, 1997.

7. R. Haralick and G. Elliott. Increasing tree search efficiency for constraint satisfaction prob-
lems.Artificial Intelligence, 14(3):263–313, 1980.

8. M. Horsch and W. Havens. Probabilistic arc consistency: A connection between constraint
reasoning and probabilistic reasoning. In16th Conference on Uncertainity in Artificial In-
telligence, 2000.

9. C. Lecoutre and S. Cardon. A greedy approach to establish singleton arc consistency. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence, pages 199–
204, 2005.

10. A. Mackworth. Consistency in networks of relations.Artificial Intelligence, 8:99–118, 1977.
11. D. Mehta and M. van Dongen. Maintaining probabilistic arc consistency. In M. van Don-

gen, editor,Proceedings of the 2nd International Workshop on Constraint Propagation and
Implementation, pages 49–64, 2005.

12. D. Mehta and M. van Dongen. Reducing checks and revisions in coarse-grained mac algo-
rithms. InProceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence, 2005.

13. P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. InProceedings of the 6th In-
ternational Conference on Principles and Practice of Constraint Programming, pages 353–
368, 2000.

14. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
A. Cohn, editor,Proceedings of the Eleventh European Conference on Artificial Intelligence
(ECAI’94), pages 125–129. John Wiley and Sons, 1994.



76



Simplification and Extension of the SPREAD
Constraint

Pierre Schaus1, Yves Deville1, Pierre Dupont1, and Jean-Charles Régin2
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Abstract. Many assignment problems require the solution to be bal-
anced. Such a problem is the Balanced Academic Curriculum Problem
(BACP) [1]. Standard deviation is a common way to measure the balance
of a set of values. A recent constraint presented by Pesant and Régin [2]
enforces the mean µ and the standard deviation σ of a set of variables.
Our work extends [2] by showing a more simple propagator from σ and
µ to X and by introducing new propagators: from σ together with X to
µ and from X together with µ to σ.

1 Introduction

In assignation problems, it is often desirable to have a fair or balanced solution.
One example of such a problem is BACP. The goal is to assign periods to courses
such that the academic load of each period is balanced, i.e., as similar as possible
[1]. A perfectly balanced solution is generally not possible. A standard approach
is to include the balance property in the objective function. Alternatively the
constraint SPREAD introduced by Pesant and Régin [2] could be used to re-
duce the search tree while simplifying the model. Constraining the variance of
assignments to fall below an upper bound is a proper way to enforce the balance
property.

Given a set of variables X and two variables µ and σ, SPREAD(X,µ, σ)
states that the collection of values taken by the variables of X exhibits an arith-
metic mean µ and a standard deviation σ. While the SPREAD constraint in
[2] also involves the median, this will not be considered here.

The SPREAD constraint can be seen as a special kind of soft constraint
opening new perspectives in CSP modeling. As a perfect balanced solution is
mostly not possible, the perfect balance constraint can be soften with SPREAD
allowing a positive maximum standard deviation and an interval for the mean.
SPREAD could also be used to combine a set of soft constraints. The usual way
to combine a set of soft constraints is to minimize the sum of the violation cost
of each of them. The drawback with this approach is that some constraints could
be much more violated that the others. A clever way could be to use SPREAD
to enforce the violation costs to be balanced among the soft constraints.
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Section 2 mainly reviews the material from [2] used in this paper and in-
troduces some statistical background and definitions relative to constraint pro-
gramming. The problem of the variance minimization over the set of variables
X is the starting point of our propagation algorithms. This problem is solved in
[2] and explained in Section 2.

The propagator described in [2] filters from standard deviation σ to the set
of variables X with quadratic time complexity with respect to the number of
variables. It is possible to achieve better pruning by taking also the mean µ into
consideration. Although the propagator from [2] can be easily extended to take
also µ into account together with σ, this is not explicitly described in [2]. Section
3 presents a simpler filtering algorithm from µ and σ to X with the same time
complexity.

We show in Section 4 that the problem of the variance minimization is a
convex one. This implies that it admits a global minimum. This result allows
us to design a propagator not present in [2]: from X and σ to µ. The filtering
algorithm presented in Section 5 also performs in quadratic time with respect to
the number of variables.

The filtering of the upper bound of the standard deviation requires a solution
to the problem of the variance maximization. Section 6 shows that this problem
is NP-hard and presents an algorithm to find an upper bound on the variance
running in quadratic time with respect to the number of variables.

2 Background

We start this section with some statistical background and definitions relative
to constraint programming. Next we present the problem of the variance min-
imization over the set of variables X. This problem is solved in [2] and is the
starting point of our propagation algorithms.

We assume the reader familiar with common statistical notions such as mean,
standard deviation and variance (these notions are defined in Section 2 of [2]).
Note simply that a convenient way to compute the variance of a set of values
{v1, v2, ..., vn} is the following: σ2 =

(
1
n

∑n
i=1 v

2
i

)
− µ2.

We use the following notations for the variables and domains considered in
this paper:

– A finite-domain (discrete) variable x takes a value in D(x), a finite set called
its domain. We denote the smallest (resp. largest) value x may take as xmin

(resp. xmax).
– A bounded-domain (continuous) variable y takes a value in ID(y) =

[ymin, ymax], an interval on R called its domain as well.
– Given a finite-domain variable x, ID(x) denotes its domain relaxed to the

continuous interval [xmin, xmax]. By extension for a union of domains D =⋃n
i=1D(xi), ID represents the interval [minni=1 x

min
i ,maxni=1 x

max
i ].

The remaining of the section reviews the problem of the variance minimiza-
tion solved in [2]. We detail successively the key points to find a solution:
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1. A property of an optimal solution.
2. An optimal solution can be found by iterating once over a set of contiguous

intervals.
3. The construction of this set of contiguous interval is based on the bounds of

the domains.
4. For each interval, the optimal solution property can be checked in constant

time.

Let first define formally the problem we want to solve. The variance mini-
mization is an optimization problem under a sum constraint:

Definition 1 (Minimization of the variance on X). Let X = {x1, x2, ..., xn}
be a set of finite-domain (discrete) variables. For some fixed number q we de-
note by Π1(X, q) the problem: min

∑n
i=1(xi − q/n)2 such that

∑n
i=1 xi = q,

xi ∈ ID(xi), 1 ≤ i ≤ n and we denote by opt(Π1(X, q)), or simply opt(Π1), the
optimal value to this problem.

In the above definition, opt(Π1) corresponds to n times the minimal variance
and q to n times µ.

The following definition and lemma characterize an optimal solution toΠ1(X, q).
This property is a particular assignment of a variable x to a value of its relaxed
domain to the continuous interval ID(x).

Definition 2. An assignment A : x → ID(x) is said to be a v-centered assign-
ment when:

A(x) =

xmax if xmax ≤ v
xmin if xmin ≥ v
v otherwise

Lemma 1. [2]. Any optimal solution to Π1(X, q) is a v-centered assignment.

Lemma 1 gives a necessary condition for an assignment to be optimal for
Π1(X, q) but the v value can be anywhere in ID. [2] introduces a splitting of ID
into contiguous intervals based on the bounds of the domains of variables. The
v value of the v-centered assignment characterizing an optimal solution can be
found by iterating once over this set of contiguous intervals. Any such interval
is either subsumed by a domain or has an empty intersection with it but partial
overlap cannot occur.

Definition 3. Let B(X) be the sorted sequence of bounds of the relaxed domains
of the variables of X, in non-decreasing order and with duplicates removed. De-
fine I(X) as the set of intervals defined by a pair of two consecutive elements
of B(X). The kth interval of I(X) is denoted by Ik. For an interval I = Ik we
define the operator prev(I) = Ik−1, (k > 1) and succ(I) = Ik+1.

Example 1 (Building I(X)). LetX = {x1, x2, x3} with ID(x1) = [1, 3], ID(x2) =
[2, 6] and ID(x3) = [3, 9] then I(X) = {I1, I2, I3, I4} with I1 = [1, 2], I2 = [2, 3],
I3 = [3, 6], I4 = [6, 9]. We have prev(I3) = I2 and succ(I3) = I4.
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There are at most 2.n − 1 intervals in I(X). Let assume that the value v
of the optimal solution to Π1(X, q) lies in the interval I ∈ I(X). We denote
by R(I) = {x|xmin ≥ max(I)} the variables lying to the right of I and by
L(I) = {x|xmax ≤ min(I)} the variables lying to the left of I. By Lemma 1, all
variables x ∈ L(I) take their value xmax and all variables in R(I) take their value
xmin. It remains to assign the variables subsuming I. We denote these variables
by M(I) = {x|I ⊆ ID(x)} and the cardinality of this set by m = |M(I)|. By
Lemma 1, the variables ofM(I) must take a common value v. The sum constraint
(see Definition 1) of Π1(X, q) can be rewritten as∑

x∈R(I)

xmin +
∑

x∈L(I)

xmax +
∑

x∈M(I)

v = q. (1)

Let denote the sum of extrema by

ES(I) =
∑

x∈R(I)

xmin +
∑

x∈L(I)

xmax.

The sum constraint in Equation (1) implies that v must be equal to a specific
value v∗ = (q − ES(I))/m. This results in a valid assignment only if v∗ ∈ I.
This condition is satisfied if

q ∈ V (I) = [ES(I) + min(I).m,ES(I) + max(I).m].

We previously said that an optimal solution the problem Π1(X, q) (see Def-
inition 1) could be found by iterating once over a set of contiguous intervals by
checking for each interval a property in constant time. The set of intervals is
naturally I(X) introduced in Definition 3 and for each I ∈ I(X), the test is:
does q belong to V (I)? If it is true that q ∈ V (I), the value v of the v-centered
assignment defined in Definition 2 characterizing an optimal solution Π1(X, q)
lies in the interval I and has a value of (q − ES(I))/m.

We denote the overall minimal (resp. maximal) sum by S(X) =
∑
x∈X x

min

(resp. S(X) =
∑
x∈X x

max). We are sure that for every value q ∈ [S(X), S(X)]
there is one I ∈ I(X) such that q ∈ V (I). Indeed, we have min(V (I1)) = S(X),
max(V (I|I(X)|)) = S(X) and for two consecutive intervals Ik, Ik+1 from I(X),
we have min(V (Ik+1)) = max(V (Ik)), thus leaving no gap.

Theorem 1. [2] Given a value q such that q ∈ [S(X), S(X)] and Iq ∈ I(X)
such that q ∈ V (Iq), the following assignment gives the optimal value to Π1(X, q):

A(x) =


xmax if x ∈ L(Iq)
xmin if x ∈ R(Iq)
v = q−ES(Iq)

m if x ∈M(Iq)

Example 2 (Solving Π1(X, q)). Variables and domains are from Example 1. We
obtain the following values:
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i Ii R(Ii) L(Ii) M(Ii) ES(Ii) V (Ii)
1 [1, 2] x2, x3 φ x1 5 [6, 7]
2 [2, 3] x3 φ x1, x2 3 [7, 9]
3 [3, 6] φ x1 x2, x3 3 [9, 15]
4 [6, 9] φ x1, x2 x3 9 [15, 18]

For q = 10 we have q ∈ V (I3) thus I10 = I3. A(x1) = 3, A(x2) = A(x3) = 3.5.
For q = 9, we have q ∈ V (I2) and q ∈ V (I3). Whichever interval we choose
between I2 and I3, we find the same optimal assignment A(x1) = 3, A(x2) = 3
and A(x3) = 3.

3 Propagation from µ and σ to X

In this section, we propose to reformulate, simplify and extend (by considering
explicitly the mean together with the standard deviation) the propagator given
in [2]. The procedure to filter the domain of a variable x ∈ X is the following:

– Shift the domain of x by a positive real quantity d.
– For some maximal shift d = dmax, the minimum standard deviation reaches

the upper bound σmax of the domain of σ.
– The computed value dmax allows us to filter D(x) since a shift larger that
dmax would render the constraint inconsistent.

To clarify the presentation, we first assume that σ is an interval [σmin, σmax]
and µ is a given value. We consider afterward the general case where µ is an
interval.

We recall and introduce some notations to explain more precisely the filtering
procedure. We denote q = nµ, πmax

1 = n(σmax)2 and Iq ∈ I(X) is such that
q ∈ V (Iq). In the following we use the shift operation I+d by a positive quantity
d on an interval [Imin, Imax] to denote interval [Imin +d, Imax +d]. This operation
also applies on domains of variables: we simply denote by x′ = x+d the variable
x with a shifted domain D(x) + d.

These notations allow us to explain more precisely the filtering of the domain
of one variable x ∈ X. First, the constraint fails if the minimum standard devia-
tion is larger than the upper bound of σ. In this case, there exists no consistent
assignment. This happens if opt(Π1) > πmax

1 . When the constraint is consistent
(opt(Π1) ≤ πmax

1 ) we can consider the filtering of each variable x ∈ X. In partic-
ular for a variable x ∈ R(Iq) (resp. ∈ L(Iq)), we compute its maximal consistent
value (resp. minimal consistent value) by computing the maximal shift dmax. For
a variable x ∈ M(Iq) we compute both. Each value larger (resp. smaller) than
the maximal (resp. minimal) consistent value must be filtered. As the problem is
symmetrical we only consider the computation of the maximal consistent value
for x ∈ R(Iq) ∪M(Iq).

For a variable x ∈ R(Iq)∪M(Iq) we show that shifting its domain (D(x)+d)
by d ∈ <+ increases opt(Π1) (n× the minimum variance) quadratically with d.
The bound πmax

1 is reached for some d denoted by dmax. The propagation on X
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considers each variable x ∈ X in turn, computes its maximum shift dmax and
prunes D(x) as follows: D(x)← D(x)∩ [xmin, xmin + dmax]. All the domains can
be updated once after consideration of all variables in X. Alternatively, each
pruned domain can directly be used for the propagation on the other variables.

Searching dmax for x ∈ R(Iq) X ′ denotes X after the shift x′ = x+ d. Let
Π1(X ′, q), ES′(Iq) and V ′(Iq) be the corresponding quantities for X ′. We have
ES′(Iq) = ES(Iq) + d and V ′(Iq) = V (Iq) + d.

Let assume that d ≤ d1 = q−min(V (Iq)) such that v′ remains in Iq. In this
case, the value of q leading to the value of opt(Π1) does not change (i.e. q′ = q).
Only the v value will change in the optimal assignment: v′ = v − d/m. We have
opt(Π1(X ′, q)) =

(∑
xi∈L(Iq)(x

max
i )2

)
+
(∑

xi∈R(Iq)(x
min
i )2

)
+ d2 + 2dxmin +(∑

xi∈M(Iq)(v −
d
m )2

)
− q2

n = opt(Π1(X, q)) + d2 + 2dxmin + m
(
d2

m2 − 2 d
mv
)

.

The value dmax is the positive solution of a second degree equation ad2 +2bd+c,
where a = (1 + 1

m ), b = xmin − v and c = opt(Π1(X, q))− πmax
1 .

Until now, we made the assumption that d ≤ d1. If dmax > d1 this value is
not valid since v does not lie within Iq anymore. In this case x is shifted by d1

(i.e. xmin is increased by d) and the interval I
′q = prev(Iq) is considered. The

resulting Algorithm 1 searching for dmax runs in O(n) since there are at most
|I(X )| < n recursive calls and that the body runs in O(1).

Algorithm: FindDMax(x, Iq)

Data: x ∈ R(Iq); Iq ∈ I; q ∈ V (Iq);
Result: dmax s.t. opt(Π1(X ′, q)) = πmax

1 with x′ = x+ dmax

d1 = q −min(V (Iq))

dmax =
−b+
√
b2−ac
a

if dmax < d1 then
return dmax

else
if Iq = I1 then

return d1

else
return d1+FindDMax(x+ d1, prev(Iq))

end

end

Algorithm 1: FindDMax

Searching dmax with x ∈M(Iq) can be reduced to searching for dmax with
a new variable x′ with x′min = v. When x is increased (x′ = x+ d), the optimal
assignment does not change if d ≤ v − xmin (i.e. the values of A(x) remain the
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same) . For d = v − xmin two new intervals are created replacing the old Iq:
Ij = [min(Iq), v] and Ik = [v,max(Iq)] with q = max(V ′(Ij)) = min(V ′(Ik)).
The optimal assignment is the same but a new problem Π1(X ′, q) is created
with q ∈ V ′(Ij) and x′ ∈ R(Ij). This case reduced to searching for dmax with
x′ ∈ R(Ij) is exposed above. The final dmax relative to the variable x is given
by:

dmax = v − xmin + FindDMax(x′, Ij) where x′ = x+ v − xmin (2)

Example 3 (Filtering of one domain). Variables and domains are from Example
1. This example shows the filtering of the domain of variable x2 for q = 10
and πmax

1 = 8. We are in the case of searching dmax with x ∈ M(Iq). We
have I10 = [3, 6] because 10 ∈ V ([3, 6]) = [9, 15] and the value v of the v-
centered assignment is 3.5 (see Example 2). From Equation (2) we have dmax =
3.5 − 2 + FindDMax(x′2, [3, 3.5]) where x′2 = x2 + 1.5. We now analyze the
successive calls to Algorithm 1.

1. FindDMax(x2 + 1.5, [3, 3.5]). We have ES([3, 3.5]) = 6.5, V ([3, 3.5]) =
[9.5, 10], d1 = 0.5, a = 2, b = 0 and c = (3− 10/3)2 + 2 ∗ (3.5− 10/3)2 − 8 ≈
−7.83. We can compute dmax ≈ 1.98. Since dmax > d1 we have the recursive
call FindDMax(x2 + 1.5 + 0.5, [1, 3]).

2. FindDMax(x2 +1.5+0.5, [1, 3]). We have ES([1, 3]) = 7, V ([1, 3]) = [8, 10],
d1 = 2, a = 2, b = 1 and c = 2 ∗ (3− 10/3)2 + (4− 10/3)2 − 8 ≈ −7.33. We
can compute dmax ≈ 1.48. Since dmax < d1 we can return 1.48.

In conclusion, the dmax value of x2 is 1.5 + 0.5 + 1.48 = 3.48 and the variable x2

can be filtered D(x2)← D(x2) ∩ [2, 5.48].

An example of the application of Algorithm 1 is given in Figure 1. The
complexity analysis of Algorithm 1 shows that dmax is computed in O(n) making
the propagation on whole X running in O(n2).

Extension to µ = [µmin, µmax] The generalization µ = [µmin, µmax] is equiv-
alent to q ∈ [qmin = nµmin, qmax = nµmax]. This extension does not affect our
propagator but only requires an additional step before the call to FindDMax for
each variable: the computation of a suitable q ∈ [qmin, qmax]. The computation
of dmax in the algorithm depends on the value of q. To express this explicitly we
denote dmax as a function of q: dmax(q). Since it can be shown to be concave and
derivable, one can search a q0 such that dmax(q) is maximum: ∂dmax

∂q |q=q0= 0.
It can be shown that q0 is the only valid solution of a second degree equation .
As q ∈ [qmin, qmax], if q0 > qmax (resp. < qmin) then FindDmax is called with
q = qmax (resp. q = qmin). If q0 ∈ [qmin, qmax], FindDmax is called with q = q0.

4 Study of Π1(X, q)

We show in this section that the problem of the variance minimization with
given mean is convex. This result allows us to design a propagator from X and
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Fig. 1. The propagation on a typical run. The Iq interval lies between the two hori-
zontal lines. The posted constraint is SPREAD(X, 50, [0, 28]). There are 20 variables
and the domains after the propagations are represented on the right of each original
domain.

σ to µ in Section 5. Indeed, the values for the mean leading to a minimum
standard deviation larger than the upper bound σmax must be filtered. Thanks
to the convexity property, all inconsistent values for the mean will be filtered
by computing only two values for the mean such that the upper bound σmax is
reached. All the values for the mean not between these two computed values are
inconsistent.

More precisely, in this section we characterize completely the function of q
opt(Π1(X, q)) which is the minimization of the variance for a fixed mean (see Def-
inition 1). We demonstrate that opt(Π1(X, q)) is continuous, derivable, convex
and accepts one global minimum on [S(X), S(X)]. Figure 2 shows a typical set X
of variables with their domains and the corresponding functions opt(Π1(X, q)).
You can see on the figure that opt(Π1(X, q)) is continuous, convex with one
global minimum.

Theorem 2 (Characteristics of opt(Π1(X, q))). Assuming a domain for q
in the interval [S(X), S(X)] and a given set of variables X the optimal value
to Π1(X, q) denoted by opt(Π1(X, q)) is continuous, differentiable and convex
having a global minimum for some q ∈ [S(X), S(X)].

Proof. It is sufficient to show that ∂opt(Π1(X, q))/∂q is a continuous (1) increas-
ing (2) function with ∂opt(Π1(X, q))/∂q |q=S(X)≤ 0 and ∂opt(Π1(X, q))/∂q |q=S(X)≥
0 (3).

The function opt(Π1(X, q)) is piecewise defined on [S(X), S(X)]: for q ∈
V (Ik), opt(Π1(X, q)) = C +

∑
xi∈M(Ik)((q − ES(Ik))/m)2 − q2/n where C =∑

xi∈L(Ik)(x
max
i )2 +

∑
xi∈R(Ik)(x

min
i )2. The derivative is also piecewise defined:
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Fig. 2. On the left a typical set X is represented with the domain of each variables.
On the right top and bottom opt(Π1(X, q)) and ∂opt(Π1(X, q))/∂q are respectively
represented for q ∈ [S(X), S(X)]. The vertical lines represent V (Ik), 1 ≤ k ≤ |I(X)|.

for q ∈ V (Ik), ∂opt(Π1(X, q))/∂q = 2(q − ES(Ik))/m − 2q/n. The proofs for
(1),(2) and (3) are:

1. The derivative is continuous because for q = max(V (Ik)) = min(V (Ik+1)),
the values obtained on interval V (Ik) and V (Ik+1) are the same: 2. q−ES(Ik)

|M(Ik)| −
2 qn = 2 q−ES(IK+1)

|M(IK+1)| − 2 qn . Indeed, by denoting δm = |M(Ik+1)| − |M(Ik)| we

have q−ES(Ik)
|M(Ik)| = ES(Ik)+|M(Ik)|max(Ik)−ES(Ik)

|M(Ik)| = max(Ik) and q−ES(Ik+1)
|M(Ik+1)| =

ES(Ik)+|M(Ik)|max(Ik)−ES(Ik)+δm max(Ik)
|M(Ik)|+δm = max(Ik).

2. Since ∂2opt(Π1(X, q))/∂q2 = 2( 1
|M(Ik)| −

1
n ) ≥ 0, ∂opt(Π1(X, q))/∂q is non

decreasing on V (Ik). Because ∂opt(Π1(X, q))/∂q is continuous (1) and non
decreasing on each interval the function is globally convex on [S(X), S(X)].

3. Note that ES(I1) = S(X)−mmin(I1) andES(I|I(X)|) = S(X)−mmax(I|I(X)|).
∂opt(Π1(X, q))/∂q |q=S(X)=

S(X)−S(X)+mmin(I1)
m − S(X)

n = min(I1)− S(X)
n ≤

0. ∂opt(Π1(X, q))/∂q |q=S(X)=
S(X)−S(X)+mmax(I|I(X)|)

m −S(X)
n = max(I|I(X)|)−

S(X)
n ≥ 0. ut

Example 4 (Study of opt(Π1(X, q))). Variables and domains are from Example
1. We study the function opt(Π1(X, q)). With help of the table from Example 2
we add one column which is the definition of opt(Π1(X, q)) for q ∈ V (Ii).
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i Ii R(Ii) L(Ii) M(Ii) ES(Ii) V (Ii) C opt(Π1(X, q)) for q ∈ V (Ii)
1 [1, 2] x2, x3 φ x1 5 [6, 7] 13 13 + 1 ∗ ( q−5

1 )2 − q2

3

2 [2, 3] x3 φ x1, x2 3 [7, 9] 9 9 + 2 ∗ ( q−3
2 )2 − q2

3

3 [3, 6] φ x1 x2, x3 3 [9, 15] 9 9 + 2 ∗ ( q−3
2 )2 − q2

3

4 [6, 9] φ x1, x2 x3 9 [15, 18] 45 45 + 1 ∗ ( q−9
1 )2 − q2

3

Each function opt(Π1(X, q)) for q ∈ V (Ii) is plotted on the following graphics.
Clearly the minimum is reached for q = 9 in this example.

5 Propagation from X and σ to µ

As already explained at the beginning of Section 4, the convexity property of
the problem of variance minimization (see Theorem 2) with given mean allows
us to design an efficient propagator from X and σ to µ. All the values for the
mean leading to a minimum standard deviation larger than the upper bound
σmax can be filtered. Thanks to the convexity property, all inconsistent values
for the mean will be filtered by computing only two values for the mean such
that the upper bound σmax is reached. All the values for the mean not between
these two computed values are inconsistent.

We now explain more precisely the narrowing of µ with help of Figure 3.
The function σ(µ) depicted on figure 3 is the function

√
opt(Π1(X, q))/n with

µ = q/n. Naturally this function has the same properties than the function
opt(Π1(X, q)). The constraint σ ≤ σmax is represented by a vertical line crossing
σ(µ) in two points. The projection of these two points on the mean axis gives
the two values µ1, µ2 for the mean such that the minimum standard deviation
is equal to the upper bound of σ. All mean values outside the interval [µ1, µ2]
are inconsistent and can be filtered.

It is possible that the maximum standard deviation is so large that it does
not constraint the mean. In this case µ1 = S/n and µ2 = S/n and we have
simply a propagation from X to µ.



The SPREAD Constraint 87

Fig. 3. Propagation from X and σ to µ.

In the remaining of this section we explain how the two values µ1, µ2 are
found and finally we give the resulting filtering algorithm for µ

As already said µ1, µ2 are the projection on the mean axis of the two cross
points of

√
opt(Π1(X, q))/n with σmax (see Figure 3). These two cross points

are obtained by considering each interval V (Ik) in turn. It is possible to find two
values n.µ1 = q1 ≤ q2 = n.µ2 for q such that opt(Π1(X, q1)) = opt(Π1(X, q2)) =
πmax

1 = n(σmax)2 and ∀q ∈ [q1, q2], opt(Π1(X, q)) ≤ πmax
1 . The two values q1, q2

are found as follows. For every value of q: opt(Π1(q)) = C+
∑
xi∈M(Ik)

(
q−ES(Ik)

m

)2

−
q2

n where C =
∑
xi∈L(Ik)(x

max
i )2 +

∑
xi∈R(Ik)(x

min
i )2. Then, q1 and q2 are the

solutions of the second degree equation aq2 + 2bq + c where a = (1/m − 1/n),
b = −ES(Ik)/m and c = C+(1/m).ES(Ik)2−πmax

1 . If q1 = (−b−
√
b2 − ac)/a ∈

V (Ik) then µ1 = q1/n is a lower bound of the permitted interval for µ. If
q2 = (−b +

√
b2 − ac)/a ∈ V (Ik) then µ2 = q2/n is the upper bound of the

permitted interval for µ. Else there is no bounds in V (Ik). The resulting Algo-
rithm 2 narrows the interval µ if possible.

Example 5 (Filtering of µ).
Variables and domains are from Example 1. We search the permitted values

for µ under the constraint πmax
1 = 8. Clearly, if we look at the figure of Example

4, we can deduce that qmin = 6 but the upper bound qmax must be computed.
All we know by looking at the figure is that qmax ∈ V (I4) because the curve
opt(Π1(X, q)) intersects πmax

1 = 8 in this interval. We can take the expression
of opt(Π1(X, q)) on the interval V (I4) (see Example 4) and compute the value
qmax such that opt(Π1(X, qmax)) = πmax

1 = 8. We have the equation 45 + 1 ∗
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Algorithm:MeanPruning

Result: narrowing of µ
set µmin ≥ S/n
set µmax ≤ S/n
for 1 ≤ k ≤ |I(X)| do

q1 = (−b−
√
b2 − ac)/a

if q1 ∈ V (Ik) then
set µmin ≥ q1/n
break

end

end
for |I(X)| ≥ k ≥ 1 do

q2 = (−b+
√
b2 − ac)/a

if q2 ∈ V (Ik) then
set µmax ≤ q2/n
break

end

end

Algorithm 2: MeanPruning

( q
max−9

1 )2 − (qmax)2

3 = 8 and we find qmax ≈ 15.79. A bound consistent interval
for the mean is thus [6/3, 15.79/3] = [2, 3.74].

6 Narrowing of σ

The propagation from X and µ to σmin is detailed in [2]. We propose to study
the propagation from X and µ to σmax.

The decreasing of the upper bound of σ requires to compute the maximal
variance on X with a given mean. This can be shown to be a convex maxi-
mization problem (NP-hard in general [3]). Even the relaxed problem without
the sum constraint remains a convex maximization problem but it is easier to
design an upper bound on it because of a known characterization of the optimal
solution with respect to the extrema of the domains. We describe in this section
a quadratic running time algorithm (with respect to the number of variables) to
find an upper bound on the variance.

The maximization problem we want to solve is:

Definition 4 (Maximization of the variance on X). Let X = {x1, x2, ..., xn}
be a set of finite-domain (discrete) variables. We denote by Π2(X) the problem:
max

∑n
i=1(xi −

∑n
j=1 xj/n)2. We denote by opt(Π2(X)) the optimal value for

the problem.

Since opt(Π2(X)) =
∑
i x

2
i − (

∑
i xi)

2
/n, an upper bound opt(Π2(X)) can

be computed using the bound values xmax
i (resp. xmin

i ) in the first (resp. second)
sum. This upper bound can be used to narrow the interval σ by setting n.σ2 ≤
opt(Π2(X)).
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Example 6 (Upper bound). We consider the same variables and domains as in
Example 1. We have X = {x1, x2, x3} with ID(x1) = [1, 3], ID(x2) = [2, 6] and
ID(x3) = [3, 9]. opt(Π2(X)) = (32 + 62 + 92)− (1 + 2 + 3)2/3 = 114.

The following lemma gives a property on an optimal assignment for the
variance maximization problem. We will use this property to improve the upper
bound in O(n2).

Lemma 2 (Optimal solution to Π2(X)). Any optimal solution to Π2(X)
must be an assignment on the extrema of the domains i.e. on xmax or xmin.

Proof (Proof of Lemma 2). It is sufficient to show that starting from an arbitrary
assignment and choosing an arbitrary variable xi >

∑
j xj/n, assigning a greater

value to xi i.e. xi ← xi + d will increase the variance on X. The previous
variance was σ2 = 1

n

∑
j x

2
j− 1

n2 (
∑
j xj)

2 the variance with the modified variable
is σ′2 = 1

n

∑
j x

2
j + 1

n (d2 + 2dxi)− 1
n2 (
∑
j xj)

2− 1
n2 (d2 + 2

∑
j(d.xj)). The result

is σ′2 = σ2 + 1
n (d2 + 2dxi)− 1

n2 (d2 + 2d
∑
j(xj)) > σ2 + 1

n (d2 + 2dxi)− 1
n2 (d2 +

2dnxi) = σ2 + 1
nd

2 − 1
n2 d

2 with σ′2 > σ2. The same result holds by symmetry
for a variable xi <

∑
j xj/n if it is decreased xi ← xi − d. �

As already explained, an upper bound for opt(Π2(X)) can be computed using
the values and xmax

i (resp. xmin
i ) in the first (resp. second) sum of

∑
i x

2
i −

(
∑
i xi)

2
/n. With Lemma 2, it is possible to improve this bound. In each case

where the lower-bound using an extrema is larger than the upper-bound using
the other extrema, the optimal assignment corresponds to the first extrema. If
for one variable, the extrema assignment can be found, then we can use this
extrema value in the first and in the second sum to decrease the upper bound.
If all the extrema assignment could be found the upper bound would be optimal
(equal to the maximum variance). There are 2n possible extrema assignments
on X. We suggest an O(n2) algorithm to deduce as much extrema assignments
as possible.

We now detail the method to deduce the correct extrema assignment of some
variables. We denote µ = S(X)/n and µ = S(X)/n. For some variables the
optimal assignment can be deduced immediately. Indeed if xmin > µ, an optimal
solution to Π2(X) is such that x = xmax. The case xmax < µ is symmetrical.
There are additional cases where extrema assignment can be deduced. Note that
if x would be assigned to xmin, the upper bound for µ would become µ∗ =
µ− xmax−xmin

n .
In the example on the left of Figure 4, an optimal solution would assign

x = xmax because the lower bound on the distance of xmax to µ is greater than
the upper bound on the distance of xmin to µ∗. More generally, in each case
where the lower-bound using an extrema is larger than the upper-bound using
the other extrema, the optimal assignment corresponds to the first extrema.

Assigning a variable x to xmin will decrease µ and assigning a variable x to
xmax will increase µ resulting possibly in a larger set of variables for which an
optimal assignment can be deduced. All such extrema can be found in O(n2).
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Example 7 (Deducing extrema assignment). We consider the same variables and
domains as in Example 1. We have X = {x1, x2, x3} with ID(x1) = [1, 3],
ID(x2) = [2, 6] and ID(x3) = [3, 9]. We have µ = 2 and µ = 6.

– x3: If we assign x3 to 9 then we have µ = 4, µ = 6 and the smallest distance
from 9 to µ is 9− 6 = 3. If we assign x3 to 3 then we have µ = 2, µ = 4 and
the largest distance from 3 to µ is 1. We are sure that the correct extrema
assignment for x3 is 9 because whichever the assignment on other variables
is, the distance to µ (and thus the variance also) will always be greater
with x3 assigned to 9. The new values for the bounds on the mean are now
µ = 4, µ = 6.

– x2: A similar argument as for x3 leads to the conclusion that the extrema
assignment on x2 is 2.

– x1: Since the distance to the mean is always larger with x1 assigned to
1 because xmax

1 = 3 < µ = 4 we are sure that it is the correct extrema
assignment.

Example 8 (Upper bound with extrema assignments). The extrema assignment
computed in Example 7 can be used to compute opt(Π2(X)). In this example, all
the extrema assignments could be deduced. Consequently we have opt(Π2(X)) =
opt(Π2(X)) = (1− 4)2 + (2− 4)2 + (9− 4)2 = 38.

For the example on the right of Figure 4 with 50 variables, the algorithm
find the optimal solution i.e. opt(Π2(X)) = opt(Π2(X)). The deduced extrema
are indicated with a ⊕. The worst case for propagating on σ would correspond
to all variables with an identical domain.

Fig. 4. Left figure: x = xmax because the lower bound on the distance from xmax

to µ is smaller than the upper bound on the distance from xmin to µ. Right figure:
opt(Π2(X)) = opt(Π2(X)). The deduced extrema are indicated with a ⊕
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7 Conclusion

In this paper we have considered a constraint dealing with statistics: the Spread
constraint. This constraint and some filtering algorithms associated with it have
been proposed by [2]. First, we have shown that simpler filtering algorithms with
the same efficiency can be designed. Then, we have studied the main problem on
which the constraint is based, that is the minimization of the standard deviation,
and we have proved that this problem has a unique optimal value. From this
result, we have proposed for the first time an algorithm reducing the values of
the mean from the variables and the standard deviation. At last, we have shown
that the computation of the maximal value of the standard deviation is NP-hard
and we have given an algorithm to compute an upper bound of that value.
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Abstract. The graph isomorphism problem consists in deciding if two
given graphs have an identical structure. This problem may be modeled
as a constraint satisfaction problem in a very straightforward way, so
that one can use constraint programming to solve it. However, constraint
programming is a generic tool that may be less efficient than dedicated
algorithms which take advantage of the global semantic of the original
problem to reduce the search space.

Hence, we have introduced in [1] a global constraint dedicated to graph
isomorphism problems, and we have defined a partial consistency —the
label-consistency— that exploits all edges of the graphs in a global way to
narrow variable domains. This filtering algorithm is very powerful in the
sense that, for many instances, achieving it allows one to either detect
an inconsistency, or reduce variable domains to singletons so that the
global consistency can be easily checked. However, achieving the label-
consistency implies the computation of the shortest path between every
pair of vertices of the graphs, which is rather time consuming.

We propose in this article a new partial consistency for the graph isomor-
phism problem and an associated filtering algorithm. We experimentally
show that this algorithm narrow the variable domains as strongly as
our previous label-consistency, but is an order faster, so that it makes
constraint programming competitive with Nauty, the fastest known al-
gorithm for graph isomorphism problem.

1 Introduction

Graphs provide a rich mean for modeling structured objects and they are widely
used in real-life applications to represent, e.g., molecules, images, or networks.
In many of these applications, one has to compare graphs to decide if their struc-
tures are identical. This problem is known as the Graph Isomorphism Problem
(GIP).

More formally, a graph is defined by a pair (V,E) such that V is a finite
set of vertices and E ⊆ V × V is a set of edges. In this paper, we consider
graphs without self-loops, i.e., ∀(u, v) ∈ E, u 6= v. Two graphs G = (V,E) and
G′ = (V ′, E′) are isomorphic if there exists a bijective function f : V → V ′

such that (u, v) ∈ E if and only if (f(u), f(v)) ∈ E′. We shall say that f is
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an isomorphism function. The GIP consists in deciding if two given graphs are
isomorphic.

There exists many dedicated algorithms for solving GIPs such as, e.g., [2–4].
These algorithms are often very efficient (eventhough their worst case complex-
ities are exponential). However, such dedicated algorithms can hardly be used
to solve more specific problems, such as isomorphism problems with additional
constraints, or larger problems that include GIPs.

An attractive alternative to these dedicated algorithms is to use Constraint
Programming (CP), which provides a generic framework for solving any kind of
Constraint Satisfaction Problems (CSPs). Indeed, GIPs can be transformed into
CSPs in a very straightforward way [5], so that one can use generic constraint
solvers to solve them. However, when transforming a GIP into a CSP, the global
semantic of the problem is lost and replaced by a set of binary constraints. As a
consequence, using CP to solve GIPs may be less efficient than using dedicated
algorithms which have a global view of the problem.

In order to allow constraint solvers to handle GIPs in a global way so that
they can solve them efficiently without loosing CP’s flexibility, we have in-
troduced in [1] a global constraint dedicated to graph isomorphism problems
(the gip constraint), and we have defined a partial consistency —the label-
consistency— and an associated filtering algorithm that exploits all edges of
the graphs in a global way to narrow variable domains. This filtering algorithm
is very powerful in the sense that, for many instances, achieving it allows one
to either detect an inconsistency, or reduce variable domains to singletons so
that the global consistency can be easily checked. However, achieving the label-
consistency implies the computation of the shortest path between every pair of
vertices of the graphs, which is time expensive.

Motivation and outline of the paper. The goal of this paper is to define
another partial consistency for the global constraint gip: the iterated local label
consistency (ILL-consistency). This one is based on an iterated relabelling of
the graph vertices and does not need to compute the distance matrix of the
graphs. As a consequence, achieving this consistency is less time expensive than
achieving the label-consistency.

Section 2 recalls some complexity results for GIPs and an overview of exist-
ing approaches for solving these problems. We also recall the definition of the
global constraint gip and the label-consistency proposed in [1]. In section 3, we
introduce the iterated local label consistency (ILL-consistency), a partial consis-
tency for the gip constraint based on a relabelling technic of the graph vertices
from the direct neighborhood of the vertices. Section 4 experimentally compares
label-consistency, ILL-consistency and Nauty, the fastest known algorithm for
graph isomorphism problem.



A Filtering Algorithm for Graph Isomorphism 95

2 Approaches for solving graph isomorphism problems

Complexity. The theoretical complexity of the GIP is not exactly stated: the
problem is inNP but it is not known to be in P nor to beNP -complete [6] and its
own complexity class, isomorphism-complete, has been defined. However, some
topological restrictions on graphs (e.g., planar graphs [7], trees [8] or bounded
valence graphs [9]) make this problem solvable in a polynomial time.

Dedicated algorithms. To solve a GIP, one has to find a one to one mapping
between the vertices of the two graphs. The search space composed of all possible
mappings can be explored in a “Branch and Cut” way: at each node of the search
tree, some graph properties (such as edges distribution, vertices neighbourhood)
can be used to prune the search space [4, 2]. This kind of approach is rather
efficient and can be used to solve GIPs up to a thousand or so vertices very
quickly (in less than one second).

[3] proposes another rather dual approach, which has been originally used to
detect graph automorphisms (i.e., non trivial isomorphisms between a graph and
itself). The idea is to compute for each vertex vi a unique label that characterizes
the relationships between vi and the other vertices of the graph, so that two
vertices are assigned with a same label if and only if they can be mapped by
an isomorphism function. This approach is implemented in the system Nauty
which is, to our knowledge, the most efficient solver for the graph isomorphism
problem. Nauty compute a canonical representation of a graph: two graphs have
the same representation with Nauty if and only if they are isomorphic. The time
needed to solve a GIP with Nauty is comparable to “Branch and Cut” methods
but Nauty is often the quickest for large graphs [10].

Hence dedicated algorithms are very efficient to solve GIPs in practice, even-
though their worst case complexities are exponential. However, they are not
suited for solving more specific problems, such as GIPs with additional con-
straints. In particular, vertices and edges of graphs may be associated with labels
that characterize them, and one may be interested in looking for isomorphisms
that satisfy additional constraints on these labels. This is the case, e.g., in [11]
where graphs are used to represent molecules, or in computer aided design (CAD)
applications where graphs are used to represent design objects [12].

Constraint Programming. CP is a generic tool for solving constraint satis-
faction problems (CSPs), and it can be used to solve GIPs. A CSP [13] is defined
by a triple (X,D,C) such that :

– X is a finite set of variables,
– D is a function that maps every variable xi ∈ X to its domain D(xi), i.e.,

the finite set of values that can be assigned to xi,
– C is a set of constraints, i.e., relations between some variables which restrict

the set of values that can be assigned simultaneously to these variables.
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Binary CSPs only have binary constraints, i.e., each constraint involves two
variables exactly. We shall note C(xi, xj) the binary constraint holding between
the two variables xi and xj , and we shall define this constraint by the set of
couples (vi, vj) ∈ D(xi)×D(xj) that satisfy the constraint.

Solving a CSP (X,D,C) involves finding a complete assignment, which as-
signs a value vi ∈ D(xi) to every variable xi ∈ X, such that all the constraints
in C are satisfied.

CSPs can be solved in a generic way by using constraint programming lan-
guages (such as CHOCO [14], Ilog solver [15], or CHIP [16]), i.e., programming
languages that integrate algorithms for solving CSPs. These algorithms (called
constraint solvers) are often based on a systematic exploration of the search
space, until either a solution is found, or the problem is proven to have no so-
lution. In order to reduce the search space, this kind of complete approach is
combined with filtering technics that narrow variables domains with respect to
some partial consistencies such as Arc-Consistency [13, 17, 18].

Using CP to solve GIPs. Graph isomorphism problems can be formulated as
CSPs in a very straightforward way, so that one can use CP languages to solve
them [19, 11]. Given two graphs G = (V,E) and G′ = (V ′, E′), we define the
CSP (X,D,C) such that :

– a variable xu is associated with each vertex u ∈ V , i.e., X = {xu/u ∈ V },
– the domain of each variable xu is the set of vertices of G′ that have the same

number of adjacent vertices than u, i.e.,

D(xu) = {u′ ∈ V ′ / |{(u, v) ∈ E}| = |{(u′, v′) ∈ E′}|}

– there is a binary constraint between every pair of different variables (xu, xv) ∈
X2, denoted by Cedge(xu, xv). This constraint expresses the fact that the ver-
tices of G′ that are assigned to xu and xv must be connected by an edge in
G′ if and only if the two vertices u and v are connected by an edge in G,
i.e.,

if (u, v) ∈ E, Cedge(xu, xv) = E′

otherwise Cedge(xu, xv) = {(u′, v′) ∈ V ′2 | u′ 6= v′ and (u′, v′) 6∈ E′}

Once a GIP has been formulated as a CSP, one can use constraint programming
to solve it in a generic way, and additional constraints, such as constraints on
vertex and edge labels, may be added very easily.

Global constraint and label-consistency. When formulating a GIP into a
CSP, the global semantic of the problem is decomposed into a set of binary
“edge” constraints, each of them expressing locally the necessity either to main-
tain or to forbid one edge. As a consequence, using CP to solve GIPs will often
be less efficient than using a dedicated algorithm.

To improve the solution process of CSPs associated with GIPs, one can add
an allDiff global constraint, in order to constrain all variables to be assigned to
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different vertices [11]. This constraint is redundant as each binary edge constraint
only contains couples of different vertices, so that it will not be possible to assign
a same vertex to two different variables. This global constraint allows a constraint
solver to prune the search space more efficiently, and therefore to solve GIPs
quicker.

However, even with allDiff global constraint, CP does not appear to be com-
petitive with dedicated algorithms because most of the global semantic of the
problem is still lost. Hence, we have introduced in [1] the global constraint gip to
define a graph isomorphism problem. We have also defined a partial consistency
—the label consistency— that strongly reduces the search space. This partial
consistency is based on a labelling of the graph vertices based on the number
of vertices at a given distance. We have shown that this partial consistency is
very powerful and achieving it generally allows to either detect an inconsistency,
or reduce variable domains to singletons so that the global consistency can be
easily checked. However, achieving the label-consistency implies the computa-
tion of the shortest path between every pair of vertices of the graphs and as a
consequence it is time expensive.

3 ILL-consistency

We introduce in this section another filtering algorithm for the graph isomor-
phism problem global constraint. The main idea of this filtering is to label every
vertex with respect to its relationships with the other vertices of the graph. This
labelling is “isomorphic-consistent” —in the sense that two vertices that may
be associated by an isomorphism function necessary have a same label— so that
it can be used to narrow the domains of the variables. These labels are built
iteratively: starting from an empty label, each label is extended by considering
the labels of its adjacent vertices. This labelling extension is iterated until a fixed
point is reached. This fixed point corresponds to a new partial consistency for
the graph isomorphism problem.

3.1 Isomorphic-consistent labelling functions

Definition. A labelling function is a function denoted by α that, given a graph
G = (V,E) and a vertex v ∈ V , returns a label αG(v). This label does not depend
on the names of the vertices but only on the relation defined by E between v
and the other vertices of the graph. We shall note image(αG) the set of labels
returned by α for the vertices of a given graph G.

Definition. A labelling function α is isomorphic-consistent if for every pair of
isomorphic graphs G = (V,E) and G′ = (V ′, E′), and for every isomorphism
function f between G and G′, the vertices that are matched by f have the same
labels, i.e., ∀v ∈ V, αG(v) = αG′(f(v)).
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Example. Let us define the labelling function that labels each vertex by its
degree, i.e.,

∀v ∈ V, α(V,E)(v) = |{u ∈ V, (u, v) ∈ E}|

This labelling function is isomorphic-consistent as isomorphism functions only
match vertices that have a same number of adjacent vertices.

An isomorphic-consistent labelling function can be used to narrow the do-
mains of the variables of a CSP associated with a GIP: the domain of every
variable xu associated with a vertex u can be narrowed to the set of vertices
that have the same label than u. We shall say that a labelling function α is
stronger than another labelling function α′ if it allows a stronger narrowing (or
an equivalent narrowing), i.e., if

∀(u, v) ∈ V 2, α′G(u) 6= α′G(v)⇒ αG(u) 6= αG(v)

3.2 Isomorphic-consistent local relabelling function

We propose to iteratively strengthen an isomorphic-consistent labelling function:
at each step, the label of every vertex v is extended with a set of couples (k, l)
such that k is the number of vertices that are adjacent to v and that are labelled
with l.

Definition. Given a graph G = (V,E) and a labelling function αiG for this graph,
we define the new labelling function αi+1

G : V → image(αiG)×℘(N∗×image(αiG))
as follows:

∀v ∈ V, αi+1
G (v) = αiG(v) · {(k, l) , k ∈ N, l ∈ image(αiG),

k = |{u ∈ V, (v, u) ∈ E ∧ αiG(u) = l ∧ k > 0}|}

AA

JJ

BB

CC

DD
EEFF

GG

HH

II

Fig. 1. A graph G = (V,E)
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Example. For the graph G = (V,E) displayed in figure 1, and the labelling
function α0

G that associates the same empty label ∅ to every vertex of G, we
have α1

G(A) = ∅ ·{(4, ∅)} because vertex A is labelled by ∅ and has four adjacent
vertices that are all labelled with ∅ whereas α1

G(B) = ∅ · {(3, ∅)} because vertex
B is labelled by ∅ and has three adjacent vertices that are all labelled with ∅.

Theorem 1. Given an isomorphic-consistent labelling function αi, the labelling
function αi+1 is also an isomorphic-consistent labelling function.

Proof. If αi is an isomorphic-consistent labelling function then, given the def-
inition of an isomorphic-consistent labelling function, for any pair of isomor-
phic graphs G = (V,E) and G′ = (V ′, E′) and for any isomorphism func-
tion f between G and G′, ∀u ∈ V, αiG(u) = αiG′(f(u)). Furthermore, as f
is an isomorphism function, ∀(u, v) ∈ V 2, (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′.
As a consequence, ∀u ∈ V,∀l ∈ image(αiG), |{v/(u, v) ∈ E ∧ αiG(v) = l}| =
|{v′/(f(u), v′) ∈ E′ ∧ αiG′(v′) = l}| (because f is a bijective function) and
∀u ∈ V, αi+1

G (u) = αi+1
G′ (f(u)). The property holds.

A direct consequence of the theorem 1 is that the function αi+1 can be used
to extend the labels of the vertices of two graphs G and G′ without changing
the isomorphism properties between G and G′.

Theorem 2. Given a graph G = (V,E) and a labelling function αi, the function
αi+1 is stronger than αi, i.e.,

∀(u, v) ∈ V 2, αiG(u) 6= αiG(v)⇒ αi+1
G (u) 6= αi+1

G (v)

Proof. Straightforward from the fact that each label αi(u) is a prefix of the label
αi+1(u).

A direct consequence of theorem 2 is that, when relabelling the vertices of
two graphs G and G′ with the function αi+1, the domain of each variable xv of
the CSP corresponding to a GIP between G and G′ always has a size inferior or
equal than the domain of xv when the vertices are only labelled by αi. In other
words, the function αi+1 can filter the variable domains.

3.3 Iterative local labelling

Relabelling the graph vertices with the function αi+1 can introduce more dif-
ferent labels and as a consequence can reduce the variable domains. One can
propagate these domain reductions by iterating this relabelling step until a fixed
point is reached, i.e., until the number of different labels is not any longer in-
creased.

Starting from an initial isomorphic-consistent labelling α0, we define a se-
quence α1, α2, α3, ... of labelling functions such that each step k of this sequence
corresponds to a relabelling of the vertices from the labels given at the step
k−1. Theorem 1 states that each labelling function αk is isomorphic-consistent,
whereas theorem 2 states that each labelling function αk+1 is stronger than the
previous one αk. Finally, theorem 3 shows that this sequence reaches a fixed
point.
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Theorem 3. Given a graph G = (V,E), if ∃k ∈ N∗ such that ∀(u, v) ∈ V 2, αkG(u) =
αkG(v) ⇒ αk+1

G (u) = αk+1
G (v) then, ∀j ≥ k,∀(u, v) ∈ V 2, αkG(u) = αkG(v) ⇒

αjG(u) = αjG(v).

Proof. Given its definition, we can see that the function αi+1 does not use the
labels given by αi themselves but only an operator of equality between these
labels. As a consequence, when a relabelling of the vertices does not change
the equality properties between the vertex labels, any further relabelling cannot
change these equality properties any more.

Roughly speaking, the theorem 3 shows that, when a step of the sequence αk

does not increase the number of different vertex labels, a fixed point is reached
and the relabelling process can be stopped.

Finally, we can trivially show that this fixed point is reached in at most |V |
steps.

3.4 ILL-consistency and associated filtering algorithm

We propose to use the sequence of isomorphic-consistent labelling functions de-
fined previously to narrow the domains of the variables of a CSP associated with
a GIP. We define the initial labelling function α0 as the function that associates
the same label ∅ to each vertex. Starting from this initial labelling function,
we can then compute a sequence of stronger labelling functions until a fixed
point is reached. The last labelling function can be used to define a new partial
consistency for a global constraint for the graph isomorphism problem.

Let us recall the syntax proposed in [1] for this global constraint: it is defined
by the relation gip(V,E, V ′, E′, L) where

– V and V ′ are 2 sets of values such that |V | = |V ′|,
– E ⊆ V × V is a set of pairs of values from V ,
– E′ ⊆ V ′ × V ′ is a set of pairs of values from V ′,
– L is a set of couples which associates one different variable of the CSP to

each different value of V , i.e., L is a set of |V | couples of the form (xu, u)
where xu is a variable of the CSP and u is a value of V , and such that for
any pair of different couples (xu, u) and (xv, v) of L, both xu and xv are
different variables and u 6= v.

Semantically, the global constraint gip(V,E, V ′, E′, L) is consistent if and only
if there exists an isomorphism function f : V → V ′ such that for each couple
(xu, u) ∈ L there exists a value u′ ∈ D(xu) so that u′ = f(u).

Definition. The global constraint gip(V,E, V ′, E′, L) corresponding to a graph
isomorphism problem between G = (V,E) and G′ = (V ′, E′) is iterated-local-
label consistent (ILL-consistent) if and only if:

∀(xu, u) ∈ L, ∀u′ ∈ D(xu),∀k ∈ N , αkG(u) = αkG′(u
′)

where α0 is the labelling function that associates the same label ∅ to each vertex.
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To make the gip constraint ILL-consistent, we just have to compute the
sequence α1, α2, ... of labelling functions for each graph G and G′ until a fixed
point is reached and to remove from the domain of each variable xu associated
to a vertex u ∈ V the values u′ ∈ D(xu) such that αkG(u) 6= αkG′(u

′).

Note that this process may be stopped before reaching the fixed point. We
can use every new labelling function αi to narrow the domains and, when all the
variable domains are reduced to a singleton or when a variable domain becomes
empty, the global consistency of the constraint gip can be easily checked.

At each step of the sequence, the vertex labels become larger and compar-
ing such labels can be costly in time and in memory. However, one can easily
show that these labels can be renamed after each relabelling step, provided that
the same name is associated with identical labels in the two graphs. As a con-
sequence, at the end of each relabelling step, labels are renamed with unique
integers in order to keep the cost in memory and in time constant at each step
of the sequence.

When using appropriate data structures, and provided that labels can be
compared in constant time, each relabelling step for a graph G = (V,E) has a
time complexity of O(|E|): for each vertex, one has to look at the labels of the
vertices that are adjacent to it. Renaming the labels at each step can be done in a
time proportional to the size of the longest label of image(α) (i.e., in the worst
case |E|). As a consequence, as achieving the ILL-consistency needs at most
|V | relabelling steps (in the worst case), the maximum time complexity of our
filtering algorithm is O(|V |×|E|), the same than for the filtering based on labels
[1]. However, we show in section 4 that the average complexity of establishing
label-consistency is much more expensive than establishing ILL-consistency.

3.5 Complete example

We propose here a complete example of our relabelling procedure on the graph G
of the figure 1. At each step of the sequence, the vertices are renammed by labels
li. For reason of space, we shall note αkG(S) when ∀(u, v) ∈ S2, αkG(u) = αkG(v).

At step 0:

α0
G({A,B,C,D,E, F,G,H, I, J}) = ∅

The next three relabelling steps successively define α1, α2 and α3 as follows.
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α1
G({A,D,F,H}) = ∅.{(4, ∅)} ⇒ l1,1
α1
G({B,C,E,G, I, J}) = ∅.{(3, ∅)} ⇒ l1,2

α2
G({A,D,F,H}) = l1,1.{(2, l1,1), (2, l1,2)} ⇒ l2,1
α2
G({B,C}) = l1,2.{(1, l1,2), (2, l1,1)} ⇒ l2,2
α2
G({E,G, I, J}) = l1,2.{(1, l1,1), (2, l1,2)} ⇒ l2,3

α3
G(A) = l2,1.{(2, l2,1), (2, l2,2)} ⇒ l3,1
α3
G({B,C}) = l2,2.{(2, l2,1), (1, l2,3)} ⇒ l3,2
α3
G({D,F}) = l2,1.{(1, l2,2), (1, l2,3), (2, l2,1)} ⇒ l3,3
α3
G({E, J}) = l2,3.{(1, l2,1), (1, l2,2), (1, l2,3)} ⇒ l3,4
α3
G({G, I}) = l2,3.{(1, l2,1), (2, l2,3)} ⇒ l3,5
α3
G(H) = l2,1.{(2, l2,1), (2, l2,3)} ⇒ l3,6

We note that, at step 3, two vertices (A and H) have unique labels. As a
consequence, we do not need to relabel these vertices during the next steps. The
vertex A (resp. H) keeps the label l3,1 (resp. l3,6).

α4
G({B,C}) = l3,2.{(1, l3,1), (1, l3,3), (1, l3,4)} ⇒ l4,1
α4
G(D) = l3,3.{(1, l3,1), (1, l3,2), (1, l3,5), (1, l3,6)} ⇒ l4,2
α4
G(E) = l3,4.{(1, l3,2), (1, l3,5), (1, l3,6)} ⇒ l4,3
α4
G(F ) = l3,3.{(1, l3,1), (1, l3,2), (1, l3,4), (1, l3,6)} ⇒ l4,4
α4
G(G) = l3,5.{(1, l3,3), (1, l3,4), (1, l3,5)} ⇒ l4,5
α4
G(I) = l3,5.{(1, l3,4), (1, l3,5), (1, l3,6)} ⇒ l4,6
α4
G(J) = l3,4.{(1, l3,2), (1, l3,3), (1, l3,5)} ⇒ l4,7

At step 4, only two vertices (B and C) share the same label.

α5
G(B) = l4,1.{(1, l3,1), (1, l4,4), (1, l4,7)} ⇒ l5,1
α5
G(C) = l4,1.{(1, l3,1), (1, l4,2), (1, l4,3)} ⇒ l5,2

From the step 5, all the vertices have different labels. As a consequence, any
graph isomorphism problem involving the graph G of the figure 1 will be solved
by our filtering technic.

3.6 Propagation during a search tree process

ILL-filtering does not always reduce every domain to a singleton so that it may
be necessary to explore the search space. For example, if all the vertices of the
graph have the same degree (i.e., the same number of neighbours), our filtering
algorithm is totaly inefficient. Some GIP may have more than one solution (when
the graphs are automorph) and as a consequence, some variable domains are not
singletons.

When ILL-filtering does not reduce the domain of each variable to a singleton,
one has to explore the search space composed of all possible assignments by
constructing a search tree. At each node of this search tree, the domain of one
variable is splitted into smaller parts, and then filtering technics are applied to
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narrow variable domains with respect to some local consistencies. These filtering
technics iteratively use constraints to propagate the domain reduction of one
variable to other variable domains until either a domain becomes empty (the
node can be cut), or a fixed-point is reached (a solution is found or the node
must be splitted).

To propagate the domain reductions implied by a search tree assignment,
a first possibility is to use the set of Cedge constraints as defined in section 2.
However, we can still use our filtering method to propagate more strongly the
domain reductions. Indeed, assigning a value to a variable corresponds to giving
the same unique label to the two corresponding vertices. As a consequence, we
can use this new label to restart the relabelling process until it reaches another
fixed point.

4 Comparative experimental results

In this section, we compare the efficiency of the label-consistency introduced in
[1] and our new ILL-consistency on randomly generated graphs. We also compare
these results with the results of Nauty, the best known algorithm dedicated to
the graph isomorphism problem.

Nauty is a complete algorithm: it always solves a graph isomorphism problem.
On the contrary, label-consistency and ILL-consistency are only partial consis-
tencies. However, when labeling vertices by using these consistencies, if there is
as many vertex labels than vertices, each variable domain of a GIP involving G
becomes a singleton and the global consistency of the CSP is trivially checked.

As a consequence, we choose the following experimental protocol: for each
considered graph G = (V,E), we compute the vertex labels with the label-
consistency of [1] and the vertex labels with the sequence α until reaching its
fixed point. We then count the number of different vertex labels: if there is |V |
different labels, any GIP involving G will be perfectly filtered and the problem
will be trivially solved.

Note that we only consider non automorphic graphs, i.e., the only existing
isomorphism function between G and itself is the identity function. As a conse-
quence, for each considered graph G = (V,E), our algorithm perfectly filters the
GIP involving G if and only if the number of different vertex labels is equal to
|V |.

We consider randomly generated graphs from the Foggia et al.’s benchmark
[20]. However, as the number of vertices of the graphs of this benchmark is limited
to 1000, we have also generated bigger graphs with a Nauty tool (genrang). As
a consequence, we consider graphs having between 200 and 10000 vertices and
three different edge density: 1%, 5% and 10% (the three densities proposed by
[20]). For each size of graphs and each density, the given results are the average
results on 100 graphs.

In order to compare the influence of the edge density, we also generate a set
of graphs having 1000 vertices and an edge density varying from 1% to 50% (1%
by 1%, 100 graphs for each density). We do not test with graphs that have higher
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densities because, for the three considered algorithms, it is then more interesting
to consider the complementary graph.

4.1 Number of labels

Nauty is a complete algorithm. As a consequence, it always found a perfect
filtering (i.e., a different label for each vertex).

On the contrary, label-consistency and ILL-consistency are only partial con-
sistencies and do not find systematicaly a unique label for each vertex. However,
except for little graphs with a low density (less than 400 vertices with an edge
density of 1%), these two partial consistencies have actually found a perfect la-
belling of the vertices. As a consequence, label-consistency and ILL-consistency
always solve the GIP involving the graphs having more than 400 vertices. Fur-
thermore, the ILL-consistency is obtained at step 2 for all graphs having more
than 800 vertices.

|V | |Lα| Tα k |Llabel| Tlabel
200 199,64 0 3,40 191,92 0,01

400 400,00 0 2,88 399,87 0,07

600 600,00 0 2,14 600,00 0,19

800 800,00 0,01 2,01 800,00 0,36

Table 1. Results for the little graphs having a density of 1%. Each line successively dis-
plays: the number of vertices |V | of the graphs, the average number of labels |Lα| (resp.
|Llabel|) obtained by the ILL-consistency (resp. label-consistency), the time needed Tα
(resp. Tlabel) in seconds to establish this consistency and k, the average number of steps
needed to reach the fix point of the sequence α.

Results for the little graphs having a density of 1% are given into table 1.
For some of these graphs, the labeling process does not give an unique label to
each vertex. However, the average number of different labels shows an extremly
strong reduction of the variable domains. These results also show that ILL-
consistency filter the variable domains more strongly than label-consistency and
is less expensive to compute.

4.2 Execution time

We compare here the time needed to compute our filtering and to execute Nauty.
All tests have be done on a PC at 1,7Ghz and 512MB of RAM running Linux
(kernel 2.6).

The first graph of the figure 2 shows that, for the three algorithms, the
execution time increases when the density of the graphs increases. The general
behavior of the three algorithms is the same whatever the edge density is.
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Fig. 2. Execution time w.r.t. edge density for graphs having 1000 vertices and w.r.t.
graph size for graph having a density of 1%, 5% or 10%.

The label-consistency is clearly more expensive than the two others filtering
technics: we had to interrupt the tests of label-consistency for graphs having
up more than 3000 vertices. To establish the label-consistency and the ILL-
consistency both have the same worst case complexity. However, as the fix point
of the ILL-consistency is reached in only k steps with k << |V |, ILL-consistency
is generally one order less expensive than label-consistency.

If we compare the ILL-consistency to Nauty, we can show that these two algo-
rithms have a very similar behavior. However, Nauty is generally 3 times as fast
as ILL-consistency and is still the best algorithm for graph isomorphism prob-
lems. Finally, with 512MB of RAM, our algorithm based on the ILL-consistency
begins to swap with graphs having up to 9800 vertices.

5 Conclusion

We have introduced in this paper a new partial-consistency (the ILL-consistency)
for the global constraint gip defining graph isomorphism problems. This ILL-
consistency is based on the computation, for each vertex u, of a sequence of
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labels which characterizes the relationship between u and its neighbours that
can be viewed as a vertex invariant.

We compare ILL-consistency and label-consistency based on distances be-
tween each couple of vertices of the graphs proposed in [1]. These two consisten-
cies are very efficient in the sense where, on randomly generated graphs having
up to 400 vertices, achieving them will allow a constraint solver to either detect
an inconsistency, or reduce variable domains to singletons so that the global
consistency can be easily checked.

These two consistencies have both a theoritical worst case complexity of
O(|V |×|E|) operations for graphs having |V | vertices and |E| edges. However our
experimental results show that ILL-consistency is faster and tigher than label-
consistency. Comparing to Nauty, ILL-consistency appear to be competitive.
However, Nauty is still 3 times faster than it and is still the fastest algorithm
known for graph isomorphism problems.

Our experimentations show that ILL-consistency is strong enough to solve
GIP with non automorph randomly generated graphs. Further work will concern
the integration of our filtering algorithm into a constraint solver (such as CHOCO
[14]), in order to experimentally validate and evaluate it on different kinds of
graphs.
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