
M.R.C. van Dongen (Ed.)

Proceedings of the Second International Workshop on

Constraint Propagation And
Implementation, Volume I
Contributed Papers

Sitges, Spain, October 2005

Held in conjunction with the
Eleventh International Conference on
Principles and Practice of
Constraint Programming (CP 2005)

II

Organisation

CPAI’2005 Organising Committee

Marc van Dongen Cork Constraint Computation Centre, Ireland
Christophe Lecoutre Université d’Artois, France
Rick Wallace Cork Constraint Computation Centre, Ireland
Yuanlin Zhang Texas Tech University, USA

CPAI’2005 Programme Committee

Fréd́eric Boussemart Université d’Artois, France
Fred Hemery Université d’Artois, France
Christophe Lecoutre Université d’Artois, France
Peter van Beek University of Waterloo, Canada
Marc van Dongen Cork Constraint Computation Centre, Ireland
Pascal Van Hentenryck Brown University, USA
Willem-Jan van Hoeve Cornell University, USA
Rick Wallace Cork Constraint Computation Centre, Ireland
Roland Yap National University of Singapore, Singapore
Yuanlin Zhang Texas Tech University, USA

CPAI’2005 Competition Organising Committee

Fréd́eric Boussemart Université d’Artois, France
Fred Hemery Université d’Artois, France
Mark Hennessy Cork Constraint Computation Centre, Ireland
Deepak Mehta Cork Constraint Computation Centre, Ireland
Christophe Lecoutre Université d’Artois, France
Radoslaw Szymanek Cork Constraint Computation Centre, Ireland
Marc van Dongen Cork Constraint Computation Centre, Ireland
Rick Wallace Cork Constraint Computation Centre, Ireland
Yuanlin Zhang Texas Tech University, USA

Preface

Constraint Propagation is an essential part of many constraint programming systems.
Sitting at the heart of a constraint solver, it consumes a significant portion of the time
that is required for problem solving.

The Second International Conference on Constraint Propagation and Implemen-
tation (CPAI’2005) was convened to study the design and analysis of new propagation
algorithms as well as practical issues in and the evaluation of implementing existing and
new constraint propagation algorithms in settings ranging from special purpose solvers
to programming language systems.

The CPAI’2005 workshop proceedings are divided into two volumes. This is Vol-
ume I of the proceedings. It is dedicated to the first part of the workshop: a “regular-
style” workshop. It includes eight contributed papers. Volume II is dedicated to the
second part of the workshop: the First International CSP Solver Competition.

The organisors wish to thank all authors for submitting their work, all partici-
pants of the solver competition for entering their solver, the invited speakers, Christian
Schulte and Laurent Simon, the CP’2005 Workshop/Tutorial Chairs, Alan Frish and
Ian Miguel, the members of the CPAI’2005 Programme Committee, and the members
of the CPAI’2005 Competition Organising Committee. They wish to express their grati-
tude to Gene Freuder for providing support to the competition in the form of computing
power and system administrator’s time. Finally, they wish to thank Peter MacHale for
his technical support of the solver competition.

Marc van Dongen
Christophe Lecoutre

Rick Wallace
Yuanlin Zhang

September 2005

Table of Contents

Learning Propagation Policies. 1
Susan L. Epstein, Richard Wallace, Eugene Freuder and Xingjian Li

Structure and Problem Hardness: Asymmetry and DPLL Proofs in SAT-Based
Planning . 17
Jörg Hoffmann, Carla Gomes and Bart Selman

Bound Consistencies for the Discrete CSP. 17
Christophe Lecoutre and Julien Vion

Maintaining Probabilistic Arc Consistency. 33
Deepak Mehta and M.R.C. van Dongen

Static Value Ordering Heuristics for Constraint Satisfaction Problems. 49
Deepak Mehta and M.R.C. van Dongen

Constraint Propagation versus Local Search for Conditional and Composite
Temporal Constraints. 63
Malek Mouhoub and Amrudee Sukpan

Heuristic Policy Analysis and Efficiency Assessment in Constraint
Satisfaction Search. 79
Richard J. Wallace

Declarative Approximate Graph Matching Using A Constraint Approach. 93
St́ephane Zampelli, Yves Deville and Pierre Dupont

VI

Learning Propagation Policies

Susan L. Epstein1, Richard Wallace2, Eugene Freuder2, Xingjian Li1

1 Department of Computer Science
Hunter College of The City University of New York

695 Park Avenue, New York, NY 10021 USA
susan.epstein@hunter.cuny.edu

http://www.cs.hunter.cuny.edu/~epstein
2 Cork Constraint Computation Centre
rwallace/efreuder@4c.ucc.ie

Abstract. Propagation is intended to remove from consideration values that
will not lead to a solution. A propagation policy includes preprocessing, selec-
tion of a propagation method, identification of relevant method parameters, and
switching among methods. We show here the significant impact a propagation
policy has on solution time, and that the choice of a good propagation policy
varies with the problem class. We also demonstrate how a propagation policy
can be learned automatically and can substantially improve performance.

1 Introduction

Since the earliest days of the modern study of backtracking (Golumb and Baumert
1965), we have faced the question of the best tradeoff between search and inference:
how much constraint propagation is cost efficient to interleave with backtrack search
choices? The answer is almost certainly “it depends” -- on the problem under consid-
eration, as well as on the method of propagation. This answer, however, provides little
comfort to the constraint programming practitioner. In this paper we extend the Adap-
tive Constraint Engine (ACE) (Epstein and Freuder 2001; Epstein, Freuder et al.
2002) to construct automatically an appropriate “customized propagation policy”
when confronted with a class of problems.

The classic propagation choices are forward checking or maintaining arc consis-
tency, embodied in the FC and MAC algorithms. Forward checking is the minimal
lookahead one must do to assure consistency with previous choices; MAC restores
full arc consistency after every choice. A variety of intermediate methods have been
proposed, which do more propagation than FC but less than AC. We employ here the
restricted propagation methods of (Freuder and Wallace 1991) and develop new vari-
ants. Specifically we develop an AC version of FC-based restricted propagation and
add to restricted propagation the option of thresholds that are functions of search
depth. We also introduce a limited "one-pass" form of AC preprocessing, and the
"meta-method" of switching propagation methods at different search depths.

We show that our new intermediate methods excel in appropriate circumstances.
As expected, however, they too are no panaceas. We would like to use the new and

2 Epstein et al.

old methods together as “building blocks” to be chosen, tuned and combined to best
effect for individual circumstances, but that presents the constraint programmer with a
bewildering array of choices and combinations. This is where ACE comes in.

Specifically, ACE trains on a set of problems from a given class to automatically:
• decide which form of preprocessing to do
• decide whether to use FC, AC, or any of the intermediate propagation methods
• decide upon thresholds for intermediate methods
• decide whether to switch between methods, and determine switching point depths

We call such a set of decisions a propagation policy. The classical propagation poli-
cies are FC (with limited preprocessing) and MAC. We demonstrate that, for a fixed
search method, the customized propagation policies constructed by ACE for various
problem classes sometimes outperform both of the classical extremes and never un-
derperforms them (cf. Chmeiss and Sais, 2004 on FC versus AC). One would expect
that an appropriate propagation policy would depend not just on the problem class,
but also on the search method employed, specifically the variable-ordering and value-
ordering heuristics. We present preliminary evidence to show that ACE can choose
propagation policies appropriate for different search methods as well.

We then provide detailed experiments to suggest that not only is ACE choosing
good propagation policies, but most likely it is choosing essentially the best policies
that can be constructed from the building blocks provided. Our experiments incorpo-
rate a representative sample of such building blocks, but additional variations, old or
new, could naturally be accommodated. In fact, we have effectively demonstrated
here, with the positive results obtained for some of our new methods, and the negative
results obtained for others, that a constraint programmer can throw new ideas into the
mix, and ACE will not be confused, but will sort the wheat from the chaff, using new
ideas appropriate to the circumstances, and eschewing inappropriate ones.

Section 2 describes the building blocks, new and old, from which the propagation
policies are constructed and carefully defines essential terminology. Section 3 de-
scribes how ACE learns a propagation policy. Section 4 presents the results of the
learning experiments. Section 5 provides a more detailed study of various methods
and combinations, which provides further evidence for the ability of some of our new
methods to excel, and further support for the choices that ACE made. Section 6 dis-
cusses related and future work.

2 The building blocks

A constraint satisfaction problem (CSP) is a triple, <X, D, C>, where X is a set of
variables, D is the set of domains for X, and C is a set of constraints on X. A solution
for a CSP is a set of values, one for each variable, that satisfies C. In this paper, we
restrict our discussion to binary constraints. A partial assignment is a set of values for
some of X (the past variables) with the remainder (the future variables) described by
their (possibly reduced) domains. A partial assignment is said to be consistent if it
does not violate C. Search for a solution, then, can be represented as movement from
an initial state where all variables are future variables to a consistent assignment
where all variables are past variables. In the paradigm used here, search alternately

Learning Propagation Policies 3

selects a current variable and then assigns it a value. When a propagation method
executes after each assignment during search, and removes any inconsistent values
from the domains of future variables, the method is said to be maintained. We con-
sider only maintained consistency here.

A binary CSP can also be represented as a labeled graph (a constraint graph),
where each variable is a node, each constraint is an edge, nodes are labeled by their
domains, and edges are labeled by their acceptable value pairs. A pair of nodes that
share an edge are said to be neighbors. The degree of a node is the number of neigh-
bors it has. Here, the density d of a CSP on n variables is the percentage of edges it
includes beyond the n-1 necessary to connect the graph. The tightness t of a graph is
the percentage of possible value pairs each edge excludes. With these parameters, we
represent a class of random problems as <n,m,d,t>, where m is the maximum initial
domain size. For fixed values of n and m, values of d and t that make the problems
particularly difficult are said to lie at the phase transition.

For clarity in our work, we make the following distinctions. Neighborhood consis-
tency (NC) guarantees that, for each variable x, each value in the domains of x’s
neighbors in the constraint graph is consistent with some value in the domain of x.
Forward checking (FC) is an algorithm that combines search with NC propagation
after each choice; it considers those neighbors of the just-assigned variable that are
future variables, compares the neighbors’ domains with the newly-assigned value, and
removes from them any value inconsistent with the new value. Thus FC guarantees
only that any consistent assignment to one variable can be extended to a consistent
partial solution on two variables. Arc consistency guarantees that for every value v in
the domain of each variable x, and for every constraint c C between x and another
variable y, there is a value w in the domain of y such that (v w) satisfies c. MAC is an
algorithm that combines search with AC propagation after each choice. Each test that
a value is supported by another value in a neighboring domain is called a constraint
check. One would expect a higher level of consistency to improve search, but such
consistency demands more computation. Initialization is a propagation pass prior to
search. Let one-pass AC initialization be a process that, before search, examines each
edge once, in both directions, to remove unsupported values. We investigate both one-
pass AC initialization and (full) AC initialization here.

Research results on constraint propagation during search initially favored FC’s
simple one-step lookahead (Haralick and Elliott 1980). Later work indicated that for
hard problems the constraint propagation method of choice was often AC (Sabin and
Freuder 1994). This in turn drove research on clever data structures (Bessière and
Régin 1996; Bessière, Freuder et al. 1999; Bessière and Régin 2001) and elaborate
AC queue management to speed AC’s computation (Lecoutre, Boussemart et al.
2003; Mehta and van Dongen 2005). As a result, maintained arc consistency (MAC)
has become the most popular propagation method. There are many implementations
of MAC. Here we use MAC-3, where each iteration processes a queue of edges, con-
firming for each edge from x to y that the domain values of y are supported by the
domain values of x. Whenever such confirmation reduces the domain of y, edges (y z)
are added to the queue, where z is a future variable and a neighbor of y. Before search,
MAC-3 does a full AC, with an initial queue that includes every edge in the graph.
During search, immediately after variable v is assigned a value, MAC-3 begins with a
queue that includes all the edges from v to future variables that are its neighbors. Our

4 Epstein et al.

implementation has no special queue management and no special treatment for vari-
ables whose domain is reduced to a single value.

Many search methods depend upon the efficacy of a propagation method because
they consider dynamic domain size (the number of values consistent with the current
partial solution) when selecting the next variable. Prominent among these are Min
Domain (which selects as the next variable the future variable with minimum dy-
namic domain size), and Min Domain/Degree (which minimizes the ratio of dynamic
domain size to static degree when selecting a variable). This work assumes, for each
problem class, a known, efficient search method which references dynamic domain
size. Unless otherwise stated, the search method used here is Min Domain/Degree.
Lexical order is used to break ties and in choosing values.

2.1 Problem classes

Intuitively, the degree and the nature of connectivity in the constraint graph can influ-
ence the potential impact of constraint propagation. In the experiments described here,
we therefore consider a variety of random, same-size problems: sparse <30, 8, 0.05,
0.5>, simple <30, 8, 0.1, 0.5>, medium <30, 8, 0.12, 0.5>, and hard
<30, 8, 0.26, 0.34>, the latter so named because they are at a phase transition. Ran-
dom problems, however, have arbitrary constraints and lack reliable structure; they
may obscure some interesting properties of propagation. Therefore, we also consider
three additional problem classes, to explore the impact of propagation further:
• A coloring problem is a CSP with constraints that prohibit assigning the same value
to certain pairs of variables. The coloring problems we use here have 30 variables,
domain size 8, and density 0.58.
• A geometric CSP is formed from a random set of points in the Cartesian plane —
each point becomes a variable in the problem; constraints are formed among any pair
of variables within a specified distance of each other, with additional constraints
added to connect the underlying constraint graph (Johnson, Aragon et al. 1989). The
result is a constraint graph ridden with clusters (not necessarily cliques) of vertices
which can prove particularly difficult for traditional solvers. The geometric problems
we use here have 50 variables, domain size 10, and tightness 0.18. Density is deter-
mined by the distance parameter (here, 0.4) and the spacing of the points in the unit
square; for a sample of 20 of these problems the average density was 0.32.
• An n X n quasigroup is a Latin square of size n: each of n2 variables participates in
2n–2 binary constraints. Quasigroups with holes specifies values for some variables
(the unspecified variables are the holes). The phase transition for quasigroups with
holes is about 33% non-holes (Achlioptas, Gomes et al. 2000). The problems we use
here are 10 X 10 quasigroups with 60 holes and are balanced (i.e., the holes are
evenly distributed across the square). For quasigroups with balanced holes, we use
Min Domain, which selects the same variables as Min Domain/Degree.
All problems have at least one solution, but some geometric and quasigroup problems
are so difficult that some in our training set were never solved within 1000 seconds.

Learning Propagation Policies 5

2.2 Locality and response in propagation

The propagation methods detailed in this section (some of which were first described
in Freuder and Wallace, 1991) seek a balance between AC and FC. Each of them
potentially does more work than FC but less than AC. The intuition behind these
methods is that propagation may only be effective in the neighborhood of the current
variable (locality) or that it is only effective if it reduces the domains of the neighbors
of the current variable substantially (response).

We address locality with two approaches: one extends FC’s reach beyond the cur-
rent variable and its neighbors; the other limits AC to the vicinity of the current vari-
able. More formally, let the p-neighborhood of a variable be the set of all future vari-
ables within distance p of it in the dynamic constraint graph.
• FC-spread first forward checks and then permits propagation to extend beyond the
current variable’s immediate neighbors within its p-neighborhood. FC-spread can be
thought of as a kind of spreading activation, which processes each edge at most once,
and considers only future variables within the p-neighborhood of the current variable.
FC-spread with p = 1 is equivalent to FC.
• AC-bound first forward checks and then performs AC with a queue restricted to
edges within the p-neighborhood of the current variable. AC-bound with p = n-1 is
equivalent to AC. (A similar method was examined recently by Chmeiss and Sais,
2004.)

We address response with approaches whose names include R for “response”:
• FCR first forward checks the neighbors of the current variable and then continues to
check edges only from neighbors whose domain sizes have been reduced by at least
r%. No edge is visited more than once.
• ACR is like FCR, but it permits edges from variables with sufficiently-reduced do-
mains to re-enter the queue.

It may be the case that the appropriate response varies with the search depth, that
is, that r is not uniform during search. We address this with two approaches whose
names include D for “depth”:
• FCRD first forward checks and then performs AC with a queue that includes edges
only from neighbors whose domain sizes have been reduced by at least r%, where r is
a function of search depth. No edge is visited more than once.
• ACRD is like FCRD, but it permits edges from variables with sufficiently-reduced
domains to re-enter the queue.

2.3 Switching and initialization in propagation methods

At some point during search a problem may become so easy that FC is sufficient. The
solver may have already instantiated a backdoor (Ruan, Horvitz et al. 2004) so that
the remainder of the problem is relatively easy. Indeed, the constraint graph may have
become acyclic, in which case, after a single AC pass, it can be solved backtrack-free
with a pre-computed (width-one) ordering of the variables and random value selection
(Freuder 1982). This is documented in Figure 1(a) which plots the number of con-
straint checks calculated with Min Domain/Degree and FCR with different r values
against search depth for the hard random problems. Initially the FCR methods do far

6 Epstein et al.

less work than AC itself, and do substantially less work (as does AC) after some
point, here when about 9 variables have been bound. We tested FCR for r = .1,
.2,…,.9 on a set of 100 problems. We therefore investigate propagation methods of
the form x-FC with terminal switch st, where x is itself a successful method. While no
more than st variables are bound, x-FC uses x to propagate; afterwards it uses FC.

Problems also differ in the number of values removed by AC immediately after the
first few value assignments. We therefore investigate propagation methods of the
form FC-x with initial switch si, where x is itself a successful method. While no more
than si variables are bound, FC-x uses FC to propagate; afterwards it uses x. Finally
we investigated propagation methods of the form FC-x-FC with both initial and ter-
minal switches between FC and a successful method x.

Because most search methods (including Min Domain/Degree) depend in part on
dynamic domain size to select variables for assignment, a solver may derive some
clues on its initial selection of a variable with AC initialization. This is common CSP
practice, as well as part of MAC-3. Nonetheless, we solved 100 problems from each
problem set twice, once with one-pass AC initialization and the second time with AC
initialization, using Min Domain/Degree to search and AC to propagate after the
initialization. There was no statistically significant difference at the 95% confidence
level, in initialization time, in solution time, or in total time between AC initialization
and one-pass AC initialization in any problem class. We therefore chose to make
either one-pass AC or AC initialization our final building block.

3 The learning algorithm

Tweaking parameters empirically is tedious and inexact. Ideally, a solver should learn
which propagation policy to use. We have enhanced ACE to learn a good propagation
policy for a fixed search method and problem class as follows. (A high-level synopsis
appears in Figure 2.) The program first solves a set of problems (here, 100) with FC
and gathers statistics on the response (percentage reduction in domain size) that it
accomplishes as it does so. This data is stored by search depth. The same problems

 (a) (b)

Figure 1: (a) The number of constraint checks with Min Domain/Degree on 100 random prob-
lems in <30, 8., 0.26, 0.34> for FCR propagation with r = .1, .2…, .9. (b) Running time average
and standard deviation for these runs. Note that the best time appears to be for r = 0.3.

Learning Propagation Policies 7

are all reused at every stage in the process described here. One method was judged
superior to another if it solved more problems (occasional geometric and quasigroup
problems went unsolved in the 1000-second time limit under some propagation meth-
ods), or if it had an initialization plus search time that was statistically significantly
better, or if it had a lower median time, or if it had a lower average time, in that order.
(Because poor propagation policies often produced highly skewed distributions of
performance, we emphasize, and report, median times here.) In any tie, the method
simpler to compute was preferred.

ACE tests FCR on the problems and attempts to accelerate it. A higher r value re-
sults in less propagation from FCR or ACR. ACE begins with r = 1/m and increases r
by 1/m and retests on the 100 problems as long as there is no statistically significant
increase in time to solution. (Recall that m is the maximum domain size.) ACE also
tests FCRD using the data by search depth already collected. (Parameters are not
changed for the D methods.) The best among FC, FCR with the best observed r, and
FCRD becomes the foundation method f for propagation. Then the entire process is
repeated, beginning this time with AC, and resulting in a second foundation method a.
(To make ACR’s queue more selective than AC’s, however, r begins at 2/m instead of
1/m.) For example, in a learning run on 100 simple random problems, ACE found f =
FCR with r = 0.25 and a = AC.

Then ACE reruns f and a with the increased overhead of monitoring for the point at
which the graphs become acyclic. ACE then turns off the acyclic computation and
tests f-FC and a-FC. (The intuition here is that a late-enough terminal switch to FC
should be relatively safe, even without the width-one order.) First ACE tests a termi-
nal switch st that is the minimum of the greatest search depth at which any domain
reduction occurred and the greatest search depth at which any problem became
acyclic in the 100 problems. As long as there is no statistically significant increase in
time to solution, ACE continues to reduce st by 1. At this point the foundation meth-
ods are of the form f-FC and a-FC (unless late switching reduced performance or a
base method was FC already). In our example, the foundation methods were now f =
FCR with r = 0.25 and a = AC-FC with st = 25.

Next, unless a base method is FC, ACE fixes any terminal switch st and tests FC-f-
FC and FC-a-FC, beginning with si = 1 and increasing the initial switch until there is
a statistically significant increase in time to solution. (If the two switches for FC-x-FC
converge to the same value, ACE reverts to method x.) In our example, f became FC-
FCR with r = 0.25 and si = 2, while a became FC-AC-FC with si = 2 and st = 25. Then
ACE compares the times for f and a, and chooses the more effective propagation
method, in this case f.

For initialization method m in {one-pass AC, AC}
 f fastest method among {FC, FCR, FCRD}
 a fastest method among {AC, ACR, ACRD}
 Accelerate f and a by late FC
 Accelerate f and a by early FC
 Select b(m), the faster of FC-f-FC and FC-a-FC
Select the faster of b(one-pass AC) and b(AC)

Figure 2:ACE’s high-level algorithm for learning a propagation policy.

8 Epstein et al.

ACE runs this entire procedure, from foundation methods on, twice: once with
one-pass AC initialization and again with AC initialization. It thereby learns a propa-
gation policy with an initialization. The example above was for one-pass AC initiali-
zation on the simple problems; with AC initialization, ACE found f = FC-FCR with r
= 0.25 and si = 2, and a = FC-AC-FC with si = 2 and st = 25.. Ultimately, ACE pre-
ferred the latter.

4 Results with learning

We had ACE learn to propagate for each of the classes described in Section 2. The
results appear in Table 1. Note that the propagation policy learned does indeed vary
by class. Of course, it is necessary to confirm these results on a separate set of data.

Table 1:Best propagation policies learned by ACE on 100 problems, based on initialization
plus search time. Integer parameters are switch points; decimal parameters are r values. Times
in seconds (mean µ, median md, and std deviation) are shown for a second set of problems in
the same class: for FC (with one-pass AC initialization), for AC (with AC initialization), and
for ACE’s learned policy. Improvement is time reduction by ACE over each of FC and AC.

 Times Improvement
Class ACE learns FC AC ACE FC AC

Sparse
random

ACR-FC 0.75,23
AC initialization

µ
md

0.05
0.05
0.01

0.05
0.05
0.00

0.05
0.05
0.02

Same
Same

Same

Simple
random

ACR-FC 0.25, 23
AC initialization

µ
md

0.25
0.12
0.50

0.12
0.09
0.06

0.10
0.08
0.09

60%
33%

17%
11%

Medium
random

ACR 0.25
one-pass AC
initialization

µ
md

0.32
0.24
0.28

0.17
0.14
0.27

0.14
0.12
0.06

56%
50%

18%
14%

Hard
random

ACR 0.25
one-pass AC
initialization

µ
md

1.52
1.08
1.29

0.85
0.63
0.65

0.70
0.53
0.55

54%
51%

18%
16%

Coloring FCR-FC 0.5, 28 µ
md

0.45
0.25
0.77

0.43
0.34
0.24

0.47
0.27
1.00

-4%
-8%

–9%
21%

Geometric ACR-FC 0.4 45
AC initialization

µ
md

6.41
0.74

22.47

6.69
0.76

28.81

6.38
0.76

22.40

0.4%
–3%

5%%
Same

Quasigroups
with holes

AC-FC 93
AC initialization

µ
md

16.61
1.45

54.80

6.65
0.99

21.49

6.55
0.94

20.21

60%
32%

2%%
5%

Learning Propagation Policies 9

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)
Figure 3: Constraint checks performed at each search depth (a, c, e, g) and values removed (b,
d, f, h) by a traditional solver on 100 solvable random hard problems, quasigroups with holes,
coloring problems, and geometric problems, respectively. An AC initialization pass was per-
formed on each problem.

10 Epstein et al.

We ran Min Domain/Degree three times on a second, fresh set of 100 problems in
each class: with ACE’s learned propagation policy, with FC and one-pass AC initiali-
zation, and with AC and AC initialization. For every class of problems, our learned
policies were at least as good as the others; for all random problem classes but sparse,
ACE was statistically significantly better than FC at the 95% confidence level.

5 Further assessment of learning

In the previous section we have shown that the propagation policy ACE learns im-
proves search performance on several different classes of CSPs. It is reasonable to ask
whether this was the best propagation policy learnable from these building blocks,
and whether most any policy would have sufficed. This section addresses those ques-
tions with additional data. We begin with three examples that compare the propaga-
tion activity and performance time of FC and AC.
• On random problems in <20, 30, 0.444, 0.5>, Min Domain/Degree averaged 29.21
seconds under FC to find a solution, but 82.14 seconds under AC.
• On hard random problems, the solver under FC does considerably less work (as
measured in constraint checks) and removes more values (during compensation for its
errors) somewhat later in search than under AC, as shown in Figures 3(a) and (b).
Nonetheless, solution under FC is actually slower on these problems, presumably
because FC leaves more unsupportable values which the solver cannot readily avoid.
• On quasigroups of order 10 with 60 holes, under FC the solver does less work and
removes fewer values than AC. See Figures 3(c) and (d).

Table 2 confirms the differences between FC and AC on our problem classes, and
that comparing them is well worth the effort. (In this table only, initialization time is
excluded, to focus on work done after it; times are means, to show statistical signifi-
cance.) If problems are easy because most initial value selections are consistent with
some solution, then they probably do not require the intense scrutiny of AC, particu-
larly if we seek only one solution. AC indeed does more work (as measured by con-
straint checks), but can significantly speed solution, depending on the problem class.
Among our problem classes, FC appears to be a viable alternative only on sparse and

Table 2: Mean propagation time, checks and nodes expanded, exclusive of AC initialization, to
solve with FC or AC and Min Domain/Degree on different problem classes. Results are aver-
aged over 100 problems. Figures in bold represent a statistically significantly difference at the
95% confidence level.

 Time Checks Nodes
Class FC AC FC AC FC AC

Sparse 0.04 0.05 347.68 1804.20 34.99 30.18
Simple 0.20 0.12 1647.85 5425.75 254.21 38.43
Medium 0.36 0.17 3401.41 9070.71 477.22 55.14
Hard 1.70 0.85 20416.20 51598.53 1879.87 189.43
Coloring 0.32 0.43 2686.37 17941.30 169.88 73.36
Geometric 7.37 6.69 74428.00 293088.37 2223.95 385.46
Quasigroups 16.61 6.65 26123.90 35392.58 3376.16 1196.96

Learning Propagation Policies 11

coloring problems. Otherwise, FC’s fewer checks come at the expense of visiting
more nodes. Moreover, in these experiments AC initialization rarely removed any
more values than one-pass AC initialization — at most two values in 100 problems.

Finding a good propagation policy by hand is not trivial. We tested FC, AC, and
the propagation methods of Section 3 on the hard random problems, using AC ini-
tialization and Min Domain/Degree. We tested FC-spread and AC-bound for p = 2,
3,…, n/2, and FCR and ACR for r = .1,.2,…,.9. For x-FC methods we tested terminal
switch st = 5, 10, …, n–5. We observed that immediately upon any initial switch,
there is a pronounced spike in the number of constraint checks, often well beyond
what AC would have done, as the first AC pass catches up. We therefore tested FC-x
methods only for initial switches si = 1, 2,…, 5. Often a single parameter change (e.g.,
from r = 0.5 to 0.4) made it impossible to solve some problems that had been solved
under the previous setting. Under many parameter settings, the solver spent hours on a
single problem and we terminated the run.

ACE is learning in a space of methods that have the potential to perform quite
poorly. Nonetheless, ACE found a very good propagation policy for each class. We
tested these “best observed” parameter settings on the testing problems from Table 1,
to see how they compared with ACE. Inspection indicates that ACE’s learning is
consistent with these results. For example, ACE learns r = 0.25 for the hard random
problems for both FCR and ACR, as close as it can get to 0.3 with its algorithm.

Finally, as observed earlier, random problems lack reliable structure, which real-
world problems generally have. Figure 3 suggests that a good propagation method
might vary with problem class. We tested coloring, geometric, and quasigroup with
holes problems empirically, using AC initialization and various propagation methods
described above, beginning with parameters for the hard random problems and then
choosing a few new values to test based on those results. The best observed parame-
ters that produced them appear in Table 3, retested on the problems of Table 1. ACE
came close to the best time for the hard problems and the coloring problems. Note

Table 3: Observed median solution time in seconds on 100 problems for three problem classes,
along with the parameter values that produced them. The classes and the range of parameter
values tested are detailed in the text. Min Domain/Degree and AC initialization were used.

 Hard Geometric Coloring Quasigroup
Propagation Time Pars. Time Pars. Time Pars. Time Pars.

FC 1.20 — 0.78 — 0.26 — 1.45 —
FC-spread 0.63 5 0.72 40 0.36 5 2.28 40
AC-bound 0.62 10 0.99 15 0.42 5 1.42 50
FCR 0.54 .3 0.67 .3 0.27 .5 2.21 .5
ACR 0.51 .3 0.66 .3 0.24 .5 1.42 .5
FC-AC 0.65 5 0.69 30 0.36 10 2.11 40
AC-FC 0.62 20 0.83 20 0.33 20 2.25 90
ACR-FC 1.09 5, .3 0.68 .3, 20 0.28 .2, 10 2.22 .5, 60
FC-AC-FC 0.65 5, 25 0.74 5, 30 0.28 5, 20 2.37 20,80
FC-ACR-FC 0.67 5,.3,25 0.75 3,.3,15 0.29 5,.2,25 1.34 40,.3,80
AC 0.92 — 0.76 — 0.34 — 0.99 —
ACE learned 0.53 ACR

.25
0.76 ACR-FC

.4, 45
0.27 FCR-FC

.5, 28
0.94 AC-FC

93

12 Epstein et al.

that ACR and FCR consistently match or outperform the more traditional FC and AC.

6 Discussion and related work

It is noteworthy that AC initialization often, but not always, leads to improved per-
formance. In some cases, of course, the nature of the problem class makes any reduc-
tion by AC unlikely (e.g., coloring). Otherwise, we surmise that much of the difficulty
a search method experiences with a problem has to do with where to begin (once
again, the backdoor), and that an initialization pass of either kind may offer a useful
clue based on initially reduced domain size.

AC’s automatic reconsideration of edges may be overkill. Propagation is effective
only when it can quickly remove values that will not lead from the current instantia-
tion to a solution. If the crucial potential inconsistencies lie nearby the current vari-
able, then propagation need not explore every constraint. In Table 1, ACE learned
ACR or FCR for every class, which suggests that the impact of propagation, as meas-
ured by the response r, may be a better indication of when to reconsider them.

As search deepens, dynamic domains become progressively smaller, so that even-
tually few values remain, and even AC removes few of them. In Figure 2(b), for ex-
ample, this happens after assigning about one third of the values with AC, and after
about two thirds with FC. A search method that prefers maximum degree will focus
first on highly-connected variables; eventually the future variables will be connected
to few others, and again are likely to have little impact beyond their immediate neigh-
bors. This would argue for propagation methods that address response when the
search method includes minimizing domain size, and explains to some extent our
success here with R methods. Because Min Domain/Degree is responsive both to
dynamic domain size and to degree, it supported our new methods particularly well.

ACE’s algorithm to learn a propagation policy performs as well as any manually
selected settings. Differences arise when the crucial r values tested by ACE (in in-
crements of 1/m) do not match those tested empirically (in increments of 0.1), or
when its switch values (tested in increments of 1) step more gradually than those
tested empirically (in increments of 5). Inspection indicates that despite its host of
building blocks, ACE learns r = 0.25 for FCR on the hard random problems, as close
as it can get to the 0.3 that performed best on those problems in Figure 2. (Ultimately,
however, ACE judged one-pass AC initialization and ACR r = 0.25 to be better.) The
learning algorithm eliminates much tedious lengthy testing (and automates the rest).

In the construction of this algorithm we explored and then eliminated many possi-
ble approaches. Based on observations of monotonicity during the extensive testing
that led to Tables 3 and 4, we assumed that performance associated with response r
has a single minimum. Based on their lackluster performance during initial testing,
FC-spread and AC-bound were excluded from the process. (Nonetheless, a real-world
problem could in principle be most affected by variables in the immediate vicinity of
the current variable, and we expect to investigate these variants further.) One might
also argue that value removals ought to be compared with tightness. Since the prob-
ability that a pair of values is unacceptable on an edge is roughly the square root of
the tightness, a static approach should therefore be commensurate with t1/2. While it is

Learning Propagation Policies 13

unlikely that a method will achieve such reductions consistently, in a state with f
future variables and an average dynamic domain size g, one could hope for t1/2fg
removals and continue to propagate with AC as long as r% of that gauge was
removed. This method, however, is equivalent to AC-bound with an appropriately-
scaled parameter. (See, however, (Mehta and van Dongen 2005).) One might also
monitor removals per check, a sort of utility heuristic, that would select the method
that removes the most values for the work it performs. By this standard, however, the
best of the FCR methods on the hard problems would have been FC, which we know
to have been unacceptably slow there. Finally, we coded and observed an algorithm
that cycled between AC and FC at various intervals. The spikes we noted for the early
FC switch reappeared and proved too costly, however.

Some propagation methods appear rarely if at all in Table 1. Inspection indicates
that the D (adjust by search depth) methods performed relatively well. In most prob-
lem classes total domain size drops by 16-23% after the first assignment. This is not
true of the random hard problems, however, and only geometric problems have an-
other significant drop after the second assignment. Further work on the D methods is
planned. It also appears that switching is not helpful with R methods. This suggests
that a substantial reduction in domain size remains important throughout search.
When a terminal switch was constructive, it led to some reduction in median time:
during learning, about 12% on geometric and quasigroup problems. An initial switch,
although it may have improved AC in Table 3, was never part of a best observed or
learned propagation policy.

Because the focus of this work is propagation, we used equivalent search methods
throughout. It is reasonable to expect, however, that the performance of the search
method and the propagation policy are intertwined. We therefore had ACE learn a
propagation policy for coloring problems under two other variable-ordering heuris-
tics: Min Domain and the Brélaz heuristic (minimize the dynamic domain size and
break ties with maximum forward degree) (Brélaz 1979). Both select values lexically.
Min Domain is an inferior search method for these problems, and Brélaz is known to
be superior to Min Domain/Degree on coloring problems. Table 4 compares the re-

Table 4: Propagation policies ACE learned for coloring problems. Decimal parame-
ters are r value. Times in seconds (mean µ, median md, and standard deviation) are
shown for a second set of problems in the same class: for FC (with one-pass AC ini-
tialization), for AC (with AC initialization), and for ACE’s learned policy. Improve-
ment is for ACE over each of FC and AC.

Search Times Improvement
method ACE learns FC AC ACE FC AC

Min
Domain/Degree

FCR-FC 0.5, 28

µ
md

0.45
0.25
0.77

0.43
0.34
0.24

0.47
0.27
1.00

-4%
-8%

–9%
21%

Brélaz ACR-FC 0.5, 25 µ
md

0.45
0.27
0.56

0.44
0.35
0.33

0.43
0.27
0.57

4%
0%

4%
23%

Min Domain ACR 0.625 µ

md

1.40
0.50
3.48

1.38
0.48
3.45

0.75
0.32
1.43

46%
36%

46%
33%

14 Epstein et al.

sults. ACE learned a different propagation policy for each search method method. For
Min Domain the learned policy was able to compensate, to some degree, for the poor
search method, cutting search time nearly by half.

Learning a propagation policy is now part of ACE’s framework for learning to
solve CSPs, but several intriguing research issues remain. We have not yet addressed
whether the propagation policy ACE learns to find the first solution is equally good
when seeking all solutions or when working with unsolvable problems. We generated
a separate set of unsolvable problems in <30, 8, 0.26, 0.34> and redrew diagrams like
those of Figure 2(a) and (b) for them in Figure 4. Comparing them, the values re-
moved curves are similar, but the constraint checks are not. Learning a propagation
policy is not limited to binary constraints; it should be of value with any specialized
propagation methods (e.g., all-diff or rank sum). Additional speedup should be avail-
able through queue management. The impact of a value-selection heuristic on this
process is also unknown. An algorithm to learn a propagation policy might be based
upon checks and/or nodes as well as time. Finally, one might wonder to what extent
our results are dependent upon ACE, rather than upon the problems themselves. To
this we reply that every implementation has aspects that are done more or less effi-
ciently. This paper demonstrates that AC may be more work than is necessary, that
response (rather than locality) seems to be key, and that early and late FC are often
useful as well. We therefore encourage others to have their solvers learn their own,
possibly implementation-dependent balance between AC and FC, confident that
learning such a propagation policy offers clear benefits within a problem class.

Acknowledgments
We thank Barbara Smith for her thoughtful questions and ideas. This work was sup-
ported in part by NSF IIS-0328743, by PSC-CUNY, by Enterprise Ireland under
Grant No. SC/2002/0137, and is based upon works supported in part by Science
Foundation Ireland under Grant 00/PI.1/C075.

References
Achlioptas, D., C. Gomes, H. Kautz and B. Selman (2000). Generating Satisfiable

Problem Instances. AAAI-00.

 (a) (b)
Figure 4: (a) Constraint checks performed at each search depth and (b) values removed by a
traditional solver on 100 unsolvable problems with 30 variables, domain size 8, density 0.26,
and tightness 0.34.

Learning Propagation Policies 15

Bessière, C., E. C. Freuder and J.-C. Régin (1999). "Using constraint metaknowledge
to reduce arc consistency computation." Artificial Intelligence 107(125-148).

Bessière, C. and J.-C. Régin (1996). MAC and Combined Heuristics: Two Reasons to
Forsake FC (and CBJ?) on Hard Problems. Principles and Practice of Con-
straint Programming - CP96, Springer-Verlag.

Bessière, C. and J.-C. Régin (2001). "Refining the basic constraint propagation algo-
rithm." JFPLC: 1-13.

Brélaz, D. (1979). "New Methods to Color the Vertices of a Graph." CACM 22: 251-
256.

Chmeiss, A. and L. Sais (2004). Constraint satisfaction problems: Backtrack search
revisited. Sixteenth International Conference on Tools with Artificial Intelli-
gence (ICTAI'04). IEEE

Epstein, S. L. and E. C. Freuder (2001). Collaborative Learning for Constraint Solv-
ing. Principles and Practice of Constraint Programming - CP 2001,
Springer-Verlag.

Epstein, S. L., E. C. Freuder, R. Wallace, A. Morozov and B. Samuels (2002). The
Adaptive Constraint Engine. Principles and Practice of Constraint Pro-
gramming -- CP2002. P. Van Hentenryck. Berlin, Springer Verlag. LNCS
2470: 525-540.

Freuder, E. C. (1982). "A Sufficient Condition for Backtrack-Free Search." JACM
29(1): 24-32.

Freuder, E. C. and R. J. Wallace (1991). Selective relaxation for constraint satisfac-
tion problems. Third International Conference on Tools for Artificial Intelli-
gence (TAI'91), San Diego, CA.

Golumb, S. and L. Baumert (1965). "Backtrack programming." Journal of the ACM
12: 516-524.

Haralick, R. M. and G. L. Elliott (1980). "Increasing tree search efficiency for con-
straint satisfaction problems." Artificial Intelligence 14: 263-314.

Johnson, D. B., C. R. Aragon, L. A. McGeooh and C. Schevon (1989). "Optimization
by Simulated Annealing: An experimental evaluation; Part 1, Graph parti-
tioning." Operations Research 37(865-892).

Lecoutre, C., F. Boussemart and F. Hemery (2003). Exploiting multidirectionality in
coarse-grained arc consistency algorithms. Principles and Practice of Con-
straint Programming - CP2003, LNCS 2833, Springer Verlag.

Mehta, D. and M. R. C. van Dongen (2005). Reducing Checks and Revisions in
Coarse-grained MAC Algorithms. IJCAI-05.

Ruan, Y., E. Horvitz and H. Kautz (2004). The Backdoor Key: A Path to Understand-
ing Problem Hardness. AAAI-2004, San Jose, CA, AAAI Press.

Sabin, D. and E. C. Freuder (1994). Contradicting Conventional Wisdom in Con-
straint Satisfaction. Eleventh European Conference on Artificial Intelligence,
Amsterdam, John Wiley & Sons.

16

Structure and Problem Hardness: Asymmetry
and DPLL Proofs in SAT-Based Planning

Jörg Hoffmann1, Carla Gomes2, and Bart Selman2

1 Max-Planck-Institute for CS, Saarbrücken, Germany
2 Cornell University, Ithaca, NY, USA

Abstract. In applications from AI Planning and Model-Checking, a
successful method is to compile the application task into boolean sat-
isfiability (SAT), and solve it with state-of-the-art DPLL-based proce-
dures. There is a lack of formal understanding why this works so well.
Focussing on the AI Planning context, we identify a structural param-
eter, called AsymRatio, that measures a kind of subgoal asymmetry in
planning tasks. AsymRatio ranges between 0 and 1, and we show em-
pirically that it correlates strongly with SAT solver performance in a
broad range of AI Planning benchmarks, namely the domains used in
the 3rd International Planning Competition. We then examine carefully
crafted synthetic planning domains that allow to control the value of
AsymRatio, and that are clean enough to allow a rigorous analysis of
the combinatorial search space, while meaningful enough to allow con-
clusions about more practical domains. The domains are parameterized
by size n, and by a structure parameter k, so that AsymRatio is asymp-
totic to k/n. We investigate the best (smallest) possible sets of branching
variables for DPLL, as a function of n, for different settings of k. With
minimum k, we identify minimal sets of branching variables linear in the
total number of variables, Θ(n2). With maximum k, we identify sets of
size O(log2n), and thus size O(n) DPLL proofs.

1 Introduction

There has been a long interest in a better understanding of what makes combi-
natorial problems hard or easy. The most successful work in this area involves
random instance distributions with phase transition characterizations (e.g., [1,
2]). However, the link of these results to more structured instances is less direct.
A random unsatisfiable 3-SAT instance from the phase transition region with
1,000 variables is beyond the reach of any current solver. But many unsatisfiable
formulas from verification and planning contain well over 100,000 variables and
can be proved to be unsatisfiable within a few minutes (e.g., with Chaff [3]).
This raises the question as to whether one can obtain general measures of struc-
ture in SAT encodings, and use them to characterize typical case complexity. To
this end, our overall goal in this paper is to identify general problem features
that characterize problem hardness in practice. We focus on formulas from AI
planning. We view this as an entry point to similar studies in other areas.

The main spirit of our work is a two-step approach: first, identify a measure
of “structure” that, empirically, correlates with CSP/SAT solver performance in
practical benchmarks; then, design synthetic domains that capture this structure

2 Hoffmann, Gomes and Selman

in a clean form, and analyze the behavior of DPLL (or any other search algorithm
of interest), within these synthetic domains, in detail. The latter step serves to
obtain a deeper understanding of what causes the empirical correlation observed
in the first step. For this to make sense, the synthetic domains have to be simple
enough to be rigorously analyzed, yet meaningful enough to allow conclusions
about more practical domains. We remark that, while under development, the
two research steps may well be – and have been, in our case – intermingled:
increasingly accurate intuitions are obtained in a trial-and-error fashion.

Note that our approach is very different from identifying tractable classes.
Generally, our research is aimed at understanding the behavior of existing al-
gorithms, not at identifying new algorithms. More technically, the first research
step outlined above establishes an empirical correlation between structure and
performance. The second research step may, or may not, yield results on poly-
nomial best-case or worst-case behavior. But even if so, these results hold only
for the specific examples (synthetic domains) considered. In that sense, the ana-
lytical step is merely a case-study, aimed at obtaining more accurate intuitions.

We focus on showing infeasibility. Precisely, we consider the difficulty of show-
ing the non-existence of a plan with one step less than the shortest possible
(optimal) plan. SAT-based search for a plan works by iteratively incrementing a
plan length bound b, and testing in each iteration a formula that is satisfiable iff
there exists a plan with b steps (this was first implemented in the Blackbox sys-
tem [4]). So, our focus is on the last unsuccessful iteration in a SAT-based plan
search. This is typically the hardest iteration in practice. SAT-based planning is
currently state-of-the-art for finding optimal plans: e.g., Blackbox won the 1st
prize for optimal planners in the 4th International Planning Competition [5].

We consider SAT encodings of our synthetic domains and investigate the best
possible sets of branching variables for DPLL proof trees. Such variable sets were
recently coined “backdoors” [6]. In our context, a backdoor is a subset of the
variables so that, for every value assignment to these variables, unit propagation
(UP) yields an empty clause.3 That is, a smallest possible backdoor encapsulates
the best possible branching variables for DPLL, a question of huge practical
interest. Also, the size of the backdoor provides an upper bound on the size of
the DPLL search tree: if the backdoor contains l variables, then the maximum
number of nodes in the proof tree is 2l. In particular, if l is logarithmic in the
formula size, then there exists a polynomial size DPLL proof. In all considered
formula classes, we determine a backdoor subset of variables. We prove that the
backdoors are minimal: no variable can be removed without losing the backdoor
property. In small enough instances, we prove empirically that the backdoors are
in fact optimal - of minimal size. We conjecture that the latter is true in general.

Our synthetic planning domains are (1) a logistics planning domain (MAP)
and (2) a stacking domain (SBW). We also consider a third synthetic domain

3 In general, a backdoor is defined relative to an arbitrary polynomial time “subsolver”
procedure. The subsolver can solve some class of formulas that does not necessarily
have a syntactic characterization. Our definition here instantiates the subsolver with
the widely used unit propagation procedure.

Structure and Problem Hardness in SAT-Based Planning 3

called SPH, a structured version of the Pigeon Hole problem. The domains are
characterized by a size parameter, called n, and by a structure parameter, called
k. The structure parameter controls the amount of an intuitive “asymmetry” in
the underlying task: as the value of k increases, one part of the task becomes
more and more difficult to achieve, while the other parts become relatively eas-
ier. Concretely, in Planning, we define the parameter AsymRatio as the ratio
between maximum sub-goal difficulty – the maximum number of steps needed to
achieve any single sub-goal – and the overall difficulty, i.e., the number of steps
needed to achieve the conjunction of all goals. AsymRatio ranges between 0 and
1. A value close to 1 represents a large structural asymmetry. In MAP and SBW,
AsymRatio is asymptotic to the ratio between k and n. In particular, for the
lowest value of k (symmetrical case), AsymRatio converges to 0 for increasing n;
for the highest k value (asymmetrical case), the ratio converges to 1. Note that
such a high amount of asymmetry appears unlikely to occur in purely randomly
generated problem instances. Note further that AsymRatio characterizes a kind
of hidden structure. It can not be computed efficiently even based on the origi-
nal planning task representation. Much less is it evident to a satisfiability tester
attacking the CNF representation of the task, without even knowing that the
formula originates from a planning task. More concretely, the constraint graphs
of our formulas (more on this below) generally don’t change much over k.

In some initial experiments, we observed that a high value of AsymRatio en-
ables the (unsatisfiable) formulas to be effectively solved by current SAT solvers.
Investigating this in our synthetic domains, we found dramatic differences in
backdoor size. At the bottom ends of the k scales, with symmetrical subgoals,
the backdoor sets are of polynomial size (in n) in all cases. With increasing value
of k, the backdoors become smaller; in the two synthetic planning domains, at
the top end of the k scales, the backdoors are of logarithmic size.4

To confirm that AsymRatio correlates with SAT solver performance in prac-
tice (i.e., in more complex benchmarks than our synthetic domains), we ran
large-scale experiments in the six benchmark domains used in the 3rd Interna-
tional Planning Competition [7]. This is a recent (published in 2002) and widely
used set of benchmarks, and is provided, by the IPC-3 organizers, with instance
generators; the latter are essential for our experiments, where we generated and
examined tens of thousands of instances in each domain.5 We plotted the per-
formance of a state-of-the-art SAT solver, namely, ZChaff [3], as a function of
AsymRatio. Our experiments show that a larger AsymRatio results in planning
CNFs that are significantly easier to solve. AsymRatio thus provides a useful
indicator of typical problem hardness for Planning domains.6 This is of course

4 It is important to note that we obtain logarithmic size backdoors. This suggests
that our underlying planning problems do not become “trivial” — in particular,
they still require some subtle branching choices of the DPLL procedure, and are not
just solved by unit propagation.

5 For the domains used in the 4th International Planning Competition [8], run in 2004,
there are no random generators.

6 While AsymRatio can not be computed efficiently, there exists a variety of tech-
niques to approximate the number of steps needed to achieve a goal (e.g., [9–11]).

4 Hoffmann, Gomes and Selman

just a first example of a hardness measure for structured problems; presumably,
other useful measures exist.

The investigation of structure in constraint reasoning problems is not new,
see for example [12–20]. However, to the best of our knowledge, our particular
approach – to empirically identify a relevant structural parameter and then
analyze that in synthetic domains – has not been pursued before. Still, one
structural concept is particularly closely related to the concept of a backdoor,
and should be discussed in more detail: cutsets (e.g. [12–14]). A cutset is a set
of variables so that, once these variables are removed from the constraint graph
– the undirected graph where nodes are variables and edges indicate common
membership in at least one clause – that graph has a property that enables
efficient reasoning: an induced width of at most a constant bound b (if b = 1
then the graph is cycle-free, i.e., can be viewed as a tree). Backdoors are a
generalization of cutsets in the sense that any cutset is a backdoor relative to
an appropriate subsolver (that exploits properties of the constraint graph).7 The
main difference between a backdoor and a cutset is, from a general point of view,
that, given a set of variables, one can determine in polynomial time whether or
nor that set is a cutset. The same test is, in general, not possible for a backdoor.
In particular, it is not possible for the unit propagation procedure we consider
here, that depends heavily on what values are assigned to the backdoor variables.
In that sense, a cutset is a backdoor that can be detected statically, and that
can thus be directly exploited in a search algorithm. Backdoors in general only
provide a parameter measuring properties of search spaces. We will see that,
in the particular formula families we consider here, there are no small statically
detectable cutsets. Indeed, as we detail below, the constraint graphs do generally
not change much with k and are thus not suitable to capture what happens on
the structural scale. In that sense, the structure in our formulas is “hidden”.

In Section 2, we provide background on AI planning and the SAT encodings
we use. In Section 3, we present our empirical findings showing the relevance of
AsymRatio as a measure of problem hardness in structured domains. In Sec-
tion 4, we describe our synthetic domains and our analysis of backdoors. Section 5
provides a summary of results and directions for future research.

2 Background

We consider the “STRIPS” formalism. States are described as sets of (the cur-
rently true) propositional facts. A planning task is a tuple of initial state (a set of
facts), goal (also a set of facts), and a set of actions. Actions a are fact set triples:
the precondition pre(a), the add effect add(a), and the delete effect del(a). The
semantics are that an action is applicable to a state (only) if pre(a) is contained
in the state. When executing the action, the facts in add(a) are included into
the state, and the facts in del(a) are removed from it (the intersection between

Such techniques can be used to approximate AsymRatio, and, with that, predict
SAT solver performamnce in Planning. Exploring this is a topic for future work.

7 We thank Rina Dechter for insightful discussions on this issue.

Structure and Problem Hardness in SAT-Based Planning 5

add(a) and del(a) is assumed empty; executing a non-applicable action results
in an undefined state). A plan for the task is a sequence of actions that, when
executed iteratively, maps the initial state into a state that contains the goal.

Planning can be mapped into a sequence of SAT problems, by incrementally
increasing a plan length bound b: start with b = 0; generate a CNF φ(b) that is
satisfiable iff there is a plan with b steps; if φ(b) is satisfiable, stop; else, increment
b and iterate. This process was first implemented in the Blackbox system [4].

There are, of course, different ways of generating the formulas φ(b), i.e., there
are different encoding methods. In our empirical experiments, we use the original
Graphplan-based encoding used in Blackbox. In our theoretical investigations,
we use a somewhat simplified version of that encoding.

The Graphplan-based encoding is a straightforward translation of a b-step
planning graph [9] into a CNF. The encoding has b time steps 1 ≤ t ≤ b. It
features variables for facts at time steps, and for actions at time steps. There are
artificial NOOP actions, i.e. for each fact p there is an action NOOP -p whose
only precondition is p, and whose only (add) effect is p. The NOOPs are treated
just like normal actions in the encoding. Amongst others, there are clauses to
ensure that all action preconditions are satisfied, that the goals are true in the
last time step, and that no “mutex” actions are executed in the same time step.8

The set of fact and action variables at each time step, as well as pairs of “mutex”
facts and actions, are read off the planning graph (which is the result of a non-
trivial propagation of constraints).

We do not describe the Graphplan-based encoding in detail since that is not
necessary to understand our experiments. For the simplified encoding used in
our theoretical investigations, some more details are in order. The encoding uses
variables only for the actions, i.e., a(t) is 1 iff action a is to be executed at time
t, 1 ≤ t ≤ b. A variable a(t) is included in the CNF iff a is present at t. An
action a is present at t = 1 iff a’s precondition is true in the initial state; a is
present at t > 1 iff, for every p ∈ pre(a), at least one action a′ is present at t− 1
with p ∈ add(a′). For each action a present at a time t and for each p ∈ pre(a),
there is a precondition clause of the form ¬a(t)∨a1(t− 1)∨ . . .∨al(t− 1), where
a1, . . . , al are all actions present at t − 1 with p ∈ add(ai). For each goal fact
g ∈ G, there is a goal clause a1(b) ∨ . . . ∨ al(b), where a1, . . . , al are all actions
present at b that have g ∈ add(ai). Finally, for each incompatible pair a and a′

of actions present at a time t, there is a mutex clause ¬a(t)∨¬a′(t). Here, a pair
a, a′ of actions is called incompatible iff either both are not NOOPs, or a is a
NOOP for fact p and p ∈ del(a′) (or vice versa).

We interprete CNF formulas as sets of clauses, where each clause is a set of
literals. For a CNF formula φ with variable set V , a variable subset B ⊆ V , and
a value assignment a to B, we say that a is UP-consistent if applying a to (the
literals in) φ, and performing unit propagation on the resulting formula, does
not yield an empty clause. B is a backdoor if it has no UP-consistent assignment.

8 Actions can be executed in the same time step if their effects and preconditions are
not contradictory.

6 Hoffmann, Gomes and Selman

3 Asymmetric Structure in Planning

As discussed above, we quantify subgoal asymmetry as follows.

Definition 1. Let P be a planning task with goal G. For each fact g ∈ G, let
cost(g) denote the length of a shortest plan achieving just g; let cost(G) denote
the length of a shortest plan achieving all facts in G. The asymmetry ratio of P
is:

AsymRatio(P) :=
maxg∈Gcost(g)

cost(G)

Note that cost(G), in this definition, is the optimal plan length; to simplify
notation, we will henceforth denote this with m. Note also that, of course, a
definition as simple as Definition 1 can not be fail-safe. Imagine replacing G
with a single goal g and an additional action with precondition G and add
effect {g}: the (new) goal is then no longer a set of “subgoals”. However, in
the benchmark domans that are actually used by researchers to evaluate their
algorithms, G is almost always composed of several goal facts, and the single
goal facts correspond quite naturally to different sub-problems of the task.9 Our
hypothesis in the experiments is:

Hypothesis 1 Let Pm be a set of planning tasks from the same domain with
the same size parameter values, and with the same optimal plan length m. For
P ∈ Pm, let φ(P,m − 1) denote the Graphplan-based CNF encoding of m − 1
action steps. Then, over Pm, the hardness of proving φ(P,m − 1) unsolvable is
strongly correlated with AsymRatio(P).

First, note that, certainly, whether this hypothesis holds or not depends on
the domain; in that sense it is a different hypothesis for every domain. Second,
note that the instance size parameter values (nr. of vehicles for transportation,
e.g.), together with the number of action steps encoded – the optimal plan
length minus 1 – determine the size of the formula. Of course, formula size
is typically correlated with SAT solver performance. Our hypothesis concerns
performance in formulas of similar size. Please note that we do not wish to
imply that AsymRatio is “the” parameter predicting SAT solver performance
in Planning CNFs. There are, presumably, many important factors and interplay
between them. Our (only) observation, below, is that AsymRatio works well in
an important range of domains.

To test our hypothesis, as said, we ran large experiments in all STRIPS do-
mains used in the 3rd International Planning Competition [7] (IPC-3), as was
carried out in 2002. The domains are called Depots, Driverlog, Freecell, Rovers,
Satellite, and Zenotravel. Depots is a mixture between the classical Blocksworld
and Logistics domains; Blocksworld requires arrangement of blocks in stacks on a
9 A more stable approach would be to identify a hierarchy of layers of “landmarks”

[21], and define AsymRatio based on that. In the benchmarks, because of what we
just said, this does not seem to add much value. Exploring the issue in more depth
is a topic for future work.

Structure and Problem Hardness in SAT-Based Planning 7

 100

 1000

 10000

 100000

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Z
C

H
A

F
F

 m
ea

n
nu

m
be

r
of

 b
ac

kt
ra

ck
s

AsymRatio

Length 7
Length 8
Length 9

Fig. 1. Log-scaled mean number of backtracks needed by ZChaff, plotted over
AsymRatio, in CNF formulas encoding planning instances from the IPC-3 benchmark
Rovers. Curves for different subsets of more than 40000 randomly generated instances:
all instances with optimal plan length 7, all instances with optimal plan length 8, and
all instances with optimal plan length 9. Entire distribution of optimal plan length is
4 . . . 19; 7, 8, and 9 are the most frequent, and together contain 60% of all instances.

table, using a robot arm; Logistics requires transportation of packages via trucks
and airplanes; in Depots, blocks must be transported and arranged in stacks.
Driverlog is a version of Logistics with drivers, where drivers and trucks move on
different (arbitrary) road maps. Freecell encodes the well-known solitaire card
game where the task is to re-order a random arrangement of cards, following
certain stacking rules, using a number of “free cells” for intermediate storage.
Rovers and Satellite are simplistic encodings of NASA space-applications. In
Rovers, rovers move along individual road maps, and have to gather data about
rock or soil samples, take images, and transfer the data to a lander. In Satellite,
satellites must take images of objects in space, which involves calibrating cam-
eras, turning the right direction, etc. Zenotravel is a version of Logistics where
moving a vehicle consumes fuel that can be re-plenished using a “refuel” oper-
ator. It is important to note that, within each of the IPC-3 domains, deciding
bounded plan existence — the problem encoded by our CNFs — is NP-hard [22].
So our experiments are on challenging, if not real-world realistic, problems.

To obtain a reliable picture of how a complex DPLL-based SAT solver
(ZChaff) typically behaves in CNF formulas generated from a domain, within
each domain we generated and examined tens of thousands of instances. We chose
the instance size parameters by testing the original IPC-3 instances, and select-
ing the largest one for which we could compute AsymRatio reasonably fast.10

E.g. in Driverlog we selected the instance indexed 9 out of 20 (instance size here
scales with growing index), and, accordingly, generated random instances with
5 road junctions, 2 drivers, 6 packages, and 3 trucks. According to the setup in

10 That computation was done by a combination of calls to Blackbox [4].

8 Hoffmann, Gomes and Selman

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
C

H
A

F
F

 m
ea

n
nu

m
be

r
of

 b
ac

kt
ra

ck
s

AsymRatio

Length 10
Length 11
Length 12

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Z
C

H
A

F
F

 m
ea

n
nu

m
be

r
of

 b
ac

kt
ra

ck
s

AsymRatio

Length 9
Length 10
Length 11

Depots Driverlog

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
C

H
A

F
F

 m
ea

n
nu

m
be

r
of

 b
ac

kt
ra

ck
s

AsymRatio

Length 6
Length 7
Length 8

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Z
C

H
A

F
F

 m
ea

n
nu

m
be

r
of

 b
ac

kt
ra

ck
s

AsymRatio

Lengths 6, 7, and 8

Freecell Zenotravel

Fig. 2. Mean number of backtracks of ZChaff, plotted against AsymRatio, in CNF for-
mulas encoding planning instances from the IPC-3 benchmark domains except Satellite
(see text), and Rovers (which is displayed in Figure 1). Curves for different subsets Pm
of around 50000 random instances in each domain: the subsets corresponding to the 3
most frequently occurring optimal plan lengths m. For all domains except Zenotravel,
the curves are shown separately for each m. For Zenotravel, in each Pm there are at
most two bins with over 100 instances; so the curve is for the union of P6, P7, and P8.

Hypothesis 1 (we also use the notations), within each domain we assigned the in-
stances to sub-sets Pm with identical optimal plan length m. For each P in a set
Pm, we computed AsymRatio(P), and ran ZChaff[3] on the formula φ(P,m−1),
measuring the number of backtracks. We plotted the latter over AsymRatio by
dividing each Pm into 100 bins, with AsymRatio(P) ∈ [0, 0.01), . . . , [0.99, 1]; we
took the mean value out of each bin, avoiding noise by skipping bins with less
than 100 elements. The results are in Figures 1 and 2. (Plots for medium values
are almost identical.)

For the Rovers domain, Figure 1 clearly shows the hypothesized correlation
within each of the displayed subsets Pm, m ∈ {7, 8, 9}. Note that, from the
relative positions of the different curves, one can see the influence of optimal
plan length/formula size — the higher m, the more backtracks are needed. These
observations are also typical for the other IPC-3 domains. Figure 2 shows the
plots, which clearly support Hypothesis 1.11

11 There is no plot for Satellite because, there, due to a lack of variance in subgoal
hardness, all instances within the sets Pm have the same AsymRatio.

Structure and Problem Hardness in SAT-Based Planning 9

4 Asymmetric Structure in Synthetic Domains

As said, in order to obtain a deeper understanding of the observed correlation,
we studied three classes of synthetic formulas, called MAP, SBW, and SPH.
MAP and SBW come from planning domains, SPH is a structured version of
the pigeon hole. Each of the formula classes/domains is parameterized by size n
and structure k. In the planning domains, we use the simplified Graphplan-based
encoding (see Section 2), and consider CNF formulas that are one step short of a
solution. We denote the formulas with MAP kn , SBW k

n , and SPHk
n, respectively.

Due to space restrictions, we consider only MAP in detail, and we omit all
proofs. The missing informations are available in a technical report [23]. We
remark that the proofs are rather involved (the MAP proofs alone occupy 9
pages in this format), due to the many details one needs to take account of
when determining the effects of UP in complicated formulas.

MAP. In the MAP domain, one moves on the road map graph, parameterized by
n, shown in Figure 3 (a) and (b). The available actions take the form move-x-y,
where x is connected to y with an edge in the graph. The precondition is {at-x},
the add effect is {at-y, visited-y}, and the delete effect is {at-x}. Initially one is
located at L0. The goal is to visit a number of locations. What locations must be
visited depends on the value of k ∈ {1, 3, . . . , 2n−3}. If k = 1 then the goal is to
visit each of {L1

1, . . . , L
1
n}. For each increase of k by 2, the goal on the L1-branch

goes up by two steps, and one of the other goals is skipped. For k = 2n− 3, the
goal is {L2n−3

1 , L1
2}.12 We refer to k = 1 as the bottom case, and to k = 2n − 3

as the top case, see Figure 3 (a) and Figure 3 (b), respectively.
The length of a shortest plan is 2n− 1 independently of k; our CNFs encode

2n−2 steps; AsymRatio is k
2n−1 . Figure 3 (c) and (d) illustrate that the setting

of k has a quite drastic effect on backdoor size. We will detail this below. First,
observe that the setting of k has only very little impact on the size and shape
of the constraint graph, illustrated in Figure 3 (e) and (f). Between formulas
MAP kn and MAP k

′

n , k′ > k, there is no difference except that k′−k goal clauses
are skipped, and that the content of the goal clause for the L1-branch changes.
Precisely, the number of clauses in MAP kn is 3n3+27n2−73n+39−(k+1)/2. The
number of variables is 16n2 − 33n + 14, irrespectively of k. Also irrespectively
of k, the constraint graph contains, at each time step 2 ≤ t ≤ 2n − 2, large
cliques of variables, for example the 2n variables corresponding to moves from
or to L0, which are fully connected due to the mutex clauses. From a clique of
size m, one has to remove m−1− b nodes in order to get to an induced width of
1 ≤ b ≤ m− 1. Since the mentioned cliques are disjoint, this shows that, for any
constant b, the b-cutset size in MAP kn is a square function in n, irrespectively of
k. Details, also on other kinds of cutsets, are in the TR [23].

The hidden structure in our formulas can not be characterized in terms of
b-cutsets. It can be characterized in terms of the effects of unit propagation. For
the bottom case, we identify a backdoor called MAP 1

nB, defined as follows:
12 For k = 2n− 1, MAP kn contains an empty clause: no supporting action for the goal

is present at the last time step.

10 Hoffmann, Gomes and Selman

L1

1
L2

1
Ln

1

L1

2n−3

L
0

L1

1
L2

1
Ln

1

L1

2n−3

L
0

(a) goals “bottom” case (b) goals “top” case

1 NA−0

MV−2

NV−3

MV−3 MV−4

5

3

6

4

2

4321

MV−2

NV−3

MV−3 MV−4

NV−4

NV−4

1

5

3

6

4

2

431

MV−1

MV−23

2

(c) backdoor “bottom” case, n = 4 (d) backdoor “top” case, n = 4

(e) constraint graph “bottom” case, n = 4 (f) constraint graph “top” case, n = 4

Fig. 3. Goals, backdoors, and constraint graphs in MAP. In (a) and (b), goal loca-
tions are indicated in bold face, for the bottom end (a) and the top end (b) of the
k scale. In (c) and (d), the horizontal axis indicates branches in the map, and the
vertical axis indicates time steps; abbreviations: “NA-0” for NOOP -at-L0(1), “MV-i”
for move-L0-L1

i , “NV-i” for NOOP -visited-L1
i , and “MV-23” for move-L2

1-L3
1. In (e)

and (f), the variables at growing time steps lie on circles with growing radius. Edges
indicate common membership in at least one clause. Stepping from (e) to (f), three
edges within the outmost circle disappear (one of these is visible on the left side of the
pictures, just below the middle) and one new edge within the outmost circle is added.

MAP 1
nB := {move-L0-L1

i (t) | t ∈ T, 2 ≤ i ≤ n} ∪
{NOOP -visited-L1

i (t) | t ∈ T, 3 ≤ i ≤ n} ∪
{NOOP -at-L0(1)} ∪
{move-L0-L1

1(t) | t ∈ T \ {2n− 5, 2n− 3}}

Here, T = {3, 5, . . . , 2n−3}. Compare Figure 3(c). The size of MAP 1
nB is Θ(n2).

Structure and Problem Hardness in SAT-Based Planning 11

Theorem 1 (MAP bottom case, backdoors). Let n > 1. MAP 1
nB is a

backdoor for MAP 1
n .

To prove Theorem 1, one has to examine the effects of UP in the formulas
MAP 1

n quite closely [23]. The proof goes as follows. First, note that, in our
encoding, any pair of move actions is incompatible. So if one move action is set
to 1 at a time step, then all other move actions at that step are forced out by UP
over the mutex clauses. Now, think about the backdoor variables in a backward
fashion, assigning values to them starting at the last time step. In that step, the
goal clauses form n constraints requiring to either visit a location L1

i , or to have
visited it earlier already (i.e., to achieve it via a NOOP). When assigning values
to all MAP 1

nB variables at that time, at least n − 1 goal constraints will be
transported to the time step below. Iterating the argument, one gets at least 1
goal constraint at time 2. Taking account of several case distinctions, e.g. about
the value assigned to NOOP -at-L0(1), one can show that, after UP, n−2 of the
move-L0-L1

i (t) variables, i 6= 1, are set to 1 in non-adjacent time steps t. With
case distinctions about at exactly what non-adjacent t the move variables are
set to 1, one can show that UP also enforces commitments to accommodate the
remaining 2 move-L0-L1

i actions – for which there is not enough room left.
We conjecture that the backdoor identified in Theorem 1 is also a minimum

size (i.e., an optimal) backdoor; for n ≤ 4 we verified this empirically. Note
that the total number of variables in the CNF is also a square function in n,
so the backdoor is a linear-size variable subset. We proved that the backdoor is
minimal, i.e., does not contain redundant variables.

Theorem 2 (MAP bottom case, backdoors minimality). Let n > 1. Let
B′ be a subset of MAP 1

nB obtained by removing one variable. Then the number
of UP-consistent assignments to the variables in B′ is always greater than 0, and
at least (n− 3)! for n ≥ 3.

The proof of this theorem is a matter of figuring out how wrong things can
go when a variable is missing in the proof of Theorem 1.

Using the convention that L0
1 stands for L0, the backdoors we identify for

the top case, called MAP 2n−3
n , have the form:

MAP 2n−3
n B := {move-L2i−2

1 -L2i−1
1 (2i − 1) | 1 ≤ i ≤ dlog2ne}

Compare Figure 3 (d). Obviously, the size of MAP 1
nB is dlog2ne.

Theorem 3 (MAP top case, backdoors). Let n > 1. MAP 2n−3
n B is a back-

door for MAP 2n−3
n .

We again conjecture that this is also a minimum size, optimal, backdoor. For
n ≤ 8 we verified this empirically. We can show that the backdoor is minimal.

Theorem 4 (MAP top case, backdoors minimality). Let n > 1. Let B′ be
a subset of MAP 2n−3

n B obtained by removing one variable. Then there is exactly
one UP-consistent assignment to the variables in B′.

12 Hoffmann, Gomes and Selman

The Θ(log2n) backdoor size proved here for AsymRatio = 2n−3
2n−1 , compared

to the Θ(n2) backdoor from Theorem 1 for AsymRatio = 1
2n−1 , nicely reflects

our empirical findings. We consider it particularly interesting that the MAP 2n−3
n

formulas have logarithmic backdoors. This shows, on the one hand, that these
formulas are (potentially) easy for Davis Putnam procedures, having polynomial-
size proofs. On the other hand, the formulas are non-trivial, in two important
respects. First, they do have non-constant backdoors and are not just solved by
unit propagation. Second, finding the logarithmic backdoors involves, at least, a
non-trivial branching heuristic: the worst-case DPLL proofs for MAP 2n−3

n are
still exponential in n.

The MAP 2n−3
n formulas being interesting in that way, it is instructive to have

a closer look at how the logarithmic backdoors arise. The proof of Theorem 3
uses the following two properties of UP, in MAP 2n−3

n :

(1) If one sets a variable move-Li−1
1 -Li1(i) to 1, then at all time steps j < i a

move variable is set to 1 by UP.
(2) If one sets a variable move-Li−1

1 -Li1(i) to 0, then at all time steps j > i a
move variable is set to 1 by UP.

Both properties are caused by the “tightness” of branch 1, i.e., by UP over
the precondition clauses of the actions moving along that branch, in combination
with the goal to visit the outmost location. Other than what one may think at
first sight, the two properties by themselves are not enough to determine the
log-sized backdoor. The properties just form the foundation of a subtle interplay
between the different settings of the backdoor variables, exploiting exponentially
growing UP implication chains on branch 1. The interplay is best explained
with an example. For n = 8, the backdoor is {move-L0-L1

1(1), move-L2
1-L3

1(3),
move-L6

1-L7
1(7)}. Figure 4 contains an illustration.

0
−

L
1

−
L

2
3 711 1

1 1
−

L
6

m
v
−

L

m
v
−

L

m
v
−

L

1 2 3 4 5 6 7 8 9 14

0:

1: 0:

1: 0:

1:

Fig. 4. The workings of the optimal backdoor for MAP 13
8 . Arrows indicate moves on

the L1-branch forced to 1 by UP. Direction → means towards L13
1 , ← means towards

L0. When only a single open step is left, move-L0-L1
2 is forced to 1 at that step by UP,

yielding a contradiction.

Consider the first (lowest) variable in the backdoor, move-L0-L1
1(1). If one

sets this to 0, then property (2) applies: only 13 of the 14 available steps are

Structure and Problem Hardness in SAT-Based Planning 13

left to move towards the goal location L13
1 ; UP recognizes this, and forces moves

towards L13
1 at all steps 2 ≤ t ≤ 14. Since t = 1 is the only remaining time step

not occupied by a move action, UP over the L1
2 goal clause sets move-L0-L1

2(1)
to 1, yielding a contradiction to the precondition clause of the move set to 1 at
time 2. So move-L0-L1

1(1) must be set to 1.
Consider the second variable in the backdoor, move-L2

1-L3
1(3). Say one sets

this to 0. By property (2) this forces moves at all steps 4 ≤ t ≤ 14. So the
goal for L1

2 must be achieved by an action at step 3. But we have committed to
move-L0-L1

1 at step 1. This forces us to move back to L0 at step 2 and to move
to L1

2 at step 3. But then the move forced in earlier at 4 becomes impossible. It
follows that we must assign move-L2

1-L3
1(3) to 1. With property (1), this implies

that, by UP, all time steps below 3 get occupied with move actions. (Precisely,
in our case here, move-L1

1-L2
1(2) is also set to 1.)

Consider the third variable in the backdoor, move-L6
1-L7

1(7). If we set this
to 0, then by property (2) moves are forced in by UP at the time steps 8 ≤
t ≤ 14. So, to achieve the L1

2 goal at step 7, we have to take three steps to
move back from L3

1 to L0: steps 4, 5, and 6. A move to L1
2 is forced in at

step 7, in contradiction to the move at 8 forced in earlier. Finally, if we assign
move-L6

1-L7
1(7) to 1, then by property (1) moves are forced in by UP at all steps

below 7. We need seven steps to move back from L7
1 to L0, and an eighth

step to get to L1
2. But we have only the 7 steps 8, . . . , 14 available.

The key to the logarithmic backdoor size is that, to achieve the L1
2 goal, we

have to move back from Lt1 locations we committed to earlier (as indicated in
bold face above for t = 3 and t = 7). We committed to move to Lt1, and the
UP propagations force us to move back, thereby occupying 2 ∗ t steps in the
encoding. This yields the possibility to double the value of t between variables.

Proving Theorem 4 is a matter of figuring out what can go wrong in the proof
to Theorem 3, after removing one variable [23]. Note that, with the above, the
DPLL proof for MAP 2n−3

n actually degenerates to a line, and has only dlog2ne
(non-failed) nodes. Besides small backdoors, such degenerated proof trees are
probably also typical in structured examples.13

It would be interesting to determine what the optimal backdoors are in gen-
eral, i.e. in MAP kn , particularly at what point the backdoors become logarithmic.
Such an investigation turns out to be extremely difficult. For interesting com-
binations of n and k it is practically impossible to find the optimal backdoors
empirically, and so get a start into the theoretical investigation. We developed
an enumeration program that exploits symmetries in the planning task to cut
down on the number of variable sets to be enumerated. Even with that, the
enumeration didn’t scale up far enough. We leave this topic for future work.

SBW. This is a block-stacking domain (n blocks), with restrictions on what
blocks can be stacked onto what other blocks. These are initially all located
13 In fact, we proved in the meantime that the size of DPLL search trees for MAP 1

n

is exponentially lower-bounded in n. (The proof goes by a reduction to the Pigeon
Hole problem, and is not yet available in the TR.) This shows a doubly exponential
complexity gap between DPLL proofs in the bottom and top cases.

14 Hoffmann, Gomes and Selman

side-by-side on a table t1. The goal is to bring all blocks onto another table
t2, that has only space for a single block; so the n blocks must be arranged in
a single stack on top of t2. The parameter k, 0 ≤ k ≤ n, defines the amount
of stacking restrictions. There are k “bad” blocks b1, . . . , bk and n − k “good”
blocks g1, . . . , gn−k. For 1 < i ≤ k, bi can only be stacked onto bi−1; b1 can be
stacked onto t2 and any gi. The gi can be stacked onto each other, and onto t2.

Independently of k, the optimal plan length is n: a single move action stacks
one block onto another block or a table. AsymRatio is 1

n if k = 0, and k
n

otherwise. Our CNF formulas encode n − 1 action steps. In the bottom case,
k = 0, we prove the existence of backdoors of size Θ(n3). In the top case,
k = n− 2, there are O(log2n) backdoors.

SPH. Finally, we constructed a non-Planning example that also exhibits similar
asymmetric structure and backdoor size behavior. We modified the well-known
Pigeon Hole problem. In our SPHk

n formulas, like in the classical Pigeon Hole
problem, the task is to assign n+1 pigeons to n holes. The difference lies in that
there is now one “bad” pigeon that requires k holes, and k − 1 “good” pigeons
that can share a hole with the bad pigeon. The remaining n − k + 1 pigeons
are normal, i.e., need exactly one hole each. The range of k is between 1 and
n− 1. Independently of k, n+ 1 holes are needed overall. Apart from identifying
minimal backdoors for all k and n, for k = n − 1 we identify an O(n) DPLL
proof, which implies an exponential complexity gap to k = 1 [24].

5 Conclusions

Current DPLL-based SAT solvers are very efficient in “structured” formulas
encoding real-world applications from Planning and Verification. We considered
the effect of structure on the hardness of Planning formulas. Our findings reveal
a mechanism – strong asymmetries in subgoal structure, a semantic notion –
which can give rise to very small DPLL proofs. Most interestingly, with high
subgoal asymmetry, we identified classes of planning formulas with logarithmic
size backdoors and DPLL proofs.

Our results promote the understanding of what is relevant for solver perfor-
mance in practice. Such an understanding is, we think, important in itself. From
a more practical point of view, it may inspire the development of new search
heuristics. As a simple example, our analysis of minimal backdoors suggests to
use different branching heuristics depending on the value of AsymRatio (which
can be approximated using various techniques from the literature [9–11]): with a
high AsymRatio, concentrate on the actions supporting the most difficult sub-
goal; with a low AsymRatio, do not concentrate on any particular sub-goal and
distribute the branching more uniformly.

Our results are, so far, mainly for planning domains. We are currently ex-
tending our work to consider other constraint reasoning applications. In general,
we hope that our approach will lead to the investigation of other forms of prob-
lem structure that can be identified empirically, and be captured in synthetic
domains and analyzed rigorously.

Structure and Problem Hardness in SAT-Based Planning 15

References

1. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: Proc. IJCAI’91. (1991) 331–337

2. Hogg, T., Huberman, B., Williams, C.: Phase Transitions and Complexity. Artifi-
cial Intelligence 81 (1996)

3. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proc. DAC’01. (2001) 530–535

4. Kautz, H., Selman, B.: Unifying SAT-based and graph-based planning. In: Proc.
IJCAI’99. (1999) 318–325

5. Hoffmann, J., Edelkamp, S.: The deterministic part of IPC-4: An overview. Journal
of Artificial Intelligence Research (2005) To appear.

6. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
Proc. IJCAI’03. (2003)

7. Long, D., Fox, M.: The 3rd international planning competition: Results and anal-
ysis. Journal of Artificial Intelligence Research 20 (2003) 1–59

8. Edelkamp, S., Hoffmann, J., Englert, R., Liporace, F., Thiebaux, S., Trüg, S.:
Engineering benchmarks for planning: the domains used in the classical part of
IPC-4. Journal of Artificial Intelligence Research (2005)

9. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial
Intelligence 90 (1997) 279–298

10. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14 (2001) 253–302

11. Edelkamp, S.: Planning with pattern databases. In Cesta, A., Borrajo, D., eds.:
Recent Advances in AI Planning. 6th European Conference on Planning (ECP’01),
Toledo, Spain, Springer-Verlag (2001) 13–24

12. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learn-
ing and cutset decomposition. Artificial Intelligence 41 (1990) 273–312

13. Rish, I., Dechter, R.: Resolution versus search: Two strategies for SAT. JAR 24
(2000) 225–275

14. Dechter, R.: Constraint Processing. Morgan-Kauffmann (2003)
15. Climer, S., Zhang, W.: Searching for backbones and fat: A limit-crossing approach

with applications. In: Proc. AAAI-02, AAAI Press (2002)
16. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining Component

Caching and Clausal Learning for Effective Model Counting. In: SAT04. (2004)
17. Hulubei, T., O’Sullivan, B.: Optimal refutations for constraint satisfaction prob-

lems. In: Proc. the International Joint Conference on Artificial Intelligence (IJ-
CAI05), Seattle, AAAI Pess (2001)

18. Li, W., van Beek, P.: Guiding Real-world SAT Solving with Dynamic Hypergraph
Separator Decomposition. Proc. ICTAI-04 (2004)

19. Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Understand-
ing random SAT: beyond the clauses-to-variable ratio. In: CP-04. (2004) 438–452

20. Slaney, J., Walsh, T.: Backbones in optimization and approximation. In: IJCAI01.
(2001)

21. Hoffmann, J., Porteous, J., Sebastia, L.: Ordered landmarks. Journal of Artificial
Intelligence Research (2004)

22. Helmert, M.: Complexity results for standard benchmark domains in planning.
Artificial Intelligence 143 (2003) 219–262

23. Hoffmann, J., Gomes, C., Selman, B.: Structure and problem hardness: Asymmetry
and DPLL proofs in SAT-based planning. Technical Report (2005) Available at
http://www.mpi-sb.mpg.de/∼hoffmann/tr05.ps.

24. Buss, S., Pitassi, T.: Resolution and the weak pigeon-hole principle. In: Proceedings
of Computer Science Logic (CSL’97). (1997) 149–156

16

Bound Consistencies for the discrete CSP

Christophe Lecoutre and Julien Vion

CRIL-CNRS FRE 2499,
Université d’Artois

Lens, France
{lecoutre, vion}@cril.univ-artois.fr

Abstract. Many works in the area of Constraint Programming have
focused on inference, and more precisely, on filtering methods based on
properties of constraint networks. Such properties are called domain fil-
tering consistencies when they allow removing some inconsistent values
from the domains of variables, and bound consistencies when they focus
on bounds of domains. In this paper, we study the relationship between
consistencies introduced with respect to discrete and continuous con-
straint networks, and experiment the effectiveness of exploiting bound
consistencies on discrete instances.

1 Introduction

Many problems arising in Artificial Intelligence and Computer Science involve
constraint satisfaction as an essential component. Such problems occur in numer-
ous domains such as scheduling, planning, molecular biology and circuit design.
The methods that have been developed for processing constraints can be classi-
fied into inference and search [13]. Inference is used to transform a problem into
an equivalent form which is simpler than the original one while search is used
to traverse the search space of the problem in order to find a solution. Problems
involving constraints are usually represented by so-called constraint networks.

A constraint network is simply composed of a set of variables and of a set
of constraints. Finding a solution to a constraint network involves assigning a
value to each variable such that all constraints are satisfied. The Constraint
Satisfaction Problem (CSP) is the task to determine whether or not a given
constraint network, also called CSP instance, is satisfiable. It comes in two forms.
The first one, called discrete or finite CSP, corresponds to constraint networks
such that each variable takes its values in an associated discrete domain while
the second one, called continuous or numeric CSP, corresponds to networks such
that each variable takes its values in an associated continuous domain.

Many works in the area of Constraint Programming have focused on infer-
ence, and more precisely, on filtering methods based on properties of constraint
networks. The idea is to exploit such properties in order to identify some no-
goods where a no-good corresponds to a set of variable assignments that can
not lead to any solution. Properties that allow identifying no-goods of size 1,
which correspond to inconsistent values, are called domain filtering consisten-
cies [12]. In this paper, we focus on domain filtering consistencies that have been
introduced with respect to discrete and continuous CSP instances.

18 Lecoutre and Vion

On the one hand, when dealing with discrete CSP instances, a usual approach
to solve them is to use the MAC algorithm, i.e. the algorithm which maintains
arc consistency during search. Arc consistency (AC) means that any value occur-
ring in the associated domain of a variable X admits at least a support in each
constraint involving X. Recent works have shown that there exist promising al-
ternatives to AC, namely, max-restricted path consistency (Max-RPC) [10] and
singleton arc consistency (SAC) [11]. Max-RPC and SAC are stronger consis-
tencies than AC, that is to say, they allow identifying more inconsistent values
than AC does. Max-RPC holds when all values have at least one path consistent
support on each constraint whereas SAC holds when the constraint network can
be made arc consistent after any variable assignment. It can be useful to estab-
lish Max-RPC or SAC at pre-processing time (i.e. before search) [22, 12], but
it seems that maintaining such a strong consistency during search does require
some control about the effort performed at each step. In fact, it remains an open
issue although recent advances [1, 5, 18] show it is a direction of future research.

On the other hand, when dealing with continuous CSP instances, one has
to reason about intervals. For instance, it is possible to represent a domain by
a finite set of (disjoint) continuous intervals and to propose some adaptations
[16, 14] of the arc consistency enforcing algorithm which, otherwise, is subject to
early quiescence and infinite iterations. However, it is more usual that domains
are considered as convex, i.e. represented by a single interval. By restricting arc
consistency with respect to the bounds of each (convex) domain, new consis-
tencies can be introduced. The consistency that is based on an approximation
(in order to maintain domains convex) of projection functions for the narrow-
ing of domains is called 2B-consistency (2B) by [19] and hull-consistency by [2].
However, it requires, for each pair (C,X) composed of a constraint C and a
variable X, the existence of two functions computing the min bound and the
max bound of the set of values given by the projection over X of the set of sup-
ports of C. When such functions can not be exhibited, it is necessary to perform
some decomposition of the constraint system. Another consistency, called box-
consistency [2], exploits interval arithmetic and does not require any constraint
decomposition. It is known [9] that 2B and box-consistency match when no vari-
able occurs several times in the expression of a constraint. It is also possible to
define stronger consistencies than 2B or box-consistency by assuming that each
variable is assigned, in turn, with the two bounds of its domain and by check-
ing consistency when establishing 2B or box-consistency. Such consistencies are
called 3B-consistency (3B) [19] and bound-consistency, respectively. Finally, it
is possible to introduce a recursive definition of kB-consistencies [20] with k ≥ 2.

In the following, we will define a consistency restricted to the bounds of the
domains as a bound consistency. For example, 2B corresponds to bound AC
while 3B is a relaxation of bound SAC. The aim of this paper is to study the
practical effectiveness of exploiting bound consistencies with respect to discrete
CSP instances, as even if 2B has been integrated into some constraint logic
programming solvers [8, 15], we are not aware of any experimental comparison
involving different bound consistencies wrt finite domains.

Bound Consistencies for Discrete CSP 19

2 Domain Filtering Consistencies

In this section, we introduce some consistencies that allow removing some incon-
sistent values from the domains of a constraint network (CN). Such consistencies,
called domain filtering consistencies in [12], share the nice property of not mod-
ifying the structure of the network.

Definition 1. A Constraint Network P is a pair (X ,C) where:

– X = {X1, . . . , Xn} is a finite set of n variables such that each variable Xi

has an associated domain dom(Xi) denoting the set of values allowed for Xi,
– C = {C1, . . . , Cm} is a finite set of m constraints such that each constraint
Cj has an associated relation rel(Cj) denoting the set of tuples allowed for
the variables vars(Cj) ⊆X involved in the constraint Cj.

For any variable X, min(X) and max(X) will respectively denote the smallest
and greatest values in dom(X). Note that a value will usually refer to a pair
(X,a) with X ∈ X and a ∈ dom(X). We will note (X, a) ∈ P (respectively,
(X, a) /∈ P) iff X ∈X and a ∈ dom(X) (respectively, a 6∈ dom(X)).

A constraint network is said to be satisfiable iff it admits at least a solution.
The Constraint Satisfaction Problem (CSP) is the NP-complete task of determin-
ing whether a given constraint network, also called CSP instance, is satisfiable.
To solve a CSP instance, a depth-first search algorithm with backtracking can
be applied, where at each step of the search, a variable assignment is performed
followed by a filtering process called constraint propagation. Usually, constraint
propagation algorithms are based on domain filtering consistencies, among which
the most widely studied ones are called arc consistency, max-restricted path con-
sistency and singleton arc consistency.

Arc Consistency (AC) is the basic property of constraint networks. It guar-
antees that each value occurs in at least a support of each constraint. Algorithms
to establish AC entails removing all arc inconsistent values and can be classi-
fied into coarse-grained and fine-grained algorithms. Optimal worst-case time
complexity to establish AC is O(md2) where d is the size of the largest domain.

Definition 2. Let P = (X ,C) be a CN, X ∈ X and a ∈ dom(X). (X, a) is
arc consistent iff ∀C ∈ C |X ∈ vars(C), there exists a support of (X, a) in C,
i.e., a tuple t ∈ rel(C) such that t[X] = a. P is arc consistent iff ∀X ∈ X ,
dom(X) 6= ∅ and ∀a ∈ dom(X), (X, a) is arc consistent.

Max-Restricted Path Consistency (Max-RPC) can be seen as a generalization
of restricted path consistency [3] and k-restricted path consistency [10] and also
as a restriction of path consistency [21]. It is defined with respect to binary
constraint networks, i.e. networks that only involves binary constraints. Max-
RPC guarantees that each value can be found a path in each 3-clique of the
network. Optimal worst-case time complexity to establish Max-RPC is O(mn+
md2 + cd3) where c denotes the number of 3-cliques in the constraint network.

20 Lecoutre and Vion

Definition 3. Let P = (X ,C) be a binary CN, Xi ∈ X and a ∈ dom(Xi).
(Xi, a) is max-restricted path consistent iff ∀Cij ∈ C , ∃b ∈ dom(Xj) s.t. (a, b) ∈
rel(Cij) and ∀Xk ∈X |Cik ∈ C ∧Cjk ∈ C , ∃c ∈ dom(Xk) s.t. (a, c) ∈ rel(Cik)∧
(b, c) ∈ rel(Cjk). P is max-restricted path consistent iff ∀Xi ∈X , dom(Xi) 6= ∅
and ∀a ∈ dom(Xi),(Xi, a) is max-restricted path consistent.

Singleton Arc Consistency (SAC) is a stronger consistency than Max-RPC
which is itself stronger than AC. It means that SAC can identify more incon-
sistent values than Max-RPC can, and subsequently more than AC can. SAC
guarantees that enforcing arc consistency after performing any variable assign-
ment does not show unsatisfiability, i.e., does not entail a domain wipe-out.
Optimal worst-case time complexity to establish SAC is O(mnd3) [5].

To give a formal definition of SAC, we need to introduce some notations.
AC(P) denotes the constraint network obtained after enforcing arc consistency
on a given constraint network P . AC(P) is such that all values of P that are not
arc consistent have been removed. If there is a variable with an empty domain
in AC(P), denoted AC(P) = ⊥, then P is clearly unsatisfiable. P |X=a is the
constraint network obtained from P by restricting the domain of X to {a}.

Definition 4. Let P = (X ,C) be a CN, X ∈ X and a ∈ dom(X). (X, a) is
singleton arc consistent iff AC(P |X=a) 6= ⊥. P is singleton arc consistent iff
∀X ∈X , dom(X) 6= ∅ and ∀a ∈ dom(X), (X, a) is singleton arc consistent.

Finally, [4] have proposed an extension of SAC that is called Singleton Prop-
agated Arc Consistency (SPAC). It is based on the following observation. If
(Y, b) /∈ AC(P |X=a) then it corresponds to the detection of the nogood ¬(X =
a ∧ Y = b) and we can deduce that (X, a) /∈ AC(P |Y=b). We can exploit this
inference when checking the singleton arc consistency of (Y, b) as it gives more
chances to detect an inconsistency.

Definition 5. Let P = (X ,C) be a CN, X ∈ X and a ∈ dom(X). (X, a) is
singleton propagated arc consistent iff P̃ |X=a 6= ⊥ where P̃ |X=a is the constraint
network obtained from P by removing any value (Y ,b) of P (i.e. b from dom(Y))
such that (X, a) /∈ AC(P |Y=b). P is singleton propagated arc consistent iff ∀X ∈
X , dom(X) 6= ∅ and ∀a ∈ dom(X), (X, a) is singleton propagated arc consistent.

It is possible to define a bound version for any domain filtering consistency
Φ as follows.

Definition 6. Let P = (X ,C) be a CN. P is bound Φ-consistent iff ∀X ∈X ,
dom(X) 6= ∅ and both min(X) and max(X) are Φ-consistent.

On the other hand, 2B and 3B [19] are consistencies that have been intro-
duced wrt continuous constraint networks. 2B(P) denotes the constraint network
obtained after enforcing 2B on a given constraint network P and 2B(P) = ⊥
indicates that there is a variable with an empty domain in 2B(P).

Definition 7. P = (X ,C) is 2B-consistent iff ∀X ∈ X , dom(X) 6= ∅ and
both min(X) and max(X) are arc consistent. P is 3B-consistent iff ∀X ∈ X ,
dom(X) 6= ∅ and both 2B(P |X=min(X)) 6= ⊥ and 2B(P |X=max(X)) 6= ⊥.

Bound Consistencies for Discrete CSP 21

Algorithm 1 seekSupportArc(C : Constraint, X : Variable, a : Value) : boolean
1: t← ⊥
2: while t 6= > ∧ C(t) = false do
3: t← setNextTuple(C,X, a, t)
4: return t 6= >

Algorithm 2 revise(C : Constraint, X : Variable) : boolean
1: domainSize← |dom(X)|
2: while |dom(X)| > 0 ∧ ¬ seekSupportArc(C,X,min(X)) do
3: remove min(X) from dom(X)
4: while |dom(X)| > 1 ∧ ¬ seekSupportArc(C,X,max(X)) do
5: remove max(X) from dom(X)
6: return domainSize 6= |dom(X)|

Clearly, 2B-consistency corresponds to bound AC while 3B-consistency is a
relaxation of bound SAC since for each pair (X,a) with a = min(X) or a =
max(X), 3B-consistency requires that 2B(P |X=a) 6= ⊥ whereas bound SAC re-
quires that AC(P |X=a) 6= ⊥. We can also observe (see next sections) that a
consistency and its bound version admit the same optimal worst-case time com-
plexity. For example, establishing AC or 2B is O(md2) while establishing SAC,
bound SAC or even 3B is O(mnd3). This statement seems to be in contradiction
with the optimality of 2B-consistency and 3B-consistency algorithms which is
O(md) [19] and O(mnd2) [7], respectively. However, it is then assumed that all
constraints are basic, that is to say, that for each constraint C, it is possible to
find two functions that compute in bounded time the min bound and the max
bound of the domain of any variable involved in C.

One nice advantage of exploiting bound consistencies is that space complexity
can be very affordable. Indeed, it is possible to reduce the space required by some
algorithms by a factor d or even d2 as we can just generate data structures wrt
two bounds. Further, if convex domains are considered, i.e. domains are such
that all values between the min and the max bounds belong to the domain, then
a constraint network can be represented in O(n + m). It can be very useful for
networks involving variables with large domains as for some scheduling instances.

Finally, remark that we have ignored in this paper the adaptation of (nu-
meric) consistencies such as box-consistency and bound-consistency wrt discrete
CSP instances.

3 2B (Bound arc consistency)

Arc consistency (AC) is the most studied and used local consistency. Algo-
rithm 4 is the bound adaptation of the coarse-grained arc consistency algorithm
AC3 [21]. It just calls Algorithm 3 with the set of variables of the given constraint
network as a second parameter. This second algorithm allows establishing bound
arc consistency of the given constraint network by initializing a set Q with some

22 Lecoutre and Vion

Algorithm 3 2B (P = (X ,C) : CN, S : set of Variables)
1: Q← {(C,X) | C ∈ C ∧X ∈ vars(C) ∧ ∃Y ∈ S ∩ vars(C)|Y 6= X}
2: while Q 6= ∅ do
3: pick and delete (C,X) in Q
4: if revise(C,X) then
5: Q← Q ∪ {(C′, X ′) | X ∈ vars(C′) ∧ X ′ ∈ vars(C′) ∧ C 6= C′}
6: end while

Algorithm 4 2B (P = (X ,C) : CN)
1: 2B(P ,X)

arcs and then performing successive revisions until a fix-point is reached. Algo-
rithm 3 has been introduced as it is useful later in the paper. But, assuming
that no unary constraint is allowed, one should observe that the call 2B(P,X)
(line 1 of Algorithm 4) involves the following standard initialization of the set
Q (line 1 of Algorithm 3):

Q← {(C,X) | C ∈ C ∧X ∈ vars(C)}

Hence, initially, all arcs (C,X) are put in a set Q. Then, each arc is revised
in turn, and when a revision is effective (at least one value has been removed),
the set Q has to be updated. A revision is performed by a call to the function
revise(C,X), depicted in Algorithm 2 and entails removing values at bounds
of dom(X) that have become inconsistent with respect to C. The algorithm is
stopped when the set Q becomes empty. Remark that when a revision of an
arc (C,X) is effective, it is necessary to take into account the arcs of the form
(C ′, X) (with C 6= C ′) since the consistency of the new bound(s) of dom(X) is
not guaranteed wrt C ′. The function seekSupportArc, depicted in Algorithm 1,
determines from scratch whether or not there exists a support of (X, a) in C.
It iteratively calls the function setNextTuple which returns either the smallest
valid tuple t′ in C such that t ≺ t′ and t′[X] = a or > if it does not exist. Note
that C(t) must be understood as a constraint check and that C(⊥) returns false.

Finally, Algorithm 4 can also be seen as an adaptation of the procedure IP 1
proposed in [19] where it is assumed that constraints are basic. Also, a variant
with a constraint-oriented propagation scheme can be found in [7].

Proposition 1. Applied to binary constraint networks, Algorithm 4 admits a
worst-case time and space complexity in O(md2) and O(m), respectively.

Proof. Each arc (C,X) may enter d times in Q to be revised [21, 7, 6]. When a
revision entails no removal, at most 2×d constraint checks are performed. When
some removals occur, there are at most d additional constraint checks per value
removed. For each arc, we then obtain 2×d×d+d×d as an upper bound of the
global number of constraint checks. As there are 2×m different arcs, we obtain
a worst-case time complexity in O(md2). On the other hand, the only structure
used by the algorithm is the queue Q which is O(m). �

Bound Consistencies for Discrete CSP 23

Algorithm 5 seekSupportPath(Cij : Constraint, Xi : Variable, a : Value) : bool
1: for each value b ∈ dom(Xj) s.t. Cij(a, b) do
2: for each variable Xk s.t. (Xi,Xj ,Xk) forms a 3-clique do
3: for each value c ∈ dom(Xk) do
4: if Cik(a, c) ∧ Cjk(b, c) then
5: continue loop 2:
6: end for
7: continue loop 1:
8: end for
9: return true

10: end for
11: return false

It is interesting to note that even if last supports are recorded as with an
underlying optimal arc consistency technique such as AC2001/3.1, the worst-
case time complexity remains O(md2) although one could have expected a better
complexity as bound consistencies only consider the min and the max values.

4 2B+ (Bound max-restricted path consistency)

Max-Restricted Path Consistency (Max-RPC) [10] is one of the most promising
local consistencies. Max-RPC is stronger than arc consistency, restricted path
consistency [3] and k-restricted path consistency [10] but weaker than singleton
arc consistency. In this section, we propose a bound adaptation of Max-RPC in
the context of a coarse-grained algorithm. Actually, as this adaptation, denoted
2B+, does not guarantee that each bound has a path consistent support with
respect to each constraint, it should be viewed as an opportunistic algorithm
that is simple to define and implement.

The algorithm 2B+ is obtained from 2B by simply replacing, in function
revise, calls to function seekSupportArc by calls to function seekSupportPath
which is described by Algorithm 5. The function seekSupportPath returns true
(line 10) iff the given value has a path consistent support on the given constraint.
In order to guarantee that the resulting constraint network is (at least) arc
consistent, we have to replace C 6= C ′ by (C 6= C ′ ∨ X 6= X ′) in line 5 of
Algorithm 3. It means that, when the revision of an arc (Cij , Xi) is effective,
it is necessary to take into account the arc (Cij , Xj). Indeed, let us suppose
that (Cij , Xj) has been revised and that a = min(Xi) has been found as a
path consistent support for b = min(Xj) requiring a value c for a variable Xk.
Next, some revision is performed that entails the removal of (Xk,c) and (Cij , Xi)
is revised. Imagine that a = min(Xi) has no more path consistent support in
dom(Xj) (b = min(Xj) was one such support but it required c that has been
removed) then a is removed. If the arc (Cij , Xj) is not added to Q, then it is
possible that propagation finishes although (Xj ,b) is not supported by Xi.

24 Lecoutre and Vion

Algorithm 6 3B-X(P = (X ,C) : CN)
1: P ← 2B(P ,X)
2: repeat
3: Pbefore ← P
4: for each X ∈ X do
5: domainSize← |dom(X)|
6: while |dom(X)| > 0 ∧ ¬ check2B-X(P ,X,min(X)) do
7: remove min(X) from dom(X)
8: while |dom(X)| > 1 ∧ ¬ check2B-X(P ,X,max(X)) do
9: remove max(X) from dom(X)

10: if |dom(X)| < domainSize then
11: P ← 2B(P ,{X})
12: end for
13: until P = Pbefore

5 3B (Bound singleton arc consistency)

There is a recent attraction about singleton consistencies, and more particularly
about SAC (Singleton Arc Consistency), as illustrated by recent works of [11,
22, 1, 4, 5, 18]. Even if it is possible to propose an algorithm to establish bound
SAC, it does not seem quite appropriate when dealing with large domains as
AC requires to represent domains in extension (and not by simple intervals). We
propose here two algorithms to establish 3B which can be seen as a relaxation
of bound SAC.

5.1 3B-X

Algorithm 6 is the bound adaptation, denoted 3B-X, of a basic singleton arc
consistency algorithm. 3B-X starts by enforcing bound arc consistency (2B) on
the given network (line 1). Then, each bound of the domain of each variable is
checked to be 2B-consistent by calling the function check2B − X (lines 6 and
8). Two variants, denoted check2B − 1 and check2B − 2, of this function are
given in the subsequent subsections. Bounds that are not consistent are then
removed (lines 7 and 9). When the domain of a variable is modified, bound
arc consistency is maintained (lines 10 and 11). The process continues until a
fix-point is reached.

5.2 3B-1

3B-1 corresponds to the algorithm 6 that uses the function check2B−1 depicted
by Algorithm 7. Roughly speaking, 3B-1 is the bound adaptation of the singleton
arc consistency algorithm SAC-1 [11].

Proposition 2. Applied to binary constraint networks, Algorithm 3B-1 admits
a worst-case time and space complexity in O(mn2d3) and O(m), respectively.

Bound Consistencies for Discrete CSP 25

Algorithm 7 check2B-1(P = (X ,C) : CN, X : Variable, a : Value) : boolean
1: return 2B(P |X=a, {X}) 6= ⊥

Proof. The number of turns of the main loop of Algorithm 3B-X is at most
nd, one element being removed at each turn. The number of calls to check2B-
X is 2 ∗ n at each turn. As a call to check2B-1 is equivalent to a call to 2B
which is O(md2), we obtain an overall worst-case time complexity in O(mn2d3).
As Algorithm 3B-1 does not require any additional data structure, its space
complexity is the same as check2B-1, namely O(m). �

5.3 3B-2

3B-2 corresponds to the algorithm 6 that uses the function check2B−2 depicted
by Algorithm 10. The idea is to improve the performance of the basic algorithm
by recording and exploiting some information. For instance, when the consistency
of a value must be checked again, it is inefficient to restart checking from scratch
[7, 5]. Hence, we introduce three data structures:

– initialized is an array that indicates for any pair (X,a) whether the 2B-
consistency of (X,a) has been checked at least one time,

– minInferences is a three-dimensional array that allows recording for any
triplet (X,a,Y) the value min(Y) in 2B(P |X=a),

– maxInferences is a three-dimensional array that allows recording for any
triplet (X,a,Y) the value max(Y) in 2B(P |X=a).

We will assume that initialized is an array whose elements are initially set
to false (it does not appear in the given algorithm). Inferences with respect to a
pair (X,a) are relevant only when initialized[X, a] is equal to true. For instance,
imagine that after achieving 2B(P |X=a), we obtain a network such that min(Y)
= c and max(Y) = d (hence, dom(Y) = {c, . . . , d}). Then, we set initialized[X, a]
to true, minInferences[X, a, Y] to c and maxInferences[X, a, Y] to d.

When running check2B − 2 (Algorithm 10), recorded information is first
exploited (line 2) by a call to exploitInferences. After exploitation of recorded

Algorithm 8 exploitInferences(X : Variable, a : Value) : Set of variables
1: if ¬initialized[X, a] then
2: return {X}
3: S ← ∅
4: for each Y ∈ X do
5: min(Y) ← max(min(Y),minInferences[X,a,Y])
6: max(Y) ← min(max(Y),maxInferences[X,a,Y])
7: if min(Y) > minInferences[X,a,Y] or max(Y) < maxInferences[X,a,Y] then
8: add Y to S
9: end for

10: return S

26 Lecoutre and Vion

Algorithm 9 recordInferences(X : Variable, a : Value)
1: initialized[X,a] ← true
2: for each Y ∈ X do
3: minInferences[X,a,Y] ← min(Y)
4: maxInferences[X,a,Y] ← max(Y)
5: end for

Algorithm 10 check2B-2(P = (X ,C) : CN, X : Variable, a : Value) : boolean

1: Pstore ← P
2: S ← exploitInferences(X,a)
3: if S = ∅ then
4: consistent ← true
5: else
6: consistent ← 2B(P |X=a, S) 6= ⊥
7: if consistent then
8: recordInferences(X,a) then
9: end if

10: P ← Pstore
11: return consistent

inferences, either the 2B-consistency of (X,a) still holds (line 4) as the empty
set is returned by exploitInferences (since no value in 2B(P |X=a) has been
removed), or we have to check the 2B-consistency of (X,a) from the set S of
variables whose domain has been reduced (line 6). Inferences are updated (line
8) by a call to the function recordInferences.

The function exploitInferences (Algorithm 8) returns either the singleton
{X} (line 2) if the 2B-consistency of (X,a) has never been checked or the set
of variables whose domain has lost a value which does not belong to (the last
achievement of) 2B(P |X=a) (line 8). The function recordInferences (Algorithm
9) just updates data structures.

The algorithm described here can be seen as a bound adaptation of the
SAC-OPT algorithm proposed in [5] and also as a variant of the optimized 3B
algorithm described in [7].

Proposition 3. Applied to binary constraint networks, Algorithm 3B-2 admits
a worst-case time and space complexity in O(mnd3) and O(n2), respectively.

Proof. By storing information and avoiding unnecessary computation [7],
Algorithm 3B-2 exploits the incrementality of arc consistency [5]. It means that
the 2 ∗ n potential successive calls to check2B-2 wrt a value (X,a) is in O(md2).
Functions exploitInferences and recordInferences are in O(n) and then can
be ignored. As there are nd values, the overall worst-case time complexity is
O(mnd3). It is possible to modify the data structures in order to keep only
storage wrt two bounds per variable. With this slight modification (not proposed
here due to lack of space), we obtain 2 ∗n values to be recorded for 2 ∗n current
bounds. Hence, we obtain O(n2). �

Bound Consistencies for Discrete CSP 27

6 3B+ (Bound singleton propagated arc consistency)

Finally, we propose an improvement of the algorithm 3B-2 presented above. In-
deed, it is possible to benefit from some inferences when exploiting recorded
information. For example, we know that if min(X) > a in 2B(P |Y=min(Y)) then
we can infer that Y > min(Y) in 2B(P |X=a). By inserting the following instruc-
tions between lines 6 and 7 of Algorithm 8:

if initialized[Y,min(Y)] ∧minInferences[Y,min(Y), X] > a then
min(Y) ← min(Y) + 1

if initialized[Y,max(Y)] ∧maxInferences[Y,max(Y), X] < a then
max(Y) ← max(Y) - 1

we obtain an algorithm which corresponds to an extension of the 3B-consistency
and which can be seen as a coarse relaxation of bound SPAC.

7 Experiments

To prove the practical interest of the properties introduced in this paper, we
have implemented the different algorithms described in the previous sections and
conducted an experimentation with respect to some scheduling and frequency
assignment instances. Algorithms 2B, 2B+, 3B-1, 3B-2, 3B-2+ correspond to
the descriptions given in previous sections while 3B-1d is a dichotomic version
(not described here) of 3B-1 related to the procedure ref filtering in [19].

First, we have searched to establish a comparison between all algorithms wrt
a set of 20 job-shop scheduling instances generated using the model of Taillard
[23] by fixing 8 jobs and 8 machines. For each instance, a lower bound LB as
well as the optimal makespan OPT have been computed. We have considered
different sets of unsatisfiable CSP instances by setting different time windows
between LB and OPT (only point where instances are in fact satisfiable). Figure
1 shows the proportion of instances that have been proved to be unsatisfiable
at each variation x of the time window when establishing different consistencies.
For example, at x = 0, the time window considered is (from 0 to) LB while at
x = 1, it is (from 0 to) OPT . One can observe that 3B (and 3B+) allow a level of
filtering which is sufficient to detect the inconsistency of most of the instances,
unlike 2B+ and, especially unlike 2B and AC which behave similarly. Figure 2
shows the effort, in terms of number of constraint checks, required to establish
the different consistencies (similar results are obtained when considering cpu
times). Quite naturally, the more filtering a consistency is, the more costly it is.
One can notice that the dichotomic variant of 3B outperforms the other ones.

Next, we have considered the real-world instances of the fullRLFAP archive.
Table 1 shows the results obtained on some selected instances. Here, it clearly ap-
pears that AC is the best approach wrt these instances both in terms of cpu and
of filtering (#rmvs denote the number of detected inconsistent values). It can be
explained by the fact that frequency assignment instances are less favorable to
bound consistencies than scheduling ones (which involve many precedence con-
straints). One can also notice that 2B+ allows a slight improvement of filtering
wrt 2B (see graph4 and graph10) unlike 3B-2+ wrt 3B-2.

28 Lecoutre and Vion

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

%
 d

et
ec

te
d

un
sa

t i
ns

ta
nc

es

Variation x of the Time Window set to LB + x(OPT-LB)

AC / 2B
2B+

3B / 3B+

Fig. 1. Proportion of detected unsat instances when establishing consistencies

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f c
on

st
ra

in
t c

he
ck

s
(i

n
M

ill
io

ns
)

Variation x of the Time Window set to LB + x(OPT-LB)

AC
2B

2B+
3B - 1

3B - 1d
3B - 2

3B - 2+

Fig. 2. Number of performed constraint checks when establishing consistencies

Bound Consistencies for Discrete CSP 29

AC 2B 2B+ 3B - 1 3B - 1d 3B - 2 3B - 2+

graph4 cpu 0.47 0.1 2.23 8.29 10.25 34.26 44.4
#rmvs 776 0 187 411 411 411 411

graph10 cpu 0.86 0.15 4.15 11.87 13.42 32.75 42.24
#rmvs 386 0 46 122 122 122 122

graph14-f27 cpu 0.43 0.16 1.93 3.25 2.48 3.32 5.76
#rmvs 2, 314 0 0 0 0 0 0

graph14-f28 cpu 0.43 0.16 2.1 5.81 4.72 4.56 6.73
#rmvs 3, 230 0 0 2 2 2 2

scen02-f25 cpu 0.14 0.07 0.55 0.58 0.52 0.58 0.75
#rmvs 106 0 0 0 0 0 0

scen11-f8 cpu 0.55 0.13 2.7 3.27 2.95 3.33 4.16
#rmvs 4, 992 0 0 0 0 0 0

scen11-f10 cpu 0.51 0.21 4.11 2.98 2.66 3.12 4.24
#rmvs 6, 324 3, 024 3, 024 3, 024 3, 024 3, 024 3, 024

Table 1. Establishing consistencies on RLFAP instances

In a second stage, we have searched to maintain all consistencies during
the search of a solution. We have first studied the 10 open-shop scheduling
instances with 7 jobs and 7 machines described in [23]. For each instance, we
have searched to reach the optimal makespan in less than 300 seconds by using
a branch and bound approach while exploiting constraint propagation. Table 2
gives the average relative distance, as well as the standard deviation, between the
optimal makespan and the makespan found by the solver for different filtering
algorithms. The results clearly show that 2B is the worst approach while 3B is the
best one. In particular, 3B-1d and 3B-2+ have the best behaviour. We have also
again considered the 20 job-shop scheduling instances already described above.
Table 3 presents the average time (cpu) required to reach the optimal makespan
and the proportion of instances that have been detected as unsatisfiable in less
than 300 seconds with a time window fixed to OPT−1. Once again, Maintaining
3B is the best approach.

Table 4 shows the results (time-out has been set to 900 seconds) obtained
when solving the selected RLFAP instances mentioned above. On some difficult
instances, it is interesting to note that maintaining 2B is the quickest approach
while maintaining a stronger consistency is always penalizing.

Finally, we must remember that all algorithms are based on AC3. We believe
that using a more sophisticated foundation such as AC2001/3.1 [6] or AC3.2/3.3
[17] to establish 2B or 3B will not change the results a lot (but using AC3d

AC 2B 3B - 1 3B - 1d 3B - 2 3B - 2+

Average Distance 4.79% 28.6% 4.28% 3.00% 3.32% 3.30%
Standard Deviation 3.5% 8.2% 2.4% 2.2% 2.4% 1.8%

Table 2. Maintaining consistencies on Taillard’s 7x7 open-shop instances

30 Lecoutre and Vion

AC 2B 2B+ 3B - 1 3B - 1d 3B - 2 3B - 2+

Average cpu (TW = OPT) 212 216 282 88 73 117 117
% detected unsat (TW = OPT-1) 45% 55% 30% 85% 85% 85% 85%

Table 3. Maintaining consistencies on 8x8 job-shop instances

AC 2B 2B+ 3B - 1 3B - 1d 3B - 2 3B - 2+

graph04 cpu 2.11 timeout timeout 260 314 391 678

graph10 cpu 8.18 timeout 14.27 timeout timeout timeout timeout

graph14-f27 cpu 6.34 timeout timeout timeout 847 timeout timeout

graph14-f28 cpu 40.73 8.11 20.48 347.57 435.91 timeout timeout

scen02-f25 cpu 4.12 2.86 43.46 47.84 43.61 49.95 159.1

scen11-f8 cpu 115.26 74.62 98.86 timeout timeout timeout timeout

scen11-f10 cpu 6.69 6.4 15.59 388.28 372.71 652.25 timeout
Table 4. Maintaining consistencies on RLFAP instances

[24] could be worthwhile). Indeed, we know for example that establishing 2B
remains O(md2) even if it is based on an optimal arc consistency algorithm.
Further, our preliminary tests have confirmed this prediction. Nevertheless, 2B+
is one consistency that could benefit from such sophistication since many path
consistency checks could be avoided.

8 Conclusion

The modest contribution of this paper is to establish a, hopefully clearer, connec-
tion between domain filtering consistencies, taken from the discrete CSP model,
and bound consistencies, taken from the continuous CSP model. In particular,
we have studied bound versions of well-known domain filtering consistencies.

The great advantage of using bound consistencies is that space requirement
can be very limited, especially when domains are convex. For some discrete CSP
instances with very large domains, it can be the only realistic approach. On the
other hand, when space saving is not mandatory, worst-case time complexities of
establishing bound consistencies wrt discrete instances (for which, no constraint
semantics is available) are rather disappointing. For instance, in this context, the
worst-case time complexity of establishing 2B (i.e. bound AC) is similar to the
one of establishing AC. From a practical point of view, using bound consistencies
is a good approach when dealing with problems which involve “bound-oriented”
constraints such as precedence constraints. But, in this case, it is often possible
to adopt a specific filtering by exploiting constraint semantics and also obtain
a better complexity. In a less favorable context, our experimental results from
some frequency assignment problems does not show an overall real advantage of
using bound consistencies wrt arc consistency. However, we believe that bound
consistencies could play a role in the development of methods for controlling the
effort required to maintain a strong consistency during search.

Bound Consistencies for Discrete CSP 31

References

1. R. Bartak and R. Erben. A new algorithm for singleton arc consistency. In Pro-
ceedings of FLAIRS’04, 2004.

2. F. Benhamou, D. MacAllester, and P. Van Hentenryck. CLP(Intervals) revisited.
In Proceedings of ILPS’94, pages 124–138, 1994.

3. P. Berlandier. Improving domain filtering using restricted path consistency. In
Proceedings of IEEE-CAIA’95, 1995.

4. C. Bessière and R. Debruyne. Theoretical analysis of singleton arc consistency.
In Proceedings of ECAI’04 workshop on modelling and solving problems with con-
straints, pages 20–29, 2004.

5. C. Bessière and R. Debruyne. Optimal and suboptimal singleton arc consistency
algorithms. In Proceedings of IJCAI’05, pages 54–59, 2005.

6. C. Bessiere, J.C. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc
consistency algorithm. Artificial Intelligence, 165(2):165–185, 2005.

7. L. Bordeaux, E. Monfroy, and F. Benhamou. Improved bounds on the complexity
of kB-consistency. In Proceedings of IJCAI’01, pages 303–308, 2001.

8. P. Codognet and D. Diaz. Compiling constraints in clp(FD). Journal of Logic
Programming, 27(3):185–226, 1996.

9. H. Collavizza, F. Delobel, and M. Rueher. Comparing partial consistencies. Reliable
computing, 5:213–228, 1999.

10. R. Debruyne and C. Bessière. From restricted path consistency to max-restricted
path consistency. In Proceedings of CP’97, pages 312–326, 1997.

11. R. Debruyne and C. Bessière. Some practical filtering techniques for the constraint
satisfaction problem. In Proceedings of IJCAI’97, pages 412–417, 1997.

12. R. Debruyne and C. Bessière. Domain filtering consistencies. Journal of Artificial
Intelligence Research, 14:205–230, 2001.

13. R. Dechter. Constraint processing. Morgan Kaufmann, 2003.
14. B. Faltings. Arc consistency for continuous variables. Artificial Intelligence, 65:363–

376, 1994.
15. P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation and

evaluation of the constraint language cc(FD). Journal of Logic Programming, 37(1-
3):139–164, 1998.

16. E. Hyvonen. Constraint reasoning based on interval arithmetic: the tolerance ap-
proach. Artificial Intelligence, 58:71–112, 1992.

17. C. Lecoutre, F. Boussemart, and F. Hemery. Exploiting multidirectionality in
coarse-grained arc consistency algorithms. In Proc. of CP’03, pages 480–494, 2003.

18. C. Lecoutre and S. Cardon. A greedy approach to establish singleton arc consis-
tency. In Proceedings of IJCAI’05, pages 199–204, 2005.

19. O. Lhomme. Consistency techniques for numeric csps. In Proceedings of IJCAI’93,
pages 232–238, 1993.

20. O. Lhomme. Contribution à la résolution de contraintes sur les réels par propaga-
tion d’intervalles. PhD thesis, Université de Nice-Sophia Antipolis, 1994.

21. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

22. P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In Proceedings of
CP’00, pages 353–368, 2000.

23. E. Taillard. Benchmarks for basic scheduling problems. European journal of oper-
ations research, 64:278–295, 1993.

24. M.R.C. van Dongen. AC3d an efficient arc consistency algorithm with a low space
complexity. In Proceedings of CP’02, pages 755–760, 2002.

32

Maintaining Probabilistic Arc Consistency?

Deepak Mehta and M.R.C. van Dongen

Boole Centre for Research in Informatics/Cork Constraint Computation Centre

Abstract. The two most popular backtrack algorithms for solving Constraint
Satisfaction Problems (CSPs) are Forward Checking (FC) and Maintaining Arc
Consistency (MAC). MAC maintains full arc consistency whileFC, during search,
maintains a limited form of arc consistency. Previous work has shown that there
is no single champion algorithm:MAC is more efficient on sparse problems which
are tightly constrained, butFC has an increasing advantage as problems become
dense and constraints loose. Ideally a good search algorithm should find the right
balance—for any problem—between visiting fewer nodes in the search tree and
reducing the work that is required for detecting inconsistent values. In order to do
so, we propose to maintainprobabilistic arc consistency. The idea is to assume
the existence of a support, skip the process of seeking a support, if the probability
of having some support for a value is at least equal to, some, carefully chosen,
stipulated bound. Experimental results show that the probabilistic approach per-
forms well on both sparse and dense problems and in fact better thanMAC and
FC on the hardest problems in the phase transition.

1 Introduction

Many problems in artificial intelligence can be formulated as Constraint Satisfaction
Problems (CSPs). For the purpose of this paper, we only consider binaryCSPs. However,
the ideas presented in this paper can be generalised to other kinds ofCSPand to other
kinds of probabilistic consistency. Local consistency algorithms are used to reduce the
search space ofCSPs. Maintaining local consistency during search reduces the thrashing
behaviour of the backtrack algorithm, which usually fails many times as a result of the
same local inconsistencies. The two most popular backtrack algorithms that maintain
consistency during search areMAC [14] andFC [9]. MAC maintains full arc consistency
during search. It ensures that each value in the domain ofeachvariable is supported
by at least one value in the domain of every variable by which it is constrained. FC

maintains a limited form of arc consistency. It ensures that each value in the domain of
eachfuturevariable isFC consistent, i.e. supported by the value assigned to every past
and current variable by which it is constrained.

MAC applies a stronger form of propagation thanFC. Therefore, it usually visits
fewer nodes in the search tree compared toFC. However, visiting fewer nodes at the ex-
pense of more constraint propagation may not always help in solving the problem more
quickly. Previous work [8, 7, 3] has shown thatMAC is more efficient thanFC on sparse
problems which are tightly constrained butFC has an increasing advantage as problems
? This work has received support from Science Foundation Ireland under Grant

No. 00/PI.1/C075.

34 Mehta and Van Dongen

become dense and constraints become loose. In particular, it has been observed that
MAC is usually better in terms of checks and time for hardsparseproblems butFC is
usually better in terms of checks and time for harddenseproblems. For difficult prob-
lems the relationship between sparsity and tightness and between density and looseness
roughly allows us to say that hard loose problems are better solved withFC, whereas
hard tight problems are better solved withMAC. The reason whyFC performs better than
MAC for hard dense problems is that it exploits a common sense probabilistic argument:
the looser the constraints (the denser the hard problem), the higher the probability that
FC consistency is tantamount to arc consistency. MAC’s spending checks to prove that
this actually holds translates to a penalty in solution time.

There is no single champion algorithm which performs well on all types of prob-
lems [8, 3]. Ideally, a good search algorithm should find the right balance—for any
problem—between visiting fewer nodes in the search tree and reducing the work that
is required for detecting and removing inconsistent values. More specifically, for hard
denseproblems a good search algorithm should keep the best features ofMAC andFC

by staying closer toMAC in terms of the number of visited nodes and closer toFC in
terms of checks while for hardsparseproblems it should behave likeMAC. In order to
do so, we propose to maintainprobabilistic arc consistencyduring search. The idea is
to assume the existence of a support (skip the process of seeking a support) if the prob-
ability of having some support for a value is at least equal to some, carefully chosen,
stipulated threshold.

Arc consistency involves revisions of domains, which requires support checks to
detect and remove unsupported values from the domain of a variable. In many revisions,
someor all values find some support. For example, whenRLFAP #11 is solved using
MAC-3 or MAC-2001, 83% of the total revisions areineffective, i.e. they cannot delete
any value. If we can predict the existence of a support with a high probability and avoid
the process of seeking a support when the probability is at least equal to some, carefully
chosen, stipulated bound then a considerable amount of work can be saved.

We first show how to compute the probability of having some support for a value.
Next, we introduce the notion of aProbabilistic Support Condition(PSC). The PSC

holds if and only if this likelihood is above our threshold. If thePSC holds then we
assume that a support exists and we will not seek it. Further, we introduce a coarser
condition called aProbabilistic Revision Condition(PRC). ThePRCholds if and only if
for each value in a domain the probability of having some support is above the threshold.
If the PRCholds then we assume that a support exists for each value and we will avoid
the corresponding revision. Experimental results show that the probabilistic approach
performs well on sparseanddense problems and in fact better thanMAC andFC on the
hardest problems in the phase transition.

The remainder of this paper is organised as follows: Section 2 gives a brief in-
troduction to constraint satisfaction and discusses the arc consistency algorithmAC-3.
Section 3 discusses related work. Section 4 explains the notion of a probabilistic sup-
port condition (PSC) and the notion of a probabilistic revision condition (PRC). Sec-
tion 4 describes how to integratePSC and PRC in the coarse-grained algorithmAC-3.
Experimental results are presented in Section 6, followed by a discussion in Section 7.
Conclusions are presented in Section 8.

Maintaining Probabilistic Arc Consistency 35

2 Background

A Constraint Satisfaction Problemis defined as a setV of n variables, a non-empty
domainD(x) for each variablex ∈ V and a set ofe constraints among subsets of
variables ofV. A binary constraintCxy between variablesx andy is a subset of the
Cartesian product ofD(x) andD(y) that specifies the allowed pairs of values forx
andy. We only considerCSPs whose constraints are binary. A valueb ∈ D(y) is called
a supportfor a ∈ D(x) if (a, b) ∈ Cxy. Similarly a ∈ D(x) is called a support for
b ∈ D(y) if (a, b) ∈ Cxy. A support check(consistency check) is a test to find if two
values support each other. A valuea ∈ D(x) is calledviable if for every variabley
constrainingx the valuea is supported by some value inD(y). A CSP is calledarc
consistentif for every variablex ∈ V, each valuea ∈ D(x) is viable.

Coarse-grained arc consistency algorithms such asAC-3 [10], AC-2001 [1], and
AC-3d [16] are efficient when it comes to transforming aCSPto its arc-consistent equiv-
alent. They userevision ordering heuristicsto select an arc from a data structure called
a queue (a set really). When an arc,(x, y), is selected from the queue,D(x) is revised
againstD(y). Here toreviseD(x) againstD(y) means removing all values fromD(x)
that are not supported by any value ofD(y). Revision ordering heuristics [17, 2, 16] can
influence the efficiency of arc consistency algorithms.

Pseudo-code forAC-3 equipped withreverse variable-based[12] revision ordering
heuristics is depicted in Figure 1. The revise function upon whichAC-3 depends is
depicted in Figure 2. Reverse variable based revision ordering heuristics first select a
variablex and repeatedly select arcs of the form(x, y) to determine the next revision
until there are no more such arcs orD(x) becomes empty. Selecting a variablex and
revising it against all its neighboursy such that(x, y) is currently present in the queue,
we call acomplete relaxationof x. In Figure 1, ifD(x) was changed after a complete
relaxation and if this was the result ofonly oneeffective revision (effectiverevisions
= 1), which happened to be againstD(y′′), then all the arcs of the form(y′, x) wherey′

is a neighbour ofx andy′ 6= y′′ are added to the queue. However, ifD(x) was changed
as the result ofmore than oneeffective revision (effectiverevisions> 1) thenall the
arcs of the form(y′, x) wherey′ is a neighbour ofx are added to the queue. Modulo
constraint propagation effects this saves work for maintaining the queue compared to
the original version [10] of the algorithm.

For the purpose of this paper, before starting search all search algorithms transform
the inputCSP to its arc consistent equivalent. During backtrack search, variables are
chosen in some order and each is instantiated with a value from its domain. MAC main-
tains arc consistency after each variable assignment. MAC-x usesAC-x for maintaining
arc consistency during search. To re-establish arc consistency following the instantia-
tion of a variablex the queue is initialised to all arcs incident tox. More specifically, all
arcs of the form(y, x) are added to the queue wherey is a future variable constrained by
x. When values are deleted, more arcs may have to be added to the queue to determine
if these deletions lead to further deletions.

FC can be considered as a degenerate form ofMAC. After instantiating a variablex
in FC, the queue is initialised to all arcs of the form(y, x). Here arcs are never added to
the queue, not even after an effective revision. Note that the original version ofFC does
not transform the inputCSPto its arc-consistent equivalent prior to search.

36 Mehta and Van Dongen

Function AC-3: Boolean;
begin
Q := G
whileQ not emptydo begin

select anyv from {x : (x, y) ∈ Q }
effective revisions := 0
for eachy such that(x, y) ∈ Q do

remove(x, y) fromQ
revise(x, y, changex)
if D(x) = ∅ then

return False
else ifchangex then

effective revisions := effective revisions + 1
y′′ := y;

if effective revisions = 1 then
Q := Q ∪ { (y′, x) ∈ G : y′ 6= y′′}

else ifeffective revisions > 1 then
Q := Q ∪ { (y′, x) ∈ G}

return True;
end;

Fig. 1.AC-3

Function revise(x, y, var changex)
begin

changex := False
for eacha ∈ D(x) do

if @b ∈ D(y) such thatb supportsa then
D(x) := D(x) \ { a }
changex := True

end;

Fig. 2.Algorithm revise of AC-3

Thedensityp1 of a CSP is defined as2 e/(n2 − n) wheree is the number of con-
straints andn is the number of variables. Thetightnessp2 of the constraintCxy between
the variablesx andy is defined as1−|Cxy |/|D(x)×D(y) |. Thedegreeof a variable
is the number of constraints involving that variable. Before starting search the inputCSP

is transformed to its arc consistent equivalent. Theoriginal domain of a variable is the
domain of that variable in this arc consistent equivalent. For the remainder of this paper
for any variablex, we useD(x) for the current domain ofx andDo(x) for the original
domain ofx. Thedirected constraint graphof a givenCSP is a directed graph having
an arc(x, y) for each combination of two mutually constraining variablesx andy. We
will useG to denote the directed constraint graph of the inputCSP.

3 Related work

In this section, we discuss some work which is related to finding the right balance
between the effort required for constraint propagation and that required for search.

First, let us mention the work of [5] where a class of algorithms, termedselec-
tive relaxation, is described. In particular, constraint propagation is restricted based on
two local criteria, which are the distance of the variable from the variable which is in-
stantiated (distance-bounded) and the proportion of values deleted (response-bounded).
Chmeiss and Sais [3] present a backtrack search algorithm,MAC(distk), that also uses
a distance parameterk as a bound to maintain a partial form of arc consistency.

El Sakkout, Wallace and Richards [4] introduce anti-functional reduction (AFR).
AFR can be viewed as an improvement toAC-4. It reduces some propagation inAC-4
which helps to minimise the amount of backtrack recording and restoration. However,
AFR is specific to the fine-grained algorithmAC-4, whose inefficiency lies in its space
complexityO(e d2) and the necessity of maintaining huge data structures during search.

The traditional approach to find ifa ∈ D(x) (also denoted (x, a)) is supported byy
is to identifysomeb ∈ D(y) that supports(x, a), which usually results in a sequence

Maintaining Probabilistic Arc Consistency 37

of support checks. Identifying the support is more than is needed to guarantee that a
value is supportable: knowing that a support exists is enough. Most arc consistency
algorithms proposed so far put a lot of effort in identifying a support to confirm the
existence of a support. To reduce the task of identifying a support up to some extent, the
notions of asupport conditionand arevision conditionare introduced in [12] (see also
[2]). A support condition (SC) guarantees that a value hassomesupport while revision
condition (RC) guarantees thatall values havesome support without identifying it. In
the following paragraph we present a special version ofSC andRC which facilitates the
introduction of their probabilistic equivalents, which are to be presented in the following
section.

LetCxy be the constraint betweenx andy, let a ∈ D(x), and letR(y) = Do(y) \
D(y) be the removed values from the original domain ofy. Thesupport countof (x, a)
with respect toy, denotedsc(x, y, a), is the number of values inDo(y) supporting
a. Note that|R(y) | is an upper bound on the number of lost supports of(x, a) in y.
Therefore, if the following condition holds then(x, a) is supported byy:

sc(x, y, a) > |R(y) |. (1)

For instance, ifa ∈ D(x) has3 supports inDo(y) and 2 values are removed from
Do(y), i.e. |R(y) | = 2 then(x, a) has at least one support inD(y). Hence, there is no
need to seek support fora in D(y). The condition in Equation (1) is a (special version
of what is called a)Support Condition(SC) in [12]. SCs help avoiding many (but not
necessarily all) sequences of support checks eventually leading to a support.

For a given arc,(x, y), thesupport countof x with respect toy, denotedsc(x, y),
is defined bysc(x, y) = min({sc(x, y, a) : a ∈ D(x)}). Therefore, if the following
condition holds then any value inD(x) is supported by y:

sc(x, y) > |R(y) | . (2)

The condition in Equation (2) is a (special version of what is called a)Revision Con-
dition (RC) in [12]. RCs avoid many (but not all) unnecessary revisions and much of
queue maintenance overhead. The basic idea presented in [12] is to avoid looking for a
support if theSC holds and to avoid a candidate revision if theRC holds. Independent
work by [2] has proposed a static version ofRC wheresc(x, y) is the least support count
of the values inDo(x) as opposed toD(x).

4 Probabilistic Approach

Even if the support condition and revision condition are used they do not always make
MAC solve more quickly thanFC. We propose a probabilistic approach to achieve this.
We generalise the notions of a support condition and a revision condition to the notions
of a probabilistic support condition(PSC) and aprobabilistic revision condition(PSC).
The idea is to assume that a support exists (avoid the process of seeking a support) if
the probability of having some support for a value is relatively high. Similarly, if the
probability of having some support is relatively high foreachvalue in a domain then
we avoid the corresponding revision.

38 Mehta and Van Dongen

4.1 Probabilistic Support Condition

Let Ps(x,y,a) be the probability that(x, a) has some support inD(y). Then

Ps(x,y,a) = 1−
(
|R(y) |

sc(x, y, a)

)
/

(
|Do(y) |

sc(x, y, a)

)
. (3)

The justification for this equation is that its right hand side is equal to the probability
that none of the

(|R(y) |
sc(x,y,a)

)
subsets of sizesc(x, y, a) of R(y) contain all supports of

(x, a). To calculatePs(x,y,a), we assume any combination of sizesc(x, y, a) ofDo(y)
is equally likely to occur. Note that if theSC is satisfied, i.e.sc(x, y, a) > |R(y) |, then
Equation (3) reduces toPs(x,y,a) = 1. Indeed, if fewer values have been removed from
the initial domain than there were supports in the original domain then the probability
that a support exists is equal to1.

We now introduce a probabilistic version of the support condition. LetT be some
desired threshold. IfPs(x,y,a) ≥ T then(x, a) will have support withy with a proba-
bility of T or more. We call this condition aProbabilistic Support Condition. If it holds
then we avoid seeking support fora.

4.2 Probabilistic Revision Condition

Remember that the support count ofx with respect toy is denotedsc(x, y). It is the
least support count of the values ofD(x) with respect toy. Similar to the definition of
a probabilistic support condition, we now define a probabilistic revision condition. To
this end letPs(x,y) be the least probability that some value inD(x) is supported byy.
Note that for any valuea ∈ D(x), we immediately have

Ps(x,y) = 1−
(
|R(y) |
sc(x, y)

)
/

(
|Do(y) |
sc(x, y)

)
≤ Ps(x,y,a). (4)

Let T be some threshold. IfPs(x,y) ≥ T then, each value inD(x) is supported byy
with a probability ofT or more. We call the conditionPs(x,y) ≥ T a Probabilistic
Revision Condition(PRC). If it holds then we skip the revision ofD(x) againstD(y).
Note that whensc(x, y) > |R(y) |, then

(|R(y) |
sc(x,y)

)
= 0 and, with a probability of1, all

values inD(x) are supported byy.

5 Description of the new algorithm

In the previous section, we introduced the notion of aprobabilistic support condition
(PSC) and the notion of aprobabilistic revision condition(PRC) to determine when
to seek support for a given arc-value pair and when to consider an arc for a revision.
However, satisfyingPSCor PRC does not always guarantee the existence of a support.
As a consequence, they may not always allow us to achieve full arc consistency. This
may leave more inconsistent values in the domains of the variables and we can expect
more nodes in the search tree. However, this needs not necessarily be less efficient.
Even though there are more nodes in the tree, more visited nodes may be the result of

Maintaining Probabilistic Arc Consistency 39

less work done at each node. More visited nodes with fewer support checks per node
may result in fewer support checks for the overall search tree.

In order to usePSCandPRC, the support count for each combination of arc(x, y)
and valuea ∈ D(x), i.e. sc(x, y, a) must be computed prior to search. Once these
support counts are computed, unlikeAC-4 where they are decremented during search,
they remain static. Hence, there is no overhead of maintaining them. The pseudo-code
for computing the support count for each arc-value pair is depicted in Figure 4. In the
algorithm,last(x, y, a) givesAC-2001’s last known support for(x, a) in y. Note that
the algorithm does not repeat checks and uses the bidirectional property of constraints.

PSCandPRCcan be incorporated into any coarse-grained arc consistency algorithm.
Figure 3 depicts the result of incorporating them intoAC-3. We call this algorithmPAC-3
(ProbabilisticAC-3). If PRCholds then it can be exploited eitherafter selecting the arc
(x, y) for the next revision or when arcs are added to the queue. In the former case the
corresponding revision is not carried out and in the latter case(x, y) is not added to the
queue. We will use thePRC by tightening the condition for adding arcs to the queue:
arcs should only be added if thePRC does not hold. This is depicted in Figure 3. The
new revise function, which we callrevisep, usesPSCas shown in Figure 5. It avoids the
process of seeking a support ifPs(x,y,a) is at least equal to the threshold.

We will now study conditions for the thresholdT which will guarantee that, for
any given problem,PAC-3 does at least the amount of constraint propagation which is
carried out byFC. If during search any variabley is instantiated to a value then|R(y) |
becomes|Do(y) | − 1. When considering the arc(x, y), to ensureFC consistency, we
can trigger the probabilistic support condition by makingT greater than the probability
that for each value all its supports are inR(y). This probability is at least1−1/|Do(y) |.

In the implementation, which is depicted in Figure 3, the same thresholdT was
chosen for all arcs. The previous argument justifies the choice of anyT > 1− 1/dmax ,
wheredmax is the maximum domain size of the variables.

Note that bothPSCandPRCare presented in such a way that the idea is made as clear
as possible. This should not be taken as the real implementation. Putting more effort
into estimating the probability of having some support for each arc-value pair does not
generally pay off in terms of theCPU time. There are a few ways to overcome this. Due
to space restrictions we will only discuss one of them. By expanding Equation (3) and
rearranging the terms, we derive the following less accurate estimate ofPs(x,y,a):

Ps(x,y,a) = 1−
sc(x,y,a)−1∑

i=0

(
1− |D(y) |
|Do(y) | − i

)
≥ 1−

(
1− |D(y) |
|Do(y) |

)sc(x,y,a)

.

Substituting the right hand side of this inequality forPs(x,y,a) into the probabilistic
support conditionPs(x,y,a) ≥ T an rearranging terms gives us the following condition:

|R(y) | ≤ |Do(y) | × (1− T)1/sc(x,y,a)
. (5)

Note that this condition implies the exactPSC. It states that if the number of values
removed fromDo(y), i.e. |R(y)| is less than the right hand side of Equation (5) then
Ps(x,y,a) is at least equal to the threshold valueT . The advantage of Equation (5) is
that the right hand side is constant. It gives the critical value of|R(y)| with respect to

40 Mehta and Van Dongen

Function PAC-3:Boolean;
begin
Q := G
Set thresholdT such that1− 1/dmax < T ≤ 1.
whileQ not emptydo begin

select anyv from {x : (x, y) ∈ Q }
effective revisions := 0
for eachy such that(x, y) ∈ Q do

remove(x, y) fromQ
revisep(x, y, changex)
if D(x) = ∅ then

return False
else ifchangex then

effective revisions := effective revisions + 1
y′′ := y;

if effective revisions = 1 then
Q := Q∪ { (y′, x) ∈ G : y′ 6= y′′,Ps(y′,x) < T }

else ifeffective revisions > 1 then
Q := Q∪ { (y′, x) ∈ G : Ps(y′,x) < T }

return True;
end;

Fig. 3.PAC-3

Function InitialiseSupportCounters ()
begin

call AC-2001
if the problem is arc-consistentthen

for each (x, y) ∈ G do
for eacha ∈Do(x) do

sc(x, y, a) := 1
for each (x, y) ∈ G such thatx < y do

for eacha ∈Do(x) do
for eachb ∈Do(y)

such thatb > last(x, y, a) do
if b supportsa then

sc(x, y, a) := sc(x, y, a) + 1
sc(y, x, b) := sc(y, x, b) + 1

end;

Fig. 4. Initialisation of support counts

Function revisep(x, y, var changex)
begin

changex := False
for eacha ∈ D(x) do

if Ps(x,y,a) ≥ T then
continue

if @b ∈ D(y) such thatb supportsa then
D(x) := D(x) \ { a }
changex := True

end;

Fig. 5.Algorithm revisep

T above whichPSCwill always hold. Instead of recomputing the probability in every
iteration, this critical value can be computedprior to search for each arc-value pair.
During search if |R(y) | is at least equal to this critical value thenPSCholds and the
process of seeking a support is skipped.

SincePAC-3 needs to be invoked at each node of the search tree, we call the new
backtrack algorithm that maintainsPAC-3 during searchMPAC-3. The space complexity
of using support counts isO(e d). The space complexity of storing the support count for
each arc isO(e) but it may increase toO(e n) during search, since the support count of
an arc may change during search. Therefore, the overall space complexity ofMPAC-3 is
O(e d+ e n) = O(emax (d, n)).

6 Experimental Results

In this section, we shall present some results demonstrating the practical efficiency of
MPAC-3 when compared toMAC-3 and FC. We experimented with random problems
which were generated by Frostet al.’s model B generator [6]. In this model a random
CSP instance is typically represented as〈n, d, p1, p2 〉 wheren is the number of vari-
ables,d is the uniform domain size,p1 is the average density, andp2 is the uniform
tightness. For each combination of〈n, d, p1, p2〉, 100 random problems were generated
and their mean performance is reported. The domain sizedwas kept at10 which defines
the range(0.9, 1] for T , required byMPAC-3. Unless otherwise stated, the value ofT

Maintaining Probabilistic Arc Consistency 41

used is0.95. Experiments were conducted in the same fashion as reported in [8] to study
the behaviour ofMPAC-3 in solving dense and sparse problems. The brief introduction
about the experiments is as follows:

Different problem topologies Our main aim was to investigate howMPAC-3 behaves
with different problem topologies, i.e. with sparse and dense problems. For the first
set of experiments, which is described in Section 6.1,n was kept at30. We varied
the densityp1 in steps of0.1 in the range[0.1, . . . , 1] and the tightnessp2 was
varied in steps of0.01 in the range as shown in Figures 6 and 7.

Sparse problemsFrom the first set of experiments the results were not clear for sparse
problems. In Section 6.2 we describe experiments which were conducted on sparse
problems by maintaining the same average degree2 e/n whilst increasing the num-
ber of variablesn. We investigated a class, which is known asexceptionally hard
problems (EHPs) [15]. For these problems the average degree is kept as close as
possible to4.92. Problems were generated for domain sizesn ∈ {20, 35, 50, 65}.

Dense problemsFinally, we wanted to see howMPAC-3 performs with hard dense
problems where constraints are very loose. To see this we devised the following
experiments, which are described in Section 6.3. We set the density top1 = 1
and variedn in steps of5 in the range25–45. Next the critical tightnessp2 was
calculated at which the search effort can be expected to be maximum. For a given
〈n, d, p1〉, the average search effort can be expected to be maximum whenp2 is
1− d−2/(p1(n−1)) [13].

All algorithms were equipped with adom/deg variable ordering with a lexicograph-
ical tie breaker. The variable ordering heuristicminimum domproposed by Haralick and
Elliot [9] is a prominent heuristic and has been proven efficient with forward checking
search. However, in our experiments, we found thatdom/degwas a better heuristic than
theminimum domfor FC, wheredomis the domain size anddegis the original degree of
a variable. Note that due to the dynamic nature ofdom/degheuristicMAC-3, MPAC-3,
and FC may follow different search paths. Algorithms were equipped with a reverse
variable based revision ordering heuristic [11]comp.The experiments were carried out
on a PC Pentium III having 256 MB of RAM running at 2.266 GHz processor with
linux. All algorithms were written in C.

6.1 Different Problem Topologies

Figures 6 and 7 show the mean performance ofMPAC-3, MAC-3, andFC in terms of
total support checks and the nodes visited. As expectedMAC-3 always outperformsFC

in terms of the visited nodes whileFC outperformsMAC-3 in terms of the number of
support checks. Note that for dense problems when a peak occurs in the phase tran-
sition, MPAC-3 is more efficient compared to bothMAC-3 and FC, when the effort is
measured in terms of support checks. The same was observed for other high densities
(0.9, 0.8, 0.7, 0.6) for which results are not shown in the graph. The number of nodes
visited byMPAC-3 is closer toMAC-3 thanFC. The gap betweenMAC-3 andFC in terms
of the visited nodes increases as the problems become sparse but it decreases between
MAC-3 and MPAC-3. As the problems become sparseMAC-3 starts to perform better

42 Mehta and Van Dongen

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 0.2 0.4 0.6 0.8 1

S
up

po
rt

 C
he

ck
s

(lo
gs

ca
le

)

Constraint Tightness (p2)

p1 =1.0

p1 =0.5

p1 =0.4

p1 =0.3

p1 =0.2

p1 =0.1

MAC-3
FC

MPAC-3

Fig. 6.Mean performance of algorithms for〈 30, 10, p1, p2 〉 in terms of checks.

thanFC, although this may not be clear from Figure 6. Results shown in Figures 8 and
9 confirm this. For easy problemsMPAC-3 spends more support checks, what is caused
by its computing of support counts prior to search. However, in terms of search effort it
always outperforms bothFC andMAC-3which is not visible in the graphs. Overall, un-
like MAC-3 andFC, MPAC-3 performs well on average, both in terms of support checks
and the nodes visited.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.2 0.4 0.6 0.8 1

N
od

es
 V

is
ite

d
(lo

gs
ca

le
)

Constraint Tightness (p2)

p1 =1.0

p1 =0.5

p1 =0.4

p1 =0.3

p1 =0.2

p1 =0.1

MAC-3
FC

MPAC-3

Fig. 7.Mean performance of algorithms for〈 30, 10, p1, p2 〉 in terms of visited nodes.

6.2 Sparse Problems

Figures 8 and 9 show comparison of the algorithms on sparse difficult problems〈n, d, p1〉
for checks and nodes visited. When the effort is measured in terms of checks, we see

Maintaining Probabilistic Arc Consistency 43

 100

 1000

 10000

 100000

 1e+06

 0.3 0.4 0.5 0.6 0.7 0.8

S
up

po
rt

 C
he

ck
s

(lo
gs

ca
le

)

Constraint Tightness (p2)

MAC-3
FC

MPAC-3

 100

 1000

 10000

 100000

 1e+06

 0.3 0.4 0.5 0.6 0.7 0.8

S
up

po
rt

 C
he

ck
s

(lo
gs

ca
le

)

Constraint Tightness (p2)

MAC-3
FC

MPAC-3

 100

 1000

 10000

 100000

 1e+06

 0.3 0.4 0.5 0.6 0.7 0.8

S
up

po
rt

 C
he

ck
s

(lo
gs

ca
le

)

Constraint Tightness (p2)

MAC-3
FC

MPAC-3

 100

 1000

 10000

 100000

 1e+06

 0.3 0.4 0.5 0.6 0.7 0.8

S
up

po
rt

 C
he

ck
s

(lo
gs

ca
le

)

Constraint Tightness (p2)

MAC-3
FC

MPAC-3

Fig. 8. Mean performance of algorithms in terms of checks for〈20, 10, 0.25〉 (top left),
〈35, 10, 0.14〉 (top right),〈50, 10, 0.10〉 (bottom left), and〈65, 10, 0.07〉 (bottom right).

 1

 10

 100

 1000

 10000

 100000

 0.3 0.4 0.5 0.6 0.7 0.8

N
od

es
 V

is
ite

d
(lo

gs
ca

le
)

Constraint Tightness (p2)

MAC-3
FC

MPAC-3

 1

 10

 100

 1000

 10000

 100000

 0.3 0.4 0.5 0.6 0.7 0.8

N
od

es
 V

is
ite

d
(lo

gs
ca

le
)

Constraint Tightness (p2)

MAC-3
FC

MPAC-3

 1

 10

 100

 1000

 10000

 100000

 0.3 0.4 0.5 0.6 0.7 0.8

N
od

es
 V

is
ite

d
(lo

gs
ca

le
)

Constraint Tightness (p2)

MAC-3
FC

MPAC-3

 1

 10

 100

 1000

 10000

 100000

 0.3 0.4 0.5 0.6 0.7 0.8

N
od

es
 V

is
ite

d
(lo

gs
ca

le
)

Constraint Tightness (p2)

MAC-3
FC

MPAC-3

Fig. 9.Mean performance of algorithms in terms of visited nodes for〈20, 10, 0.25〉 (top left),
〈35, 10, 0.14〉 (top right),〈50, 10, 0.10〉 (bottom left), and〈65, 10, 0.07〉 (bottom right).

44 Mehta and Van Dongen

Table 1.Comparison betweenFC, MAC-3, andMPAC-3 on sparse problems.

〈n, d, p1, p2〉 Algorithm Checks Time (seconds) Revisions Visited nodes
FC 24,088,980 5.04 2,531,453 739,054

〈65, 20, 0.08, 0.65〉 MAC-3 15,138,669 1.44 974,903 10,545
MPAC-3 8,271,149 1.55 948,283 12,918
FC 1,375,383,859 360.81 187,037,415 47,250,225

〈90, 20, 0.07, 0.59〉 MAC-3 867,722,685 105.86 67,002,984 617,760
MPAC-3 507,456,096 113.43 72,798,693 892,139

Table 2.Comparison betweenMPAC-3, MAC-3 andFC in terms of checks on dense problems.

〈n, d, p1, p2〉 MPAC-3 MAC-3 ratio FC ratio
〈 25,10,1,0.18〉 878,319 4,077,197 4.64 1,171,866 1.33
〈 30,10,1,0.15〉 4,641,200 23,673,088 5.10 6,883,315 1.48
〈 35,10,1,0.13〉 21,342,919 116,125,948 5.44 34,339,035 1.60
〈 40,10,1,0.11〉 169,780,372 899,363,792 5.29 288,667,462 1.70
〈 45,10,1,0.10〉 662,418,341 3,728,725,077 5.62 1,194,686,264 1.80

that bothMAC-3 andMPAC-3 perform poorly againstFC, whenn is 20 and35. However,
the gap decreases asn increases. Whenn is 50 they perform almost the same amount of
work at the crossover point and atn = 65 MAC-3 actually outperformsFC for the hard-
est problems in the phase transition. Atn = 20, MPAC-3 andMAC-3 perform the same
amount of work at peak; atn = 35, MPAC-3 outperformsMAC-3 and whenn is 50 and
65, it dominates bothMAC-3 andFC for the hardest problems in the phase transition.
If this trend continues thenMAC-3 will dominateFC while MPAC-3 will dominate both
algorithms asn is further increased. Note that in Figure 9 the gap betweenMAC-3 and
FC in terms of visited nodes increases asn increases. Interestingly, the number of nodes
visited byMPAC-3 andMAC-3 on average remains the same.

Table 1 presents results for difficult sparse problems for a constant domain size
d = 20. This time the value of threshold was set to0.951, sinceT should be greater
than1 − 1/20. Notice that bothMAC-3 andMPAC-3 outperformFC. Again MPAC-3 is
the best when it comes to saving checks.

6.3 Dense Problems

The columnsratio in Table 2 represent how muchMPAC-3 was better thanMAC-3 and
FC for checks. The order of magnitude by whichMPAC-3 saves checks when compared
to MAC-3 increases from4.64 (n = 25) to 5.62 (n = 45). Similarly, the order of
magnitude by whichMPAC-3 outperformsFC increases from1.33 (n = 25) to 1.80
(n = 45). It seems that the probabilistic approach becomes more and more efficient as
n increases. The reason for this is that for a given domain sized and densityp1, the
hardest problems in the phase transition will have a tightnessp2 which drops, as the
number of variables increases. In other words, on average the constraints will become
loose, on average the number of supports will increase, on average the problems will
become more and more arc consistent, and on averageMAC-3 will carry out more and
more unnecessary ineffective revisions. In terms of the visited nodes,MAC-3 was the
best algorithm. However, on averageMPAC-3 was betweenFC andMAC-3 in terms of
visited nodes. It only visited1.36 times more nodes thenMAC-3, whereasFC visited
4.7 times more nodes thanMAC-3.

Maintaining Probabilistic Arc Consistency 45

To convince the reader thatMPAC-3 is really efficient, we also compared it against
MAC-2001. Due to space restrictions results are not shown for all the experiments. Our
experiments demonstrated thatMAC-2001 was spending more time than other algo-
rithms. Table 3 clearly demonstrates thatMPAC-3 is again better in saving checks.

Table 3.Mean performance in terms of the number of checks, the solution time (seconds), the number of revisions, and the
number of nodes visited for〈45, 10, 1.0, 0.10〉

.

Algorithm Checks Time (seconds) Revisions Visited nodes
MAC-2001 1,142,906,628 1103.55 990,831,993 2,866,391
FC 1,194,686,264 576.64 354,836,954 13,601,483
MAC-3 3,728,725,077 1074.50 990,831,993 2,866,391
MPAC-3 662,418,341 677.69 411,383,748 4,039,925

We also conducted experiments by setting the value ofT to 0.91. Not much differ-
ence was observed in the performance ofMPAC-3 with sparse problems but with the
dense problemsMPAC-3 was saving more checks. We are currently investigating the ef-
fect of using different thresholds. Overall in our experimentsMPAC-3 was better when
it comes to saving checks (except for small problems which require almost no solution
time) when compared toMAC-3, MAC-2001, andFC. MPAC-3 never lost againstFC,
MAC-3 andMAC-2001 in terms of time and visited nodes. For hard dense problemsFC

was better when it comes to saving time. On averageMPAC-3 required1.2 times more
time thanFC, whereasMAC-3 required1.95 times more time. MAC-3 andMPAC-3 were
solving hard sparse problems quickly on average compared toFC.

7 Discussion

Figure 10 shows graphically how the estimate of the likelihood of having some support
inD(y) for (x, a) with different values of support count vary with the number of values
removed fromDo(y). The original domain size ofy is 10. Notice that when the number
of supports of(x, a) are fewer the probability of having some support decreases rapidly
as the number of values removed fromy increases. This is not the same case when
the number of supports are more. In that case, the probability of having some support
remains relatively high for a while with respect to the number of values removed. This
insight may help in understanding whyMAC-3 performs poorly in terms of checks in
solving hard dense problems where constraints are loose and whyMPAC-3 is able to
perform well on both hard dense and sparse problems.

For hard dense problemsconstraints are generally loose, and on average each arc-
value pair has several supports. When the number of supports is high, the probability
of having some support remains relatively high for a while with respect to the num-
ber of values removed. This explains why for dense problems, whenMAC-3 propagates
deletions, many times a value will find some support. Therefore, one can expect much
ineffective propagation. For this reason the overhead ofMAC-3 becomes very large for
dense problems where constraints are loose. Contrary to that,FC, which does minimal
propagation during search, avoids most ineffective propagation. FC visits more nodes
because it leaves more unsupported values, but is still more efficient thanMAC-3 when

46 Mehta and Van Dongen

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
s{

(x
,a

) h
as

 s
om

e
su

pp
or

t i
n

D
(y

)}
Number of values removed from the orignal domain of y

SupportCount: 1
SupportCount: 2
SupportCount: 3
SupportCount: 4
SupportCount: 5
SupportCount: 6
SupportCount: 7
SupportCount: 8

Fig. 10.Ps(x,y,a) versus|R(y)|.

the effort is measured in terms of checks. MPAC-3 also avoids much ineffective prop-
agation usingPSC and PRC. It propagates only when the probability of having some
support falls below a stipulated bound. UnlikeMAC-3 and FC where the strength of
constraint propagation isstatic, MPAC-3 adjustsdynamicallyduring search. MPAC-3
keeps the best features ofMAC-3 and FC by staying closer toMAC-3 in terms of the
number of visited nodes andFC in terms of checks.

For hard sparse problemsconstraints are generally tight, which means that on av-
erage each arc-value hasfewer supports. When the number of supports is low, the
probability of having some support drops rapidly with respect to the number of val-
ues removed. This forcesPSCandPRC to fail quickly which in turn forcesMPAC-3 to
behave likeMAC-3. When a deletion takes place bothMAC-3 and MPAC-3 propagate
immediately. This is the reason why they both visit almost the same number of nodes
on average. The probabilistic approach allows to increase or decrease the propagation
depending on the problem characteristics. UnlikeMAC-3 andFC which have different
behaviour on dense and sparse problems,MPAC-3 performs well on both dense and
sparse problems and in fact better thanMAC-3 andFC on the hardest problems in the
phase transition.

8 Conclusions and Future Work

This paper presents a new search algorithm, the so calledMPAC-3, which maintains
probabilistic arc consistency during search usingprobabilistic support conditionand
probabilistic revision condition. More specifically, it assumes the existence of a support
(avoids the process of seeking a support) if the probability of having some support is at
least equal to the threshold. UnlikeMAC andFC where the strength of constraint propa-
gation is static and the behaviour is different on dense and sparse problems, maintaining
probabilistic arc consistency allows to adjust the strength of constraint propagation dy-
namically during search and performs well on both dense and sparse problems.

In future, we would like to investigate the effect of maintaining probabilistic arc
consistency on real-world and academic problems. It seems relatively straightforward
to generalise the notions ofPSCandPRCto achieve probabilistic singleton consistencies
and probabilistic hyper-arc consistency for non-binaryCSPs.

Maintaining Probabilistic Arc Consistency 47

References

1. C. Bessìere and J.-C. Ŕegin. Refining the basic constraint propagation algorithm. InPro-
ceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJ-
CAI’2001), pages 309–315, 2001.

2. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Support inference for generic filtering. In
Proceedings of the Tenth International Conference on Principles and Practice of Constraint
Programming, 2004.

3. A. Chmesis and L. Sais. Constraint satisfaction problems:backtrack search revisited. InPro-
ceedings of the Sixteenth IEEE International Conference on Tools with Artificial Intelligence,
pages 252–257, Boca Raton, FL, USA, 2004. IEEE Computer Society.

4. H. El Sakkout, M. Wallace, and E.B. Richards. An instance of adaptive constraint propaga-
tion. In E.C. Freuder, editor,Proceedings of the second International Conference on Princi-
ples and Practice of Constraint Programming, number 1118 in Lecture Notes in Computer
Science, pages 164–178, 1996.

5. E.C. Freuder and R.J. Wallace. Selective relaxation for constraint satisfaction problems. In
Proceedings of the Third International Conference on Tools for Artificial Intelligence, San
Diego, CA., 1991.

6. I.P. Gent, E. MacIntyre, P. Prosser, B. Smith, and T. Walsh. Random constraint satisfaction:
Flaws and structure.Journal of Constraints, 6(4):345–372, 2001.

7. I.P. Gent and P. Prosser. Apes report: Apes-20-2000 inside mac and fc, 2000.
8. S.A. Grant and B.M. Smith. The phase transition behaviour of maintaining arc consistency.

In W. Wahlster, editor,Proceedings of the12th European Conference on Artificial Intelli-
gence (ECAI’96), pages 175–179, 1996.

9. R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction
problems.Artificial Intelligence, 14(3):263–313, 1980.

10. A.K. Mackworth. Consistency in networks of relations.Artificial Intelligence, 8:99–118,
1977.

11. D. Mehta and M.R.C. van Dongen. Two new lightweight arc consistency algorithms. In
M.R.C. van Dongen, editor,Proceedings of the First International Workshop on Constraint
Propagation and Implementation (CPAI’2004), pages 109–123, 2004.

12. D. Mehta and M.R.C. van Dongen. Reducing checks and revisions in coarse-grained mac
algorithms. InProceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, 2005.

13. P. Prosser. An empirical study of the phase transition in binary constraint satisfaction prob-
lems.Artificial Intelligence, 81:81–109, 1996.

14. D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
A.G. Cohn, editor,Proceedings of the Eleventh European Conference on Artificial Intelli-
gence (ECAI’94), pages 125–129. John Wiley and Sons, 1994.

15. B.M. Smith and S.A. Grant. Sparse constraint graphs and exceptionally hard problems. In
C.S Mellish, editor,Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI’95), volume 1, pages 646–651. Morgan Kaufmann, 1995.

16. M.R.C. van Dongen. Saving support-checks does not always save time.Artificial Intelligence
Review, 21(3–4):317–334, 2004.

17. R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consistency algorithms. InPro-
ceedings of the Ninth Canadian Conference on Artificial Intelligence, pages 163–169, Van-
couver, B.C., 1992.

48

Static Value Ordering Heuristics for Constraint
Satisfaction Problems

Deepak Mehta and M.R.C. van Dongen

Boole Centre for Research in Informatics/Cork Constraint Computation Centre

Abstract. Many problems in artificial intelligence can be formulated as Con-
straint Satisfaction Problems (CSPs). They involve assigning values to variables
such that they satisfy all the constraints among them. In solving a hard satisfiable
CSP, much time is often spent in searching branches of the search space which
do not lead to a solution. If aCSPhas a solution, then assigning the right value to
each variable would enable a solution to be found without backtracking. Making
such a perfect choice cheaply, in general, seems impossible, but a bit of guidance
can make a substantial impact on the time required to find a solution. However,
value ordering heuristics are relatively neglected. In this paper, we shall introduce
the concept of static value ordering heuristic. The idea is to rearrange the values
in their respective domainsprior to search. More specifically, a weight is assigned
to each value in the domain of each variable and the values are sorted based on
their weights. The heuristics are not perfect, but experimental results show that
they are frequently better than the initial ordering of values in the input problem.
Further, we will show that rearranging values, prior to search in this fashion, also
results in saving support checks, when a problem has no solution or if search has
to be done for all the solutions.

1 Introduction

Many problems in artificial intelligence can be formulated as Constraint Satisfaction
Problems (CSPs). They involve assigning values to variables such that they satisfy all
constraints among them. For the purpose of this paper, we will only focus on binary
CSPs, where the constraints have two variables. The basic search procedure to solve
CSPs is a systematic backtracking. This involves repeated selection of an unassigned
variable and selecting a value for it from its domain, or backtracking in case of failure,
until a solution is found or all the possible sets of assignments have been tried. The
worst-case time complexity of finding a solution for aCSPis exponential, i.e.dn, where
d is the maximum domain size andn is the number of variables. Nevertheless, many
algorithms and heuristics have been developed to enhance this basic search procedure.

During backtrack search, variables are chosen in some order and each is instanti-
ated with a value from its domain. It is well known that the efficiency of a search can
be greatly affected by the choices made during search i.e. selecting which variable to
consider next and which value to assign to this variable. When picking the next vari-
able to instantiate, a commonly used heuristic picks the one which is most likely to
fail. In other words, a variable should be selected so that search can fail with as little
effort as possible, if it cannot lead to a solution. This is the rationale behind thefail first

50 Mehta aand Van Dongen

principle [8]. On the other hand, when picking the next value to assign to a variable,
a commonly used heuristic is to select a value which is most likely to be a part of a
solution. If the value chosen to instantiate the variable has a higher probability of being
part of a solution then it can make a substantial impact on the time required to find a
solution.

When solving a hard satisfiableCSP, much time is often spent by searching branches
of the search space which do not lead to a solution. If aCSPhas a solution, then assign-
ing the right value to each variable would enable a solution to be found without back-
tracking. Making such a perfect choice cheaply seems impossible, but a bit of guidance
can make a substantial impact on the time required to find a solution. However, the use
of value ordering heuristic, the question of determining which value should be assigned
to the selected variable, is relatively neglected. This may be because there are no cheap
and generic value ordering heuristics. All the heuristics proposed so far to the best of our
knowledge are expensive because they are dynamic in nature and result in muchCPU

overhead. It seems to be an accepted fact [5] that with backtracking (k-way branching)
the order in which values are chosen has no impact, when a problem has no solution or
if all the solutions have to be searched. This could be another possible reason that value
ordering heuristics have not attracted many researchers. However, in this paper we will
demonstrate that this accepted fact is not always true.

In this paper, we shall introduce the concept ofstatic value ordering heuristics.
The idea is to rearrange the values in their respective domainsprior to search. More
specifically, each value is assigned some weight based on some reasonable criterion
and then they are sorted based on their weights. Of course, the heuristics do not always
make the perfect decision, but experimental results show that they are frequently better
than the initial ordering of values in the input problem. Further, we will show that
rearranging values prior to search in this fashion may result in saving support checks
even when a problem has no solution or if search has to be done for all the solutions.

The rest of this paper is organized as follows: Section 2 describes background in-
formation. Section 3 introduces static value ordering heuristics. Section 4 shows exper-
imental results. Finally, conclusions are presented in Section 5.

2 Background

2.1 Constraint Satisfaction

A Constraint Satisfaction Problem(csp) is defined as a setV of n variables, a non-
empty domainD(x) for each variablex ∈ V and a set ofe constraints among subsets
of variables ofV. A binary constraintCxy between variablesx andy is a subset of the
Cartesian product ofD(x) andD(y) that specifies the allowed pairs of values forx and
y. We only considerCSPs whose constraints are binary. Asolutionis an assignment of
values to all the variables such that no constraint is violated. A problem is said to be
satisfiable (or consistent) if it has a solution, and unsatisfiable otherwise.

Thedensityp1 of a CSP is defined as2 e/(n2 − n), wheree is the number of con-
straints andn is the number of variables. Thetightnessp2 of the constraintCxy between
the variablesx andy is defined as1−|Cxy |/|D(x)×D(y) |. Thedegreeof a variable

Static Value Ordering Heuristics 51

is the number of constraints involving that variable. A constraint satisfaction problem
can be represented by aconstraint graphwhich has a node for each variable and an
arc connecting each pair of variables that are contained in a constraint. Thedirected
constraint graphof a givenCSP is a directed graph having an arc(x, y) for each com-
bination of two mutually constraining variablesx andy. We will useG to denote the
directed constraint graph of the inputCSP.

We shall use the notation proposed in [15] for describing and composing heuristics
for selecting variables and arcs. Letδo(v) be the original degree ofv, let δc(v) be the
current degree ofv, letδw(v) be the weighted degree [4] ofv, let#(v) be a unique num-
ber forv, and lets(v) be the current domain size ofv. Finally, letπi((v1, . . . , vn)) = vi
denote thei-th projection operator. Thecompositionof order�2 and linear quasi-order
�1 is denoted by�2•�1. Selection is done using�1 and ties are broken using�2.
Composition associates to the left. The result oflifting linear quasi-order� and function
f is denoted⊗f�. It is the linear quasi-order such thatv⊗f�w if and only iff(v) � f(w).
For example, using this notation thedom/wdegdynamic variable ordering heuristic with
a lexicographical tie breaker can be described as⊗#

≤ • ⊗
f
≤, wheref(v) = s(v)/δo(v).

The lexicographical arc selection heuristic can be described as⊗#◦π2
≤ • ⊗#◦π1

≥ . The
reader is referred to [15] for more examples and further details.

2.2 Arc Consistency

A valueb ∈ D(y) is called asupportfor a ∈ D(x) if (a, b) ∈ Cxy. Similarlya ∈ D(x)
is called a support forb ∈ D(y) if (a, b) ∈ Cxy. A support check(consistency check) is
a test to find if two values support each other. A valuea ∈ D(x) is calledviable if for
every variabley constrainingx the valuea is supported by some value inD(y). A CSP

is calledarc-consistentif for every variablex ∈ V, each valuea ∈ D(x) is viable.
Arc consistency algorithms are widely used to prune the search space of binary con-

straint satisfaction problems. Coarse-grained arc consistency algorithms such asAC-3
[11], AC-2001[3], andAC-3d [15] are efficient when it comes to transforming aCSPto
its arc-consistent equivalent. These algorithms repeatedly revise the domains to remove
all unsupported values. They userevision ordering heuristics[16, 10, 15], to select an
arc from a data structure called a queue (a set really). When an arc,(x, y), is selected
from the queue,D(x) is revisedagainstD(y). Here toreviseD(x) againstD(y) means
removing all values fromD(x) that are not supported by any value ofD(y). Pseudo-
code forAC-3 equipped withreverse variable-based[12] revision ordering heuristics
is depicted in Figure 1. Reverse variable based revision ordering heuristics first select a
variablex and repeatedly select arcs of the form(x, y) to determine the next revision
until there are no more such arcs orD(x) becomes empty as shown in Figure 1. Select-
ing a variablex and revising it against all its neighboursy such that(x, y) is currently
present in the queue, we call acomplete relaxationof x. The revise function upon which
AC-3 depends is depicted in Figure 2.

In Figure 1, ifD(x) was changed after a complete relaxation and if this was the
result ofonly oneeffective revision (effectiverevisions= 1), which happened to be
againstD(y′′), then all arcs of the form(y′, x) wherey′ is a neighbour ofx andy′ 6= y′′

are added to the queue. However, ifD(x) was changed as the result ofmore than one

52 Mehta aand Van Dongen

Function AC-3: Boolean;

begin
Q := G
whileQ not emptydo begin

select anyx from {x : (x, y) ∈ Q }
effective revisions := 0
for eachy such that(x, y) ∈ Q do

remove(x, y) fromQ
revise(x, y, changex)
if D(x) = ∅ then

return False
else ifchangex then

effective revisions := effective revisions + 1
y′′ := y;

if effective revisions = 1 then
Q := Q ∪ { (y′, x) ∈ G : y′ 6= y′′}

else ifeffective revisions > 1 then
Q := Q ∪ { (y′, x) ∈ G}

return True;
end;

Fig. 1.AC-3

effective revision (effectiverevisions> 1) thenall arcs of the form(y′, x) wherey′

is a neighbour ofx are added to the queue. Modulo constraint propagation effects this
avoids queue maintenance overhead.

Function revise(x, y, var changex)

begin
changex := False
for eacha ∈ D(x) do

if @b ∈ D(y) such thatb supportsa then
D(x) := D(x) \ { a }
changex := True

end;

Fig. 2.Algorithm revise of AC-3

2.3 Maintaining Arc Consistency

MAC [13] is a backtrack algorithm that maintains arc consistency during search. It re-
duces the thrashing behaviour of a backtrack algorithm, which usually fails many times
as a result of the same local inconsistencies. Before starting searchMAC transforms the
input CSP to its arc-consistent equivalent. Thearc-consistentdomain of a variable is
the domain of that variable in this arc-consistent equivalent. During backtrack search,

Static Value Ordering Heuristics 53

variables are chosen in some order and each is instantiated with a value from its do-
main. MAC maintains arc consistency after each variable assignment. To re-establish
arc consistency following the instantiation of a variablex the queue is initialised to all
arcs incident tox. More specifically, all arcs of the form(y, x) are added to the queue
wherey is a future variable constrained byx. When values are deleted, more arcs may
have to be added to the queue to determine if these deletions lead to further deletions.

For the remainder of this paper for any variablex, we useDo(x) for the original
domain ofx, Dac(x) for the arc-consistent domain ofx, andD(x) for the current
domain ofx. MAC-x usesAC-x for maintaining arc consistency during search.

3 Static Value Ordering Heuristics

Value ordering heuristics are used to select a value from the domain of a variable to
instantiate that variable during search. If the value selected has a higher probability of
being part of a solution then selecting this value can make a significant difference in
terms of the solution time. Heuristics for ordering the values may help in finding the
first solution more efficiently in terms of the solution time and support checks. To the
best of our knowledge all value ordering heuristics [6, 5] proposed so far aredynamic
in nature. We call them dynamic because generally rankings are established among
the values in the domain of the selected variableafter each variable selection. Until a
solution is found or all possible sets of assignments have been tried, a value having the
highest rank which is untried is selected to instantiate the selected variable. There are
no cheap general-purpose dynamic value ordering heuristics (see e.g. [14, 2]).

We propose static value ordering heuristics as opposed to the dynamic value or-
dering heuristics. The idea is to assign a weight to each value in the domain of each
variable. These weights remain static throughout the search. After associating a weight
with each value, the next step is to rearrange the values in their respective domains in
the decreasing order of their weights,prior to search. The order of values is only calcu-
lated once. The advantage is that there is no overhead of establishing rankings during
search after every variable selection and selecting the best value based on the weight
during search only requiresO(1) time-complexity. Of course, these heuristics will not
always make the correct decision but experimental results show that they are frequently
better than the initial ordering of values in the input problem.

There exist many possible ways to assign a weight to each value. However, we
explore the feasibility of using the knowledge ofsupport countgathered before the
search to compute the weight for each value to improve the ordering of values. The
support count ofa ∈ D(x) with respect toy, is the number of values in the domain of
y supportinga. LetCxy be the constraint betweenx andy, let a ∈ D(x) (also denoted
as (x, a)), and letweight[x, a] be the weight of(x, a) and letscount[x, y, a] be the
number of supports of(x, a) in Dac(y). In general many weights are possible. In this
paper, we will study the following three weights:

weight [x, a] =
∑

(x,y)∈G

scount [x, y, a] (1)

54 Mehta aand Van Dongen

weight [x, a] =
∑

(x,y)∈G

scount [x, y, a]/|Dac(y)| (2)

weight [x, a] =
∏

(x,y)∈G

scount [x, y, a] (3)

Frost and Dechter [5] have proposed amin-conflictvalue ordering heuristic, the
formula of which is equivalent to the one as mentioned in Equation (1). Geelen [6]
has shown three formulae for value-selection which are calledtotal-cost, cruciality and
promisewhich are, before search, equivalent to the Equations (1), (2) and (3) respec-
tively. This constitutes the main difference between their approach and ours. For a static
value ordering heuristic rankings are established for all values only once. For a dy-
namic value ordering heuristic due to backtracking and failed assignments of a variable
rankings are established among the values of the selected variable after each variable
selection which may be computationally expensive.

Pseudo-code for ordering the values is shown in Figure 3. The first step is to com-
pute the support count for each arc-value pair, involving the arc(x, y) and the value
a in D(x). Note that the algorithm uses the bidirectional property of the constraints.
Next step is to compute the weight for each value by using either Equation (1), (2)
or (3). Final step is to rearrange the values in the decreasing order of their weights.
The time-complexity of this algorithm isO(e d2) and the space-complexity required is
O(max(e, n) d). This algorithm can be used to order the values in the domains after
making the problem initially arc-consistent.

Function OrderValues ()

begin
for each (x, y) ∈ G do

for eacha ∈Dac(x) do
scount[x, y, a] := 0

for each (x, y) ∈ G such thatx < y do
for eacha ∈Dac(x) do

for eachb ∈Dac(y) do
if (a, b) ∈ Cxy then

scount[x, y, a] := scount[x, y, a] + 1
scount[y, x, b] := scount[y, x, b] + 1

end
for eachx ∈ V do

for eacha ∈Do(x) do
compute weight for(x, a) by using either Equation (1), (2) or (3)
assign it toweight[x, a]

sortDac(x) in the decreasing order of the weights
end;

Fig. 3. Initialisation of weights and rearrangement of the values.

Arranging the values in the decreasing order of their weights (which can be com-
puted by using either Equation (1), (2) or (3)), in some sense can be seen as arranging
the values in the increasing order of their constrainedness. This can be advantageous
while revising the domains of the variables. Putting the least constrained value at the

Static Value Ordering Heuristics 55

beginning of the domain list may help other values to find their support quickly during
revision. This may allow to save a few negative support checks. The further the first
support is away from the start, the more negative support checks are required to find it.
Ordering of values in the increasing order of their constrainedness is a novel approach
to reduce support checks during revisions. This may also allow to save support checks
for the problems which has no solution or if all solutions have to be searched.

4 Experimental Results

4.1 Introduction

In this section, we shall present some experimental results to prove the practical effi-
ciency of static value ordering heuristics. All experiments are conducted usingMAC-3
as a backtrack algorithm equipped with a search heuristic that learns from conflicts [4].
More specifically, we used a conflict-directed variable ordering heuristicdom/wdegwith
a lexicographical tie breaker, wheredom is the domain size andwdegis the weighted
degree [4] of a variable. Weighted degree of a variablex can be defined as follows:

xwdeg =
∑

(x,y)∈G

warc[x, y],

wherewarc[x, y] is a counter associated with each arc, which is initialised to1 prior
to search. During search these counters are incremented whenever a domain wipe-out
occurs. This heuristic has been shown very stable and efficient when used withMAC

algorithms in [4, 9]. Using the notations, as explained in Section 2, this heuristic can be
described as⊗#

≤ • ⊗
f
≤, wheref(v) = s(v)/δw(v).

In all our experimental results, we useinitial to refer to the ordering of the values
in the domains in the input problem. When the values in the domains are ordered using
Equation (1), we refer to it assvoh1 (static value ordering heuristic using Equation (1)).
Similarly, we refersvoh2 andsvoh3 to the ordering of values using Equations (2) and
(3) respectively. The arc consistency component,AC-3, of MAC-3 is equipped with a
reverse variable based revision ordering heuristic [12]. Letcomp[15] be the variable
selection order⊗#

≤ •⊗
δc
≥ •⊗s≤, then the reverse variable based heuristic used in the arc

consistency component ofMAC-3 can be given by⊗#◦π2
≤ • ⊗s◦π2

≤ • ⊗π1
comp .

All algorithms are written in C. The experiments are carried out on linux on a PC
Pentium III (2.266 GHz processor and 256 MB RAM). We compare the performance
of different static value ordering heuristics with that of the initial ordering of values
in terms of constraint checks (chks), visited nodes (vn) and the solution time (cpu) on
random problems, real-word problems and academic problems.

4.2 Comparison

First, we experimented with random problems which were generated by Frostet al.’s
model B generator [7]1. In this model a randomCSP instance is typically represented

1 (http://www.lirmm.fr/˜bessiere/generator.html)

56 Mehta aand Van Dongen

as〈N,D,C, T 〉 with N variables, each having the domain size ofD. The parameter
C specifies the number of constraints out ofN × (N − 1)/2 possible constraints and
the parameterT (tightness) specifies the number of tuples not allowed by the constraint
out ofD2 possible tuples. We studied four different combination of〈N,D,C, T 〉. For
each combination, 50 random problems were generated and their mean performance is
reported in Table 1. Parameters are selected in such a way that the problem instances
are located at the phase transition. Problems are relatively harder to solve in the phase
transition region, the region between an under-constrained region where all instances
are almost surely satisfiable and an over-constrained region where all instances are al-
most surely unsatisfiable. The instances for the third and fourth problems are generated
using the parameters mentioned in [5].

Table 1.Random Problems

instances initial svoh1 svoh2 svoh3
〈65, 20, 167, 260〉 cpu 0.225 0.197 0.201 0.201

(28/50 sat) chks 5,447,656 4,513,250 4,596,678 4,590,326
vn 3,263 2,919 2,950 2,975

〈90, 20, 280, 230〉 cpu 3.494 1.025 0.982 1.057
(50/50 sat) chks60,424,55916,734,75316,209,55317,290,406

vn 38,550 12,317 11,841 12,829
〈125, 3, 929, 1〉 cpu 0.105 0.097 0.099 0.097

(17/50 sat) chks 370,311 353,926 360,944 353,936
vn 1,473 1,385 1,418 1,385

〈350, 3, 2292, 1〉 cpu 1.121 0.326 0.293 0.326
(50/50 sat) chks 1,575,393 501,721 456,418 501,721

vn 5,165 1,895 1,785 1,895

The results presented in Table 1 demonstrate thatMAC-3 equipped with asvohi
(where i = 1, 2 or 3) performs better in terms of the solution time, support checks
and visited nodes, when compared toMAC-3 equipped with theinitial value ordering
heuristic. Note that selecting a value withinitial andsvohi, all takeO(1) time. One can
observe the huge gain obtained bysvohi heuristics on second and fourth problem, where
all instances are satisfiable. This clearly shows that arranging values in the domains in
the increasing order of their constrainedness, prior to search, can make a significant
difference to findonesolution.

We performed a second set of experiments on the forced satisfiable instances [17],
which are generated using model RB [18]. This model guarantees the existence of an
asymptotic phase transition by applying a limited restriction on domain size and on
constraint tightness and a threshold point can be precisely located to generate hard in-
stances. A class of randomCSP instance of model RB is denoted as RB(k, n, α, r, p)
wherek is the arity of the constraint,n is the number of variables,α andr are used to
determine the domain size and the number of constraints respectively andp denotes the
tightness of each constraint. Experiments were carried out on binaryCSP instances of
class RB(2, n, 0.8, 0.8/ln 4

3 , 0.25) for n ∈ {30, 35, 40, 45}. The results of these experi-

Static Value Ordering Heuristics 57

ments are summarised in Table 2. Each set is denoted as frb-n-d wheren is the number
of variables andd is the uniform domain size for each variable. Results for each set
shown in Table 2 represent the average of5 forced satisfiable instances ofCSPs. Results
show thatsvohi heuristics are usually better than the initial ordering of values except
for frb-40-19.

Table 2.Forced satisfiable random problems

instances initial svoh1 svoh2 svoh3
frb-30-15 cpu 0.192 0.112 0.123 0.137
(5/5 sat) chks 3,114,885 1,838,268 2,020,902 2,240,825

vn 3,470 2,124 2,331 2,619
frb-35-17 cpu 2.594 1.094 1.093 1.446
(5/5 sat) chks 40,878,755 17,294,249 17,217,755 18,315,004

vn 39,265 17,099 17,061 18,034
frb-40-19 cpu 11.552 11.997 11.679 13.832
(5/5 sat) chks 177,424,742 180,016,269 175,061,284207,451,296

vn 158,816 168,536 163,959 194,592
frb-45-21 cpu 194.058 116.728 113.723 195.198
(5/5 sat) chks1,501,335,7481,413,489,7711,415,111,821704,453,902

vn 1,861,016 1,153,753 1,154,926 1,974,567

Next, we experimented with 3-sat instances which are converted to binary csp in-
stances2 [9]. There are two sets denoted asehi-85andehi-90. Each set has 100 easy
random 3-sat instances with a small unsatisfiable part. One can notice in Table 3 that
even for unsatisfiable instances,svohi causesMAC-3 to visit on average30% fewer
nodes than the initial ordering of values in the input problem. It is worth emphasising
that conflict-directed variable ordering heuristics are heavily influenced by the value se-
lected to instantiate the variable and the arc considered for the next revision. However,
this observation deserves further exploration.

Table 3.Random 3-SAT instances

instances initial svoh1 svoh2 svoh3
ehi-85 cpu 1.775 1.415 1.408 1.310

(0/100 sat)chks4,974,4554,417,2704,358,4584,175,680
vn 2,289 1,172 1,764 1,648

ehi-90 cpu 2.099 1.388 1.221 1.333
(0/100 sat)chks5,527,3974,265,7163,812,2024,118,905

vn 2,280 1,672 1,561 1,631

Next, we experimented with the modified versions of real-world binary instances of
RLFAP (Radio Link Frequency Assignment) problems. In [1, 4], it has been shown that

2 These converted instances are available atwww.cril.univ-artois.fr/˜lecoutre/

58 Mehta aand Van Dongen

harder instances of these problems are possible by removing some frequencies. For ex-
amplegraph14 f27 corresponds to thegraph14 from which the27 highest frequencies
have been removed. We did not consider optimisation but satisfiability only. The results
of these experiments are summarised in Table 4. Again, results shown in Table 4 clearly
shows thatsvohi are usually better than the initial ordering of the values.

Table 4.RLFAP Instances

instances initial svoh1 svoh2 svoh3
graph14f27 cpu 0.853 0.570 0.574 0.571

(sat) chks 10,671,050 8,192,428 8,193,737 8,193,532
vn 28,595 20,131 20,136 20,135

graph02f24 cpu 0.036 0.050 0.047 0.049
(sat) chks 534,527 1,251,682 1,174,798 1,231,069

vn 634 591 414 546
graph08f10 cpu 6.806 0.817 0.882 0.786

(sat) chks 74,091,88811,353,50112,306,46811,265,384
vn 81,803 9,745 10,679 9,309

graph02f25 cpu 17.762 0.340 0.382 0.365
(unsat) chks230,895,326 5,204,626 5,572,219 5,548,506

vn 292,075 4,156 4,569 4,552
graph08f11 cpu 1.696 0.185 0.188 0.189

(unsat) chks 20,286,505 3,296,196 3,306,326 3,304,455
vn 12,027 982 987 993

scen01f8 cpu 0.222 0.216 0.224 0.220
(sat) chks 3,061,420 5,482,347 5,483,551 5,482,548

vn 1,486 818 818 818
scen02f25 cpu 6.478 5.155 5.160 5.161

(unsat) chks 85,584,14166,106,41866,106,41866,106,418
vn 41,899 39,053 39,053 39,053

scen03f11 cpu 1.458 1.462 1.466 1.465
(unsat) chks 16,085,49715,979,15315,979,15315,979,153

vn 6717 7865 7865 7865

Finally, we experimented with the academic instances of Queens-Knights problems
as mentioned in [4]. This problem is basically an integration of two different problems.
The first one is to placek knights on an×n chessboard such that no two knights share
the same square and all knights form a cycle with respect to their moves. The second
one is to placeq queens on a chessboard of sizen × n such that no two queen attack
on each other. Further on, two variations of these problems are possible which are as
follows:

I. Kk ⊕Qq: Here, k-knights and q-queens instances are merged without any interac-
tion.

II. Kk ⊗Qq: Here, k-knights and q-queens instances are merged such that queens and
knights cannot share the same square on the chessboard.

Static Value Ordering Heuristics 59

When the value ofk (the number of knights) is odd, the problem is unsatisfiable. The
results for the unsatisfiable instances of Queen-Knights problems are depicted in Ta-
ble 5. Notice that in a few cases there is only a marginal difference in terms of the
nodes visited byMAC-3 when equipped withinitial andsvohi value ordering heuristic.
However, asvohi allows to save support checks. This is because asvohi value ordering
heuristic arranges the values in the domains such that the least constrained value is at
the beginning of the domain. On average this speeds up the process of finding a support
during revisions of the domains.

Table 5.Academic Instances

instances initial svoh1 svoh2 svoh3
cpu 0.041 0.033 0.033 0.023

K5 ⊕Q8 chks 3,334,548 2,373,825 2,373,825 1,786,865
(n = 8) vn 1,284 1,343 1,343 1,007

cpu 0.041 0.036 0.036 0.040
K5 ⊗Q8 chks 3,135,368 2,209,157 2,209,157 25,446,045
(n = 8) vn 1,183 1,193 1,193 1,405

cpu 2.621 1.741 0.927 0.941
K5 ⊕Q12 chks295,804,348180,595,256 97,326,791 98,005,633
(n = 12) vn 28,497 26,094 13,863 13,989

cpu 3.622 3.153 1.906 1.774
K5 ⊗Q12 chks371,731,471271,980,451164,329,385149,292,105
(n = 12) vn 29,768 33,927 20,519 18,378

4.3 Discussion

Frost and Dechter [5] have showed that with backtracking the order in which values are
chosen makes nodifferenceon problems which have no solution, or when searching for
all solutions. Smith and Sturdy [14] have further clarified that this is only true fork-way
branching but not forbinary-branching. In k-way branching,k branches are formed,
when a variablex with k values in its domain is selected for the instantiation. In binary-
branching, when a variablex is selected for instantiation, the values are assigned via
a sequence of binary choices. Withk-way branching,k subtrees are explored indepen-
dently and the search spaces of these k subtrees are commutative. Therefore, the order
in which values are assigned cannot affect the search. However, with binary-branching
the subtrees resulting from successive assignments to a variable are not explored inde-
pendently. Here, the order in which values are assigned can affect the search.

We argue that rearranging the values prior to search as reported in this paper can
make a difference at least in terms of the number of support checks for any (static and
dynamic) variable ordering heuristic with both k-way branching and binary-branching
even when the problem has no solution and if all solutions have to be searched. For
illustration, forK5⊗Q8 usingdom/deg[2], MAC-3 with initial value ordering heuristic
results in spending10, 044, 320 checks,5, 890 visited nodes and0.151 cpu time in

60 Mehta aand Van Dongen

seconds whileMAC-3 with svoh1 results in spending7, 783, 790 checks,5, 890 visited
nodes and0.126 seconds. Note that though both the heuristic causeMAC-3 to visit the
same number of nodes but due to the different arrangement of values in the domains,
there is a saving of22% of checks during revisions of domains by usingsvoh1.

Further, we also argue that even with k-way branching, value ordering heuristics
for a certain class of variable ordering heuristics e.g. conflict-directed heuristics can
make a difference in terms of the visited nodes and checks on problems, which have no
solution or when all solutions are required to be searched. Conflict-directed heuristics
learn from encountered failures to manage the choice of the variable to be instantiated.
These heuristics exploit the weighted degree of a variable which keeps on changing
during search and is heavily influenced by the value which is selected to instantiate
the variable or the arc considered for the next revision. The subtrees rooted from the
selected variable are not independent. Hence, the order in which values are selected
can make a difference for conflict-directed heuristics. Results shown in Tables 3 and 5
confirm this.

The static value ordering heuristics proposed in this paper, exploit the knowledge of
the support counts to compute the weight for each value in the domain of each variable.
They have a small overhead of computing the support count for each arc-value pair
before search. For easy problems, where not much search is required, the overhead of
computing the support counts is almost always worse than the benefit at least in terms
of support checks. However, in many cases it should be possible to compute the support
count using the semantics of the constraint rather than using the algorithm as mentioned
in Figure 3. For example, if there is an equality constraint betweenx andy then for
each valuea in domain ofx, scount [x, y, a] can be set to1 after making the problem
initially arc-consistent. The overall conclusion we draw from our experiments is that on
averageMAC-3 equipped with asvohi value ordering heuristic usually performs better
than theinitial ordering of values in finding one solution, all solutions, or detecting the
insolubility of the problem.

5 Conclusions and Future Work

The purpose of this paper is to introduce static value ordering heuristics which are
generic, cheap and easy to implement. The idea is to assign a weight to each value
based on some reasonable criterion and rearrange the values in their respective domains
prior to search based on their weights. The ordering of values is only established once
and it remains static throughout the search. The advantages are twofold. The first ad-
vantage is that it helps to select better values to instantiate the selected variable. The
second advantage is that it helps to reduce negative checks during revisions of domains.
We have compared the static value ordering heuristics, which use the knowledge of sup-
port counts, against the initial ordering of values in the domains in the input problem.
The overall conclusions we draw from our experiments is that arranging values in the
increasing order of their constrainedness in the domains prior to search is usually better
than the initial ordering of values in the input problem.

Static Value Ordering Heuristics 61

In future, we would like to compare them against dynamic value ordering heuristics
which are generally considered to be expensive. We would also like to devise other
possibilities of computing the weights.

Acknowledgement

We would like to thank Christophe Lecoutre for providing most of the problems and
converting them into the required format for our solver. The first author is supported by
Boole Centre for Research in Informatics (BCRI). This work has received some support
from Science Foundation Ireland under Grant No. 00/PI.1/C075.

References

1. C. Bessìere, A. Chmeiss, and L. Sais. Neighborhood-based variable ordering heuristics for
the constraint satisfaction pproblem. InPrinciples and Practice of Constraint Programming,
pages 565–569, 2001.

2. C. Bessìere and J.-C. Ŕegin. Mac and combined heuristics: Two reasons to forsake fc (and
cbj ?) on hard probelms. In E. Freuder, editor,Principles and Practice of Constraint Pro-
gramming, pages 61–75. Springer, 1996.

3. C. Bessìere and J.-C. Ŕegin. Refining the basic constraint propagation algorithm. InPro-
ceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJ-
CAI’2001), pages 309–315, 2001.

4. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. InProceedings of the 13th European Conference on Artificial Intelligence, 2004.

5. D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction problems. In
Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI’95, pages
572–578, Montreal, Canada, 1995.

6. P. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems. InProceed-
ings of the12th European Conference on Artificial Intelligence (ECAI’92), 1992.

7. I. Gent, E. MacIntyre, P. Prosser, B. Smith, and T. Walsh. Random constraint satisfaction:
Flaws and structure.Journal of Constraints, 6(4):345–372, 2001.

8. R. Haralick and G. Elliott. Increasing tree search efficiency for constraint satisfaction prob-
lems.Artificial Intelligence, 14(3):263–313, 1980.

9. C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques versus conflict-
directed heuristics. InICTAI, pages 549–557, 2004.

10. C. Lecoutre, F. Boussemart, and F. Hemery. Revision ordering heuristics for the constraint
satisfaction problems. InProceedings of the Tenth International Conference on Principles
and Practice of Constraint Programming, 2004.

11. A. Mackworth. Consistency in networks of relations.Artificial Intelligence, 8:99–118, 1977.
12. D. Mehta and M. van Dongen. Reducing checks and revisions in coarse-grained mac algo-

rithms. InProceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence, 2005.

13. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
A. Cohn, editor,Proceedings of the Eleventh European Conference on Artificial Intelligence
(ECAI’94), pages 125–129. John Wiley and Sons, 1994.

14. B. Smith and P. Sturdy. Value ordering for finding all solutions. InProceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, 2005.

62 Mehta aand Van Dongen

15. M. van Dongen. Saving support-checks does not always save time.Artificial Intelligence
Review, 21(3–4):317–334, 2004.

16. R. Wallace and E. Freuder. Ordering heuristics for arc consistency algorithms. InProceed-
ings of the Ninth Canadian Conference on Artificial Intelligence, pages 163–169, Vancouver,
B.C., 1992.

17. K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. A simple model to generate hard sat-
isfiable instances. InProceedings of the 19th Internationl Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, 2005.

18. K. Xu and W. Li. Exact phase transitions in random constraint satisfaction problems.Journal
of Artificial Intelligence Research, 12:93–103, 2000.

Constraint Propagation versus Local Search for
Conditional and Composite Temporal Constraints

Malek Mouhoub and Amrudee Sukpan

University of Regina
Dept of Computer Science

Wascana Parkway, Regina, SK, Canada, S4S 0A2
\{mouhoubm,sukpan1a\}@cs.uregina.ca

Abstract. A well known approach to managing the numeric and the symbolic
aspects of time is to view them as Constraint Satisfaction Problems (CSPs). Con-
straint propagation techniques can then be used to efficiently check for the consis-
tency of the CSP and to find possible solutions. Our aim is to extend the temporal
CSP formalism in order to include activity constraints and composite variables.
Indeed, in many real life applications the set of variables involved by the tem-
poral constraint problem to solve is not known in advance. More precisely, while
some temporal variables (called events) are available in the initial problem, others
are added dynamically to the problem during the resolution process via activity
constraints and composite variables. Activity constraints allow some variables to
be activated (added to the problem) when activity conditions are true. Compos-
ite variables are defined on finite domains of events. We propose in this paper
two methods based respectively on constraint propagation and stochastic local
search (SLS) for solving temporal constraint problems with activity constraints
and composite variables. We call these problems Conditional and Composite
Temporal Constraint Satisfaction Problems (CCTCSPs). Experimental study we
conducted on randomly generated CCTCSPs demonstrates the efficiency of our
exact method based on constraint propagation in the case of middle constrained
and over constrained problems while the SLS based method is the technique of
choice for under constrained problems and also in case we want to trade search
time for the quality of the solution returned (number of solved constraints).

1 Introduction

Representing and reasoning about numeric and/or symbolic aspects of time is crucial in
many real world applications such as scheduling and planning [1–4], natural language
processing [5, 6], molecular biology [7] and temporal database [8]. A well-know ap-
proach to managing these two aspects of time is to view them as Constraint Satisfaction
Problems (CSPs). We talk then about temporal constraint networks [9–12]. Here, a CSP
involves a list of variables defined on discrete domains of values and a list of relations
constraining the values that the variables can simultaneously take [13–15].

In a temporal constraint network, variables, corresponding to temporal objects, are
defined on a set of time points or time intervals while constraints can either restrict the

64 Mouhoub and Sukpan

domains of the variables and/or represent the relative position between variables. The
relative position between variables can be expressed via qualitative or quantitative re-
lations. Quantitative relations are temporal distances between temporal variables while
qualitative relations represent incomplete and less specific symbolic information be-
tween variables. Constraint propagation techniques and backtrack search are then used
to check the consistency of the temporal network and to infer new temporal information.
While a considerable research work has been concerned with reasoning on the metric
or the symbolic aspects of time (respectively through metric and qualitative networks),
little work such as [16, 17, 2, 18] has been developed to manage both types of informa-
tion. In [19, 20], we have developed a temporal model, TemPro, based on Allen’s inter-
val algebra [9] and a discrete representation of time, to express numeric and symbolic
time information in terms of qualitative and quantitative temporal constraints. More
precisely, TemPro translates an application involving numeric and symbolic temporal
information into a binary CSP1 called Temporal CSP (or TCSP2) where variables are
temporal events defined on domains of numeric intervals and binary constraints between
variables correspond to disjunctions of Allen primitives [9]. The resolution method for
solving the TCSP is based on constraint propagation and requires two stages. In the
first stage, local consistency is enforced by applying the arc consistency on variable
domains and the path consistency on symbolic relations. A backtrack search algorithm
is then performed in the second stage to check the consistency of the TCSP by looking
for a feasible solution. Note that for some TCSPs local consistency implies the consis-
tency of the TCSP network [17]. The backtrack search phase can be avoided in this case.

In order to deal with a large variety of real world applications, we present in this
paper an extension of the modeling framework TemPro including the following :

– Managing composite temporal variables. Composite temporal variables are vari-
ables whose values are temporal events.

– Handling activity constraints. This is the case where temporal variables (composite
or events) can have either active or non active status. Only active variables require
an assignment from their domain of values. Non active variables will not be con-
sidered during the resolution of the temporal network until they are activated. A
variable can be activated by default (in the initial problem) or by an activity con-
straint. Given two variablesXi andXj , an activity constraint has the following
form (Xi = ai1) ∨ . . . (Xi = aip)→ Xj . This activity constraint will activateXj

if the active variableXi is assigned one of the valuesai1 . . . aip from its domain.

We call conditional TCSP (CTCSP) a TCSP augmented by activity constraints.
Solving a CTCSP can be seen like solving a TCSP dynamically i.e when some of the
variables and their corresponding constraints are added dynamically during the reso-
lution of the TCSP. We call a composite CTCSP (CCTCSP) a CTCSP including com-
posite temporal variables. A CCTCSP represents a finite set of possible CTCSPs where

1 In a binary CSP constraints can only be unary or binary.
2 Note that the acronym TCSP was used in [11]. The well known TCSP, as defined by Dechter

et al, is a quantitative temporal network used to represent only numeric temporal information.
Nodes represent time points while arcs are labeled by a set of disjoint intervals denoting a
disjunction of bounded differences between each pair of time points.

Constraint Propagation versus Local Search for Temporal Constraints 65

each CTCSP corresponds to a complete assignment of values (temporal events) to com-
posite variables. Solving a CCTCSP consists of finding a feasible scenario for one of
its possible CTCSPs. Solving a CTCSP requires a backtrack search algorithm with ex-
ponential complexity in timeO(DN) whereN is the total number of temporal events
andD the domain size of each event. The possible number of CTCSPs the CCTCSP
involves isdM whereM is the number of composite variables andd their domain
size. Thus, solving a CCTCSP requires a backtrack search algorithm of complexity
O(DN x dM). To overcome this difficulty in practice, we propose in this paper two
methods respectively based on constraint propagation and stochastic local search (SLS)
for solving efficiently CCTCSPs. Constraint propagation includes arc consistency [14]
as well as forward check and full look ahead strategies [15]. On the other hand, the SLS
method we use is based on the Min-Conflict-Random-Walk (MCRW) algorithm [21].
Experimental study on randomly generated CCTCSPs demonstrates the efficiency of
our exact method based on constraint propagation in case we look for a complete so-
lution while the SLS based method is the technique of choice in case we want to trade
search time for the quality of the solution.

The rest of the paper is structured as follows. In the next section we introduce the
CCTCSP framework through an example. Sections 3 and 4 are respectively dedicated to
the constraint propagation techniques and SLS method for solving CCTCSPs. Section 5
describes the experimental comparative tests we have conducted on random CCTCSPs.
Finally, concluding remarks are covered in Section 6.

2 Conditional and Composite Temporal Constraint Satisfaction
Problems (CCTCSPs)

Managing conditional, composite and dynamic CSPs has already been reported in the
literature [22–29]. [22] introduced the notion ofDynamic Constraint Satisfaction Prob-
lemsfor configuration problems (renamedConditional Constraint Satisfaction Prob-
lems (CCSPs)later). In contrast with the standard CSP paradigm, in a CCSP the set
of variables requiring assignment is not fixed by the problem definition. A variable has
eitheractiveor nonactivestatus. An activity constraint enforces the change of the status
of a given variable fromnonactive to active. In [23], Freuder and Sabin have ex-
tended the traditional CSP framework by including the combination of three new CSP
paradigms :Meta CSPs, Hierarchical Domain CSPs, and Dynamic CSPs. This exten-
sion is calledcomposite CSP. In a composite CSP, the variable values can be entire sub
CSPs. A domain can be a set of variables instead of atomic values (as it is the case in the
traditional CSP). The domains of variable values can be hierarchically organized. The
participation of variables in a solution is dynamically controlled by activity constraints.
Jónsson and Frank [27] proposed a general framework using procedural constraints for
solving dynamic CSPs. This framework has been extended to a new paradigm called
Constraint-Based Attribute and Interval Planning (CAIP) for representing and reason-
ing about plans [28]. CAIP and its implementation, the EUROPA system, enable the
description of planning domains with time, resources, concurrent activities, disjunctive
preconditions and conditional constraints. The main difference, comparing to the for-

66 Mouhoub and Sukpan

malisms we described earlier, is that in this latter framework [27] the set of constraints,
variables and their possible values do not need to be enumerated beforehand which gives
a more general definition of dynamic CSPs. Note that the definition of dynamic CSPs in
[27] is also more general than the one in [26] since in this latter work variable domains
are predetermined. Finally, in [29], Tsamardinos et al propose the Conditional Tempo-
ral Problem (CTP) formalism for Conditional Planning under temporal constraints. This
model extends the well known qualitative temporal network proposed in [11] by adding
instantaneous events (called observation nodes) representing conditional constraints.

We adopt both the CCSP [22] and the composite CSP [23] paradigms and extend
the modeling framework TemPro [20] by including conditional temporal constraints and
composite temporal events as shown in introduction. TemPro will then have the ability
to transform constraint problems involving numeric information, symbolic information,
conditional constraints and composite variables into the CCTCSP we have described in
introduction. Comparing to the formalisms we mentioned above, ours has the following
specificities.

1. Our work focuses on temporal constraints while the previous literature is on general
constraints, if we exclude the work in [29] and [28]. Both these latter formalisms
handle only quantitative time information while ours combines both quantitative
and qualitative temporal constraints.

2. Our model is domain independent and is not restricted to a particular area such as
planning or scheduling. It can however be used in a large variety of applications
involving symbolic and|or numeric temporal constraints. Moreover, the qualitative
constraints are based on the whole Allen Algebra [9] which offers more expressive-
ness. Altough this will lead to NP-hard problems, the solving techniques that we
will present in the next 2 Sections overcome this difficulty, in practice, as we will
see in Section 5.

3. Our model is based on a discrete representation of time. Thus, events are defined
on discrete values (numeric intervals). This offers an easier way to handle numeric
temporal information with different granularities. It will also enable the constraint
propagation techniques and approximation methods to be applied in a straight for-
ward manner.

4. Numeric and symbolic temporal constraints as well as conditional constraints and
composite variables, are managed within the same constraint graph.

In the following we will define the CCTCSP model and its corresponding net-
work (graph representation) through an example.

Definition

A Conditional and Composite Temporal Constraint Satisfaction Problem (CCTCSP) is
a tuple〈E,DE , X,DX , IV, C,A〉, where

E={e1, . . . en} is a finite set of temporal variables that we call events. Events
have a uniform reified representation made up of a proposition and its tem-
poral qualification : Evt = OCCUR(p, I) defined by Allen [9] and

Constraint Propagation versus Local Search for Temporal Constraints 67

denoting the fact that the propositionp occurred over the intervalI. For
the sake of notation simplicity, an event is used in this paper to denote its
temporal qualification.

DE= {De1 , . . . Den} is the set of domains of the events. Each domainDei is
the finite and discrete set of numeric intervals the eventei can take.Dei is
expressed by the fourfold[begintimeei , endtimeei , durationei , stepei]
wherebegintimeei andendtimeei are respectively the earliest start time
and the latest end time of the corresponding event,durationei is the dura-
tion of the event andstepei defines the distance between the starting time
of two adjacent intervals within the event domain. The discretization step
stepei allows us to handle temporal information with different granulari-
ties.

X= {x1, . . . xm} is the finite set of composite variables.
DX={Dx1 , . . . Dxm} is the set of domains of the composite variables. Each

domainDxi is the set of possible events the composite variablexi can
take.

IV is the set of initial variables. An initial variable can be a composite variable
or an event.IV ⊆ E

⋃
X.

C = {C1, . . . Cp} is the set ofcompatibility constraints. Each compatibility
constraint is a qualitative temporal relation between two variables in case
the two variables are events or a set of qualitative relations if at least one
of the two variables involved is composite. A qualitative temporal relation
is a disjunction of Allen primitives [9] (see table 1 for the definition of the
Allen primitives).

A is the set ofactivity constraints. Each activity constraint has the following
form : (Xi = ai1) ∨ . . . (Xi = aip) → Xj whereXi andXj are events
or composite variables. This activity constraint is fired ifXi is active and
is assigned one of the valuesai1 . . . aip from its domain. The variableXj

will then be activated.

Example

Consider the following temporal problem:

John, Mike and Lisa are going to see a movie on Friday. John will pick Lisa
up and Mike will meet them at the theater. If John arrives at Lisa’s before 7:30,
then they will stop at a convenience store to get some snacks and pops. It will
take them 30 minutes to reach the theater if they stop at the store and 15 min-
utes otherwise. There are three different shows playing:movie1,movie2 and
movie3. If they finish the movie by 9:15, they will stop at a Pizza place 10
minutes after the end of the movie and will stay there for 30 minutes. John
leaves home between 7:00 and 7:20. Lisa lives far from John (15 minutes driv-
ing). Mike leaves home between 7:15 and 7:20 and it takes him 20 minutes to
go to the theater.movie1,movie2 andmovie3 start at 7:30, 7:45 and 7:55 and
finish at 9:00, 9:10 and 9:20 respectively.

68 Mouhoub and Sukpan

WM

JLS

[15,59,30,1]

JPL

[0,35,15,1]

M

[15,40,20,1]

JL

[30,50,15,1]

WM1

[30,120,90,1]

WM2

[45,130,85,1]

WM3

[55,140,85,1]

movie1 movie2 movie3

[140,170,30,1]

P1

[130,160,30,1]

P2

WM=WM1 WM=WM2

B B

JPL=(0 15) v .. v JPL=(14 29)JPL=(15 30) v .. v JPL=(20 35)

BM BM

BM BMBM

Fig. 1.CCTCSP of example 1.

Constraint Propagation versus Local Search for Temporal Constraints 69

X Before Y

X Equals Y

X Meets Y

X Overlaps Y

X During Y

X Starts Y

X Finishes Y

Relation Symbol Inverse Meaning

X Y
B Bi

E E
X

YM Mi X

Y

O

D

S

F

Oi

Di

Si

Fi

YX

YX

YX

Y X

Table 1.Allen primitives.

The goal here is to check if this story is consistent (has a feasible scenario). The story
can be represented by the CCTCSP of figure 1. There are 6 eventsJPL, JL, JLS,M ,
P1 andP2 and 1 composite variableWM representing the following information :

– JPL : John will pick Lisa up.
– JL : John and Lisa are going to see a movie.
– JLS : John and Lisa will stop at a convenient store.
– M : Mike is going to see a movie.
– P1 : John, Mike and Lisa will stop at a Pizza place after watchingmovie1.
– P2 : John, Mike and Lisa will stop at a Pizza place after watchingmovie2.
– WM : John, Mike and Lisa are watching a movie. WM can take one of the fol-

lowing three values from its domain :WM1, WM2 andWM3 corresponding to
movie1,movie2 andmovie3 respectively.

Each event domain is represented by the fourfold[begintime , endtime , duration
, step]. In the case ofJPL, the domain is[0, 35, 15, 1] where 0 (the time origin corre-
sponding to 7:00) is the earliest start time, 35 is the latest end time, 15 is the duration,
and 1 (corresponding to 1 min) is the discretization step. For the sake of simplicity
all the events in this story have the same step. Arcs represent either a compatibility
constraint or an activity constraint (case of arcs with diamond) between variables. The
compatibility constraint is denoted by one or more qualitative relations. The activity
constraint shows the condition to be satisfied and the qualitative relation between the
two variables in case the condition is true. Each qualitative relation is a disjunction of
some Allen primitives [9]. For example, the relationBM betweenJPL andJL denotes
the disjunctionBefore ∨ Meets.

70 Mouhoub and Sukpan

3 Constraint Propagation for Solving CCTCSPs

Different methods for solving conditional CSPs have been reported in the literature
[25, 22, 24, 30]. In [25], all possible CSPs are first generated from the CCSP to solve.
CSP techniques are then used on the generated CSPs in order to look for a possible
solution. Dependencies between the activity constraints are considered in order to gen-
erate a directed a-cyclic graph (DAG), where the root node corresponds to the set of
initially active variables. Activity constraints are applied during the derivation of one
total order from the partial order given by the resulting DAG. In [22, 24] resolution
methods have been proposed and are directly applied on CCSPs. Maintaining arc con-
sistency (MAC) is used to prune inconsistent branches by removing inconsistent val-
ues during the search [24]. The solving method starts by instantiating the active vari-
ables. For each active variable instantiation, the algorithm first checks the compatibility
constraints and then activates the activity constraints. The method will then enforce
look-ahead consistency (through arc consistency) along the compatibility constraints
and prunes inconsistent values from the domains of future variables. When activity con-
straints come into play, newly activated variables are added to the set of future variables.
MAC is then applied to the set of all active variables. In [30, 24], a CCSP is reformu-
lated into an equivalent standard CSP. A special value “null” is added to the domains
of all the variables which are not initially active. A variable instantiation with “null”
indicates that the variable does not participate in the problem resolution. The CCSP is
transformed into a CSP by including the “null” values. The disadvantage is that, in a
large constraint problem, all variables and all constraints are taken into account simul-
taneously even if some are not relevant to the problem at hand. In the above methods,
backtrack search is used for both the generation of possible CSPs and the search for
a solution in each of the generated CSPs. Thus, these methods require an exponential
time for generating the different CSPs and an exponential time for searching a solu-
tion in each generated CSP. Moreover these methods are limited to handle only activity
constraints. The other problem of the above methods is the redundant work done when
checking at each time the consistency of the same set of variables (subset of a given
generated CSP).

The goal of the constraint propagation method we propose for solving CCTCSPs is
to overcome, in practice, the difficulty due to the exponential search space of the pos-
sible TCSPs generated by the CCTCSP to solve and also the search space we consider
when solving each TCSP. In the same way as reported in [22, 24], we use constraint
propagation in order to detect earlier later failure. This will allow us to discard at the
early stage any subset containing conflicting variables. The description of the method
we propose is as follows :

1. The method starts with an initial problem containing a list of initially activated
temporal events and composite variables. Arc consistency is applied on the initial
temporal events and composite variables in order to reduce some inconsistent val-
ues which will reduce the size of the search space. If the temporal events are not
consistent (in the case of an empty domain) then the method will stop. The CCTCSP
is inconsistent in this case.

Constraint Propagation versus Local Search for Temporal Constraints 71

2. Following the forward check principle [15], pick an active variablev, assign a value
to it and perform arc consistency between this variable and the non assigned active
variables. If one domain of the non assigned variables becomes empty then as-
sign another value tov or backtrack to the previously assigned variable if there are
no more values to assign tov. Activate any variablev′ resulting from this assign-
ment and perform arc consistency betweenv′ and all the active variables. If arc
inconsistency is detected then deactivatev′ and choose another value forv (since
the current assignment ofv leads to an inconsistent CCTCSP). Ifv is a composite
variable then assign an event to it (from its domain). Basically, this consists of re-
placing the composite variable with one eventevt of its domain. We then assign a
value toevt and proceed as shown before except that we do not backtrack in case
all values ofevt are explored. Instead, we will choose another event from the do-
main of the composite variablev or backtrack to the previously assigned variable if
all values (events) ofv have been explored. This process will continue until all the
variables are assigned in which case we obtain a solution to the CCTCSP.

The arc consistency in the above two steps is enforced as follows.

– Case 1 : the temporal constraint is(Evt1, Evt2) whereEvt1 andEvt2 are two
events
• The traditional arc consistency [14] is applied here i.e. each valuea of Evt1

should have a support in the domain ofEvt2.
– Case 2 : the temporal constraint is(X,Evt) whereX is a composite variable

andEvt is an event
• Each valuea, from the domain of a given eventEvtXk within X, should have

a support in the domain ofEvt.
– Case 3 : the temporal constraint is(Evt,X)
• Each valuea, from the domain ofEvt, should have a support in at least one

domain of the events withinX.
– Case 4 : the temporal constraint is(X,Y) whereX and Y are two composite

variables
• Apply case 2 betweenX and each eventEvtYk within Y .

Using the above rules, we have implemented a new arc consistency algorithm for
CCTCSPs as shown in Figure 2. This algorithm is an extension of the well known AC-3
procedure [14].

4 Approximation methods for CCTCSPs

The method we presented in the previous Section is an exact technique that guarantees
a complete solution. The method suffers however from its exponential time cost as we
will see in the next Section. In many real-life applications where the execution time is
an issue, an alternative will be to trade the execution time for the quality of the solution
returned (number of solved constraints). This can be done by applying approximation
methods such as local search and where the quality of the solution returned is pro-
portional to the running time. In this Section we will study the applicability of a local

72 Mouhoub and Sukpan

REV ISE(Di,Dj)
REV ISE ← false
For each valuea ∈ Di do

if not compatible(a, b) for any valueb ∈ Dj then
removea fromDi
REV ISE ← true

end if
end for

REV ISE COMP (Di,Dj)
REV ISE COMP ← false
if i is a single variable andj is a composite variable
Dtmp ← ∅
For each eventk ∈ Dj do
D ← Di − Dtmp
REV ISE COMP ← REV ISE COMP OR REV ISE(D,Dk)
Dtmp ← Dtmp ∪D

end for
Di ← Dtmp

end if
if i is a composite variable andj is a single variable

For each eventk ∈ Di do
REV ISE COMP ← REV ISE COMP OR REV ISE(Dk,Dj)

end for
end if
if i andj are composite variables

For each eventk ∈ Di do
REV ISE COMP (Dk,Dj)

end for
end if

AC − 3 − CCTCSP
Given a graphG = (X,U)
Q ← {(i, j)|i, j ∈ U}
whileQ 6= Nil do

Q ← Q − {(i, j)}
if i or j is composite variable

if REV ISE COMP (Di,Dj) then
Q ← ∪{(k, i)|k, i ∈ U andk 6= j}

end if
else ifREV ISE(Di,Dj) then

Q ← ∪{(k, i)|k, i ∈ U andk 6= j}
end if

end if
end while

Fig. 2.AC-3 for CCTCSPs.

search technique based on the Min-Conflict-Random-Walk (MCRW) [21] algorithm for
solving CCTCSPs. MCRW has already been applied to solve TCSPs [20]. Basically, the
method consists of starting from a complete assignment of temporal intervals to events
and iterates by improving at each step the quality of the assignment (number of solved
constraints) until a complete solution is found or a maximum number of iterations is
reached. Given the dynamic aspect of CCTCSPs (some variables are added|removed
dynamically during the resolution process) we propose the following algorithm based
on MCRW for solving CCTCSPs.

MCRW-CCTCSP

1. The algorithm starts with a random assignment of values to the initial variables. If
the initial variable is an event then it will be randomly assigned a value (temporal
interval) from its domain. In the case where the initial variable is composite then
it will be replaced by one variable selected randomly from its domain. This latter
variable will then be randomly assigned a value from its domain.

Constraint Propagation versus Local Search for Temporal Constraints 73

2. Activate any variable where the activating condition is true and randomly assign to
it a value from its domain as shown in the previous step.

3. If a complete solution is not found and the maximum number of iterations is not
reached, randomly select an active variablev and proceed with one of the following
cases:

– If v belongs to the domain of a given composite variableX then select the
pair< vi, intvi > that increases the quality of the current solution (number of
solved constraints).vi belongs here to the domain ofX andintvi is a value of
v′is domain,

– otherwise, assign tov a value that increases the quality of the solution.

4. Deactivate any variable activated by the old assignment ofv and goto 2.

5 Experimentation

In order to evaluate the methods we propose, we have performed experimental tests on
randomly generated consistent CCTCSPs. The experiments are performed on a PC Pen-
tium 4 computer under Linux system. All the procedures are coded in C/C++. Consis-
tent CCTCSPs are generated from consistent TCSPs. A consistent TCSP of sizeN (N
is the number of variables) has at least one complete numeric solution (set ofN nu-
meric intervals satisfying all the constraints of the problem). Thus, to generate a consis-
tent TCSP we first randomly generate a numeric solution (set ofN numeric intervals),
extract the symbolic Allen primitives that are consistent with the numeric solution and
then randomly add other numeric and symbolic constraints to it. After generating a con-
sistent TCSP, some of the temporal events are randomly picked and grouped in subsets

to form composite variables. Each activity constraintVi
Vi=a→ Vj is generated by ran-

domly choosing a pair of variables (Vi , Vj) and a valuea from the domain ofVi. This
activity constraint activates the variableVj if Vi is activated and is assigned the value
a. The generated TCSPs are characterized by their tightness, which can be measured,
as shown in [31], as the fraction of all possible pairs of values from the domain of two
variables that are not allowed by the constraint. The tests we have performed compare
the following four propagation strategies.

Forward Check (FC). This is the strategy we have described in Section 3 which con-
sists basically of maintaining the arc consistency, during the search, between the
current variable (the variable that we are assigning a value) and the future active
variables (variables not yet assigned) sharing a constraint with the current variable.

Full Look Ahead (FLA). This strategy maintains a full arc consistency on the current
and future active variables.

FC+. Same as FC except that the applicability of the arc consistency is extended to non
active variables as well.

FLA+. Same as FLA except that the applicability of the arc consistency is extended to
non active variables as well.

Figure 3 and table 2 present the results of comparative tests performed on random
CCTCSPs where the total number of variables is 150 including 10 composite variables.

74 Mouhoub and Sukpan

The domain sizes of composite variables and events (including those belonging to the
composite variables domains) are respectively 5 and 30. The number of activity con-
straints is 500. In each test, the methods are executed on 100 instances and the average
running time (in seconds) is taken. The left chart of figure 3 presents comparative re-
sults of the four constraint propagation strategies when the number of initial variables
varies from 30 until 100. The tightness is equal here to 0.06 which corresponds to the
hardest problems. The right chart of figure 3 presents the comparison of the four strate-
gies when the tightness of the TCSPs, from which the CCTCSPs are generated, varies
from 0.1 to 0.7. The number of initial variables is equal to 80. As we can easily see
FC and FC+ outperform FLA and FLA+ in all cases in the left chart and in most of
the cases in the right chart. However, in the right chart, the strategy of choice in the
phase transition is FLA+ since it is the only strategy which returns a complete solution
in these situations. In both charts FC and FC+ have similar running times. Table 2 com-
pares the four constraint propagation strategies and the MCRW method we described
in Section 4, when the percentage of constraints varies from 0.1 (10%) until 1 (100%
which corresponds to a complete constraint graph). Since MCRW is an approximation
method, we report in each case the number of times (in percent) this method succeded
to provide a complete solution. As we can easily see, MCRW is the fastest method for
under constrained problems (where the percentage of constraints is between 0.1 and
0.3) while some propagation strategies (FC and FLA) fail sometimes to to find a solu-
tion. For middle and over constrained problems, MCRW does not always guarantee a
complete solution when the percentage of constraints is between 0.4 and 0.5 and fails in
all the cases when the percentage is between 0.6 and 0.9. FC, FC+ and FLA also have
difficulty to find a solution in the case of middle constrained problems and the method
of choice in this case is FLA+. In the case of over constrained problems (0.8 to 1) FC+
is the fastest complete methods while MCRW has better running time but succeds only
in 30% of the cases for complete graphs.

% of MCRW FC FC+ FLA FLA+
ConsTime success(%)
0.1 0.1 100 10 11 173 173
0.2 0.1 100 10 10 174 173
0.3 0.1 100 - 11 - 193
0.4 8.7 70 - - - 209
0.5 14.8 70 - 19 - 987
0.6 18.3 0 12 12 200 209
0.7 18.5 0 - - 201 187
0.8 16.9 0 - 16 - 220
0.9 17.9 0 16 16 198 194
1 14.9 30 22 22 217 204

Table 2.Comparative tests on random CCTCSPs.

Constraint Propagation versus Local Search for Temporal Constraints 75

Fig. 3.Comparative tests on random CCTCSPs.

76 Mouhoub and Sukpan

6 Conclusion

We have presented in this paper a CSP based framework for representing and man-
aging numeric and symbolic temporal constraints, activity constraints and composite
variables with a unique constraint network that we call Conditional Composite Tempo-
ral Constraint Satisfaction Problem (CCTCSP). Solving a CCTCSP consists of finding
a solution for one of its possible TCSPS. This requires an algorithm withO(DNdM)
time cost whereN,D,M andd are respectively the number of events and their domain
size, the number of composite variables and their domain size. In order to overcome
this difficulty in practice, we have proposed 2 methods respectively based on constraint
propagation and stochastic local search. Constraint propagation prevents earlier later
failure which improves, in practice, the performance in time of the backtrack search. On
the other hand, because of its polynomial time cost, the stochastic local search method
has better time performance than constraint propagation but does not always guaran-
tee a complete solution. Experimental tests we have performed on randomly generated
CCTCSPs demonstrates the efficiency of MCRW method for under constrained prob-
lems while variants of the full look ahead and the forward check strategies are the
methods of choice respectively for middle constrained and over constrained problems.
For these kinds of problems MCRW can be used in case we want to trade search time
for the quality of the solution returned (number of solved constraints).

References

1. Baptiste, P., Pape, C.L.: Disjunctive constraints for manufacturing scheduling : Principles
and extensions. In: Third International Conference on Computer Integrated Manufacturing,
Singapore (1995)

2. Ghallab, M., Laruelle, H.: Representation and Control in IxTeT, a Temporal Planner. In:
AIPS 1994. (1994) 61–67

3. Laborie, P., Ghallab, M.: Planning with Sharable Resource Constraints. In: IJCAI-95. (1995)
1643–1649

4. Laborie, P.: Resource Temporal Networks: Definition and Complexity. In: Eighteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI’03). (2003) 948–953

5. Song, F., Cohen, R.: Tense interpretation in the context of narrative. In: AAAI’91. (1991)
131–136

6. Hwang, C., Shubert, L.: Interpreting tense, aspect, and time adverbials: a compositional,
unified approach. In: Proceedings of the first International Conference on Temporal Logic,
LNAI, vol 827, Berlin (1994) 237–264

7. Golumbic, C., Shamir, R.: Complexity and algorithms for reasoning about time: a graphic-
theoretic approach. Journal of the Association for Computing Machinery40(5)(1993) 1108–
1133

8. Dean, T.: Using Temporal Hierarchies to Efficiently Maintain Large Temporal Databases.
JACM (1989) 686–709

9. Allen, J.: Maintaining knowledge about temporal intervals. CACM26 (1983) 832–843
10. Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In:

AAAI’86, Philadelphia, PA (1986) 377–382
11. Dechter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Artificial Intelligence49

(1991) 61–95

Constraint Propagation versus Local Search for Temporal Constraints 77

12. van Beek, P.: Reasoning about qualitative temporal information. Artificial Intelligence58
(1992) 297–326

13. Montanari, U.: Fundamental properties and applications to picture processing. Information
Sciences7 (1974) 95–132

14. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence8 (1977)
99–118

15. Haralick, R., Elliott, G.: Increasing tree search efficiency for Constraint Satisfaction Prob-
lems. Artificial Intelligence14 (1980) 263–313

16. Kautz, H., Ladkin, P.: Integrating metric and qualitative temporal reasoning. In: AAAI’91,
Anaheim, CA (1991) 241–246

17. Meiri, I.: Combining qualitative and quantitative constraints in temporal reasoning. Artificial
Intelligence87 (1996) 343–385

18. Thornton, J., Beaumont, M., Sattar, A., Maher, M.: A Local Search Approach to Modelling
and Solving Interval Algebra Problems. Journal of Logic and Computation14(2004) 93–112

19. Mouhoub, M., Charpillet, F., Haton, J.: Experimental Analysis of Numeric and Symbolic
Constraint Satisfaction Techniques for Temporal Reasoning. Constraints: An International
Journal2 (1998) 151–164, Kluwer Academic Publishers

20. Mouhoub, M.: Reasoning with numeric and symbolic time information. Artificial Intelli-
gence Review21 (2004) 25–56

21. Selman, B., Kautz, H.: Domain-independent extensions to gsat: Solving large structured
satisfiability problems. In: IJCAI-93. (1993) 290–295

22. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Proceedings
of the 8th National Conference on Artificial Intelligence, Boston, MA, AAAI Press (1990)
25–32

23. Sabin, D., Freuder, E.C.: Configuration as composite constraint satisfaction. In Luger, G.F.,
ed.: Proceedings of the (1st) Artificial Intelligence and Manufacturing Research Planning
Workshop, AAAI Press (1996) 153–161

24. Sabin, M., Freuder, E.C., Wallace, R.J.: Greater efficiency for conditional constraint sat-
isfaction. Proc., Ninth International Conference on Principles and Practice of, Constraint
Programming - CP 20032833(2003) 649–663

25. Gelle, E., Faltings, B.: Solving mixed and conditional constraint satisfaction problems. Con-
straints8 (2003) 107–141

26. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In: 7th Na-
tional Conference on Artificial Intelligence, St Paul (1988) 37–42

27. J́onsson, A.K., Frank, J.: A framework for dynamic constraint reasoning using procedural
constraints. In: ECAI 2000. (2000) 93–97

28. Frank, J., J́onsson, A.K.: Constraint-based attribute and interval planning. Constraints8
(2003) 339–364

29. Tsamardinos, I., Vidal, T., Pollack, M.E.: CTP: A New Constraint-Based Formalism for
Conditional Temporal Planning. Constraints8 (2003) 365–388

30. Gelle, E.: On the generation of locally consistent solution spaces in mixed dynamic con-
straint problems. Ph.D.thesis1826(1998) 101–140

31. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In:
Proc. 11th ECAI, Amsterdam, Holland (1994) 125–129

78

Heuristic Policy Analysis and Efficiency Assessment in
Constraint Satisfaction Search?

Richard J. Wallace

Cork Constraint Computation Centre and Department of Computer Science
University College Cork, Cork, Ireland

r.wallace@4c.ucc.ie

Abstract. This paper argues that assessments of search effort made within a new
framework for characterizing heuristic performance based on adherence to opti-
mal policies can elucidate many differences in search effort that occur from us-
ing different variable ordering heuristics. After providing a brief overview of this
framework and discussing the manner in which adherence to a policy can be mea-
sured, the paper presents results from a series of experiments to show that many
complex patterns of performance can indeed be explained by assessments based
on such measures of adherence. In particular, differences found for different cat-
egories of heuristics and differences in heuristic performance related to amount
of propagation (specifically, MAC versus forward checking) can be elucidated by
this approach to performance assessment.

1 Introduction

In order to study algorithms and their implementation, we need to have methods of as-
sessment. And to use methods of assessment properly, we need to understand something
of the basic mechanics of algorithmic strategies. For CSP search, the proper approach
to assessment is not always obvious. For example, while the concept of a search tree is
a familiar one, the means of assessing search by taking measures that reflect the size of
the search tree is subject to pitfalls. Recent work has shown this for the common mea-
sure of backtracks, which is not necessarily monotonic in the size of the search tree.
This work also shows that there are potential problems even for the straightforward
measure of total search nodes [1].

It has long been known that variable and value selection have enormous effects on
the efficiency of search, which makes them an important part of any search algorithm
implementation. However, the basis for these differences is still something of a terra
incognita. Moreover, as shown earlier [2] and in the work below, heuristics can interact
very strongly with other features of an algorithm such as the degree of constraint prop-
agation (as well as with features of the problem, which is perhaps better recognized).
The proper means of assessing differences in heuristic performance is, therefore, also
important and is not straightforward.

One rule of good performance is often cited in this connection: the fail-first principle
(sometimes confused with the min domain heuristic - more on this below). But as it is
? This work was supported by Science Foundation Ireland under Grant 00/PI.1/C075.

80 Richard J. Wallace

usually stated, this principle is a vaguely formulated goal whose rationale is not entirely
clear. Also, because of the work of Haralick and Elliott [3], this principle leads to an
emphasis on minimum domain size; the difficulties that this leads to (see below) indicate
the limitations of assessments based on this principle alone.

Recently, a new framework was proposed for characterizing heuristic performance.
The basic idea is to describe performance in terms of the choices that a heuristic would
make if it were in some sense ‘perfect’, so that it could always make the best choice
under the circumstances. (How “best” is defined is described below.) The novelty of
this approach lies in the fact that such optimal policies cannot be determined as such
in the sense of specifying courses of action. In fact, since there is not a single policy
that is in force at all times during search (see next section), it cannot even be decided
which policy a heuristic should adhere to at a given point in search, even if it were
able to do so. Despite this degree of abstraction, a policy framework of this character
is of potential value if we can measure how well a heuristic adheres to a given policy
during search. This gives us a way of characterizing heuristic performance in terms of
basic measures of search quality, rather than simply reporting on overall performance.
Previous work has shown how to measure such adherence [4] [5] [6].

The purpose of the present paper is to elaborate on the relations between the policy
framework and assessment of search effort. This, in turn, should improve our ability to
measureand comprehenddifferences in search effort due to different heuristics. This
means that the present paper will be focus on measurement of heuristic performance;
although this is not the only area of interest in the area of assessment, it is a subtopic
clearly worthy of investigation in its own right.

The next section gives a brief overview of the policy framework. Section 3 dis-
cusses performance measures that measure the extent to which a heuristic adheres to a
given policy. Section 4 presents the results of experiments which evaluate differences
in heuristics and algorithms in terms of measures related to search policies. Section 5
gives conclusions.

2 The Policy Framework

The present work is informed by a recently developed framework for characterizing the
performance of search heuristics. This framework has two primary elements. Apolicy
identifies goals or end-results that are desirable. Aheuristicis a rule that is followed to
make a decision.

For search problems, there is an overall policy of minimizing search effort in terms
of the number of decisions that must be made. In this context, two subordinate policies
can be distinguished depending on the state of search. When search is in a state that has
solutions in its subtree, search effort will be minimized by making decisions to remain
on a path to a solution. As this suggests making decisions to move to the most promising
subtree, we call this thepromise policy. However, for hard problems the best choice will
not be made in all cases and search may enter a state where the subtree below it does
not contain any solutions. In this case, to minimize effort search should fail as quickly
as possible so it can return to a path that leads to a solution. We call this thefail-first
policy.

Heuristic Policy Analysis and Efficiency Assessment 81

Heuristics are based on features of the situation that serve to distinguish choices,
so that a selection in these terms increases the likelihood of achieving a goal. In CSP
search, these are the variable and value ordering “rules” that exist in the constraint
literature (e.g.smallest domain first, Brelaz [7], domdeg [8]). The rationale usually given
for variable ordering heuristics is related to the fail-first policy in some form, while that
for value ordering is related to promise. However, recent work, which has shown how
to assess variable ordering heuristics in terms of promise, indicates that this policy must
also be taken into account in any complete evaluation of these heuristics [4] [9].

To understand the relation between policies and heuristics, notice that our two poli-
cies are based on a partition of the search nodes into those that have solutions in their
subtree (“good” nodes) and those which do not (“bad” nodes). If the partition of a node
is known, the policy which leads to minimal search effort is given. Achieving that goal
usually does involve heuristics for two reasons. First, we do not typically know which
policy to adhere to because we do not know if the current node is good or bad. Second,
even knowing a policy, we do not knowhowto adhere to it.

The contribution of heuristic decisions to performance should depend on how well
the heuristic conforms to either subordinate policy. Our initial expectation was that
adherence to the promise policy will make a difference to search for problems with
many solutions. As problems become more difficult, the proportion of time exploring
bad subtrees becomes greater, so that the fail-first policy is more often in force and
fidelity to that policy should be more important [4]. Note that if problems have no
solutions, the only policy relevant to search effort is fail-first.

One of the benefits of the policy framework is that it allows us to characterize the
well-known “Fail-First Principle” [3] more precisely than before. In its colloquial form,
this principle says that “To succeed, try first where you are most likely to fail.” We can
restate the principle as saying that search should always proceed as if the fail-first policy
were in force. In this case, the best heuristic is one that best conforms to this policy. In
this form, the Principle can be seen as a kind of meta-heuristic for selecting a policy
under conditions of ignorance, where one does not know what the appropriate policy
actually is.

3 Policies and Performance Measures

We are interested in how the policy framework is related to overall performance, and
to what degree the former serves to illuminate the latter. Since the policy framework is
related to decisions made during search, we use number of search nodes as the basic
performance measure, where each node is a partial instantiation of the variables. Thus,
every time an assignment is extended by assigning a value to another variable (vari-
ablek+1), and every time the current variable (k) is given a different assignment, we
consider that an additional search node has been generated.

Earlier work has shown how to measure the adherence of a variable ordering heuris-
tic to the different policies. For the promise policy, we define such a measure as the
mean likelihood of choosing a value that will lead to a solution across all paths in the
(all-solutions) search tree [4] [5]. In the present work, values for this measure were ob-
tained by carrying out an exhaustive search while collecting sums of products that are

82 Richard J. Wallace

returned at successively higher levels of the search tree. Summing is done across the val-
ues at a given level of search, and products are taken along search paths. This method is
an improvement over earlier Monte Carlo methods of estimating this measure used in
[4] [5], since it is accurate up to the degree of precision in the underlying calculations
and can be used for much more difficult problems than the earlier procedure.

To clarify the process, consider the following example from [4]. For this problem,
the search tree for simple backtracking (no filtering), using lexical variable ordering is:

�
�
@
@a b

��@@a× b c×
��@@a× b× c×

����
HH

a×b c
��a× b× c @@a× b c

To calculate promise, we consider the probability of choosing each viable value from a
domain, when any value is equally likely to be chosen:

��@@1
2

1
2

��1
3

0

��1
3

1
3

@@1
3
��1

3
@@1

3

Based on these values, we calculate sums and products as indicated below:

1
6

��@@1
2 ∗ 0 1

2 ∗
1
3+

��1
3 ∗ 0

0

��1
3 ∗

1
3 +

1
3

@@1
3 ∗

2
3

��1
3 +
@@1

3

So the overall promise for this problem and this consistency algorithm is1
6 . The same

calculations can, of course, be done in combination with any filtering strategy.
If search is for a single solution, the number of mistakes, i.e. assignments leading off

a solution path and thus rooting insoluble subtrees, is also useful. In the all-solutions
case, this measure correlates well with the basic promise measure, while in the one-
solution case, it may capture certain peculiarities of heuristic search better than the
basic measure (see below).

For the fail-first policy, an adequate measure must be based on the average size of
the insoluble subtree associated with an assignment thatdoes notlead to a solution, i.e.
the average size of insoluble subtrees rooted at the first bad assignment. This is because
an adequate measure must take into account the branching factor as well as the rapidity
of failure. (The latter is the different between the level of search at which a mistake was
made and the level at which search fails.)

Heuristic Policy Analysis and Efficiency Assessment 83

This we call a “mistake tree” to distinguish it from insoluble trees in the ordinary
sense [6]. By specifying the root as the first ‘bad’ assignment, we produce an intensity
measure, and we are able to compare heuristics across soluble and insoluble problems
with respect to the intensity of fail-firstness. We can also normalize the fail-firstness
measure by taking the reciprocal of the mean mistake-tree size. This gives us a scale
from 0 to 1, where increasing scale values correspond to increasing fail-firstness, and a
score of 1 indicates optimal fail-firstness because in this case failure must have occurred
at the level of the original mistake.

Note that in comparing soluble and insoluble problems, a more precise analysis
involves comparing mistake trees for insoluble problems with mistakes trees for soluble
problems that are rooted at level 1 of the search tree. For soluble problems with different
parameters, for similar reasons, it is useful to consider mistake tree profiles, i.e. mean
tree size at different levels of the search tree.

Other candidate measures of fail-firstness such as average depth of failure and num-
ber of failures are affected by promise as well as fail-firstness and for this reason are
not adequate. Fail-length, which is the difference in depth between the initial mistake
and an actual failure, avoids this problem, and is therefore a true intensity measure.
However, earlier tests have shown that it is essential to take the branching factor into
account in measuring fail-firstness as well as the rapidity of failure [6].

In a recent work, it was argued that the number of failures is a better measure than
search nodes [1]. “Failures” (here and in our own work) are the number of search nodes
associated with a domain wipeout so that the value must be retracted, leading to reas-
signment or backtracking. (Failed nodes are, therefore, a distinguished subset of the set
of search nodes.) The key criteria were monoticity and equivalence under conditions
where the authors felt that such properties were desirable. Although search nodes, as
well as failures, met the criterion of monotonicity, the former did not meet the criterion
of equivalence under certain conditions of branching (n-ary versus binary). However,
the number of failures does not correspond to our measure of fail-firstness, which takes
interior as well as leaf nodes into account. In addition, the conditions where search
nodes did not give an equivalent result are arguably different since a difference in search
nodes is a difference in number of decisions. So in the present work, we will continue
to use the more common measure. (As an aside, it may be remarked that the same work
[1] convincingly shows the inadequacy of backtracks as a measure of effort, since in
addition to being only a partial tally of decisions made during search, it also has some
disturbing non-monotonic properties.)

Number of failures may be a useful measure in the all-solutions case. Here, node
counts include subtrees where all values are part of a solution. In particular, given that
there are strategies for determining when search is in such a state, a measure that doesn’t
include such subtrees may be preferable to one that does.

4 Relating Adherence to Optimal Policies to Overall Search Effort

4.1 Experimental methods

Heuristics used in basic tests included well-known heuristics based on simple CSP pa-
rameters, heuristics chosen for their analytic properties with respect to features of search

84 Richard J. Wallace

(the FFx series [10] and the promise variable ordering heuristic [11]), and a few other
heuristics that have been used in a project on learning heuristics [12].

The initial analyses were based on a set of twelve heuristics (abbreviations in paren-
theses are those used in the following tables):

• Minimum domain size (dom). Choose a variable with the smallest current domain
size
• Minimum domain over static degree (d/dg). Choose a variable for which this quo-

tient is minimal.
• Minimum domain over forward degree (d/fd). Choose a variable for which this

quotient is minimal.
• Maximum forward degree (fd). Choose a variable with the largest number of neigh-

bors (adjacent nodes) in the set of uninstantiated variables.
• Maximum backward degree (bkd). Choose the variable with largest number of

neighbors in the set of instantiated variables.
• Maximum product of static degree and forward degree (dg*fd).
• Maximum (future) edgesum (edgsm). Choose an edge between future (uninstanti-

ated) variables for which the sum of the degrees of the two adjacent variables is
maximal, then choose the variable in this pair with the largest forward degree.
• FF2 (ff2) The variable,vi, chosen is the one that maximizes(1 − (1 − pm2)di)mi ,

wheremi is the current domain size ofvi, anddi is the future degree ofvi. The FF2
heuristic takes into account an estimate (based on the initial parameters of problem
generation) of the extent to which each value ofvi is likely to be consistent with
the future variables ofvi.
• This heuristic (ff3) FF3 builds on FF2 by using the current domain size of future

variables rather thanm. The variable,vi, chosen is the one that maximizes the
following expression, whereC is the set of all constraints in the problem,F is the
set of unassigned variables, andP = p2.

(1−
∏

(vi,vj)∈C,vj∈F

(1− Pmj))mi (1)

• FF4 (ff4) This heuristic modifies FF3 by using the current tightness,P = pij , of
the future constraints (the fraction of tuples from the cross-product of the current
domains that fail to satisfy the constraint) instead ofp2.
• Maximum promise (prom). Choose the variable with the largest summed promise

values across its domain. (Promise for a value is the product (
∏

) of the supporting
values taken across all domains of neighboring future variables. Geelen’s heuristic
chose the smallest sum, but this proved to be an anti-heuristic, at least when used
with lexical value ordering.)
• Static degree (stdeg). Order variables by descending degree in the constraint graph.
• Minimum kappa (kappa) This is the heuristic kappa of [13], which is designed

to branch in to the subproblem that minimizes kappa, by choosing the most con-
strained variable to branch on. Selection is guided by the kappa formula adjusted
to reflect the subproblem resulting from selection.
• Extended dynamic variable ordering based on d/fd (DVO1*) In the notation of [14],

H 1 DD x, a DVO extended to the immediate neighborhood of a variable and using

Heuristic Policy Analysis and Efficiency Assessment 85

the multiplication operator to combine terms from different variables (cf. formula
(5) of [14]). Specifically, for each future variablexi this heuristic calculates a sum
of products of its d/fd and the d/fd of every adjacent variable, divided by the square
of ‖fd‖ for xi.

All but static degree involve dynamic features of the problem. In all cases, ties were bro-
ken according to the lexical order of the variable labels. Values were chosen according
to their lexical order.

It should be emphasized again that the FFx series and the promise heuristic are
basically diagnostic tools used in earlier work and carried over to the present work for
comparison. In fact, in this work they are essentially ‘flawed oracles’; hence, the work
they do in making a selection is not included in the constraint checks

Tests in this paper were done with homogeneous random CSPs. Problems were
generated according to a probability-of-inclusion model for possible constraints, do-
main elements and constraint tuples (cf. [6]). In all cases graphs were fully connected.
Densities given are graph densities (not proportion of edges added to a spanning tree).
In the problem sets discussed in this paper, problems were in the critical region and all
problems had solutions. For the<30,8,0.31,0.34> problems, the average number of so-
lutions was 487. For the<50,10,0.18,0.37> problems, the average number of solutions
was 43,834.

The algorithm used in these experiments was MAC-3 coded in lisp. Tests were done
on a Unix server using Xlisp (although this is not of critical importance because the
results are in terms of search nodes). It may be noted in passing that constraint checks
showed a similar pattern of results across these heuristics.

4.2 Results

Tests with MAC. Table 1 shows statistics (means) for search effort for both the all-
solutions and the one-solution problems. Obviously, there are considerable differences
in efficiency with different search heuristics.

86 Richard J. Wallace

Table 1.Measures of Search Effort with MAC

heuristic all solutions one solution
nodes failures ccks(M) nodes failures ccks(M)

dom 229,817 74,783 34111334 5419 25.9
d/dg 85,224 7,580 332076 920 4.2
d/fd 174,161 6,334 271621 773 3.4
bkd 610,164 299,203 105427391 16808 64.1
ff2 145,736 12,793 573148 1398 6.5
ff3 284,451 13,913 522579 1383 5.5
ff4 375,732 8,779 351562 1004 3.9
fd 264,640 16,104 442625 2060 5.9
dg*fd 223,315 13,932 392418 1896 5.4
edgsm 264,367 15,907 442840 2228 6.3
prom 1,006,215 48,259 1217777 6189 15.1
stdeg 127,218 11,317 312000 1456 4.1
kappa 169,566 7,962 271576 1039 3.6
DVO1* 222,206 5,002 191142 648 2.6
Note.<50,10,0.18,0.37> problems. Means for 100 problems.

Table 2.Policy Measures (All Solutions)

heuristic promise ff mistakes bad tree sz faildepth
dom 0.00027 0.00118 407 845 12.4
d/dg 0.00060 0.00578 148 173 10.4
d/fd 0.00063 0.00694 136 144 9.4
bkd 0.00018 0.00085 637 1177 10.0
ff2 0.00057 0.00347 171 288 11.3
ff3 0.00048 0.00474 230 211 10.1
ff4 0.00058 0.00820 183 122 7.6
fd 0.00037 0.00719 231 139 5.5
dg*fd 0.00040 0.00752 220 133 5.6
edgsm 0.00037 0.00704 230 142 5.5
prom 0.00025 0.00299 293 334 6.2
stdeg 0.00040 0.00840 210 119 5.9
kappa 0.00059 0.00980 181 102 6.3
DVO1* 0.00069 0.01111 146 90 7.7
Notes.<50,10,0.18,0.37> problems. Measures are means
for 100 problems. ”ff” is reciprocal of bad tree sz.

Note that there are some important differences in the pattern of results for the one-
and all-solutions cases, when search nodes are considered. In contrast, the data for fail-
ures are more similar (although even with this measure differences between heuristics
are not always in the same direction).

Some of these data show that there are, indeed, difficulties with the search-nodes
measure in the all-solutions case. This is especially true of the promise heuristic; note
the large discrepancy between nodes and failures. This occurred because this heuristic

Heuristic Policy Analysis and Efficiency Assessment 87

tends to choose variables with relatively large domains, so that when a subtree is entered
in which most or all values are viable, the subtree is explored in an inefficient manner.

Tables 2 and 3 show policy-related measures, for all-solutions and one-solution
search, respectively. As already noted, “promise” is the basic promise measure, and
“mistakes” is also related to adherence to this policy, which is especially useful in the
one-solution case. “bad tree size” (mistake-tree size), “faildepth”, “mistake depth” and
“fail length” are all fail-first measures.

These results indicate that poor performance tends to be associated with low values
of the promise measureandwith larger mistake trees. In other words, weak heuristics
are less successful in adhering to either policy than stronger heuristics. However, there
are also many interesting tradeoffs in these performance measures.

In particular, there are no consistent across-the-board differences between good
and bad heuristics. For example, consider the differences among (min) domain/static-
degree, (min) domain/forward-degree and (max) forward degree. For nodes and failures
in the one-solution case and for failures in the all-solutions case, the ordering (good>
bad) is d/fd> d/d> fd. For the difference between d/d and d/fd, the data in Tables 2
and 3 show that they are very similar with respect to promise, but that d/fd generates
smaller mistake trees. On the other hand, fd has a lower degree of promise, while gen-
erating mistake trees that are similar in size to those generated by d/fd. To take another
comparison, ff2 is inferior to the domain/degree heuristics although it has an equally
high promise value; this is because its mistake trees are on average much larger. As a
final example, in the one-solution case stdeg has relatively poor promise in compari-
son with contention heuristics, but it has very strong fail-firstness (reflected in its small
mistake-trees); consequently, it is one of the better-performing heuristics (Table 1).

Table 3.Search & Policy Measures (One Solution)

heuristic|dom| fwdeg mistakes bad tree sz mistakedepth faillength
dom 1.87 7.2 9.4 1077 6.5 9.4
d/dg 1.78 7.3 8.4 211 6.0 7.5
d/fd 1.89 7.9 8.6 162 5.5 6.6
bkd 2.57 7.7 11.9 2046 5.6 7.3
ff2 1.77 7.3 8.0 334 6.0 8.1
ff3 2.07 7.8 9.6 233 5.7 6.9
ff4 2.57 8.1 10.0 140 4.6 4.7
fd 4.13 9.7 14.3 171 3.5 3.4
dg*fd 3.90 9.6 13.9 165 3.6 3.5
edgsm 4.27 10.4 14.7 179 3.5 3.4
prom 4.56 9.7 16.6 447 3.7 4.1
stdeg 4.45 9.8 13.4 142 3.8 3.7
kappa 2.77 9.1 11.9 125 3.9 4.1
DVO1* 2.24 8.5 9.5 111 4.8 5.2
Notes.<50,10,0.18,0.37>. Means for 100 problems.|dom| is average domain size
of the variable chosen for instantiation (hence, it is the average branching factor.
“fwdeg” is mean forward degree of the next variable chosen.

Another interesting finding is that the simple min domain heuristic has a rather poor
fail-firstness overall. This is undoubtedly because it chooses ‘blindly’ at the top of the

88 Richard J. Wallace

search tree, since the original domain sizes are all equal, and the initial arc consistency
filtering does not remove many values. But it does seem to show that assessments based
on the policy framework (i.e. on how well a heuristic adheres to a given policy) give a
picture that is at variance with the one based on the original analysis of likelihood of
failure [3]. (In the same vein, the max promise heuristic does not actually score very
well on the measure of promise; this must be because its branching factor tends to be
quite large [Table 3].)

In Table 1 and several other tables, heuristics are grouped. (Groups are separated
by horizontal lines in the table). The first two groupings represent two basic categories
of heuristics recently identified by factor analysis [2]. The category that includes min
domain has been tentatively labeled as “contention heuristics”, while the category that
includes max forward degree has been labeled as “propagation heuristics”. This clas-
sification appears to reflect two independent heuristic actions, and most heuristics can
be characterized as favouring one or the other action (although, of course, both involve
both in differing degree) and the fact that problems differ in their response to them. The
third grouping in the table simply serves to separate more recently proposed heuristics
that use more elaborate means to select variables. These heuristics still fall into the just-
mentioned categorisation: kappa is basically a propagation heuristic, while DVO1* is a
contention heuristic with a seemingly better balance between the two kinds of heuristic
action [2].

Tables 2 and 3 show that there are some striking patterns of differences in certain of
the measures when the basic groups of heuristics are compared, which begins to eluci-
date the basis for differences in overall performance. Propagation heuristics tend to fail
higher in the search tree than contention heuristics (Table 2); this is because mistakes
occur at a higher levelandfailures occurs sooner once a mistake has been made (Table
3). There are also many more mistakes prior to finding a solution (Table 3). These dif-
ferences can be ascribed to certain features of search, in particular, the larger branching
factor for propagation heuristics (Table 3). Obviously, other things being equal, select-
ing variables with larger domains will result in more errors, i.e. diminished adherence
to the promise policy. Together, these results give further evidence that assessments
made within the policy framework help to elucidate the bases for differences in overall
performance.

Tests comparing MAC and forward checking. Table 4 shows some statistics for the
all-solutions case for both MAC and forward checking. Smaller problems were used in
this case because of the markedly greater difficulty when forward checking was com-
bined with heuristics in the propagation class (see later tables). The Table 4 data show
that the expected increase in nodes searched with forward checking is based on differ-
ences in promise (reflected in an order-of-magnitude change in the measure of promise)
as well as in fail-firstness.

In addition, other differences in performance are elucidated by the policy approach
to assessment. For example, in the all-solutions case d/fd does not perform as well
as d/d, and this is reflected in failures as well as total search nodes. In this case, fail-
firstness measures favor d/fd, but this heuristic shows a serious deficiency in the promise
measure, which must be the basis for the overall increase in search effort.

Heuristic Policy Analysis and Efficiency Assessment 89

Table 4.MAC vs. FC - Search Effort & Policy Measures (All Solutions)

heuristic nodes fails ccks(T) promise ff mistakes faildepth bad tree sz faillength
MAC

dom 2201 506 1,190 0.0068 0.03236 44 6.9 30.9 4.8
d/dg 1455 184 417 0.0086 0.06452 26 5.8 15.5 3.8
d/fd 2286 174 385 0.0092 0.07042 26 5.3 14.2 3.4

FC
dom 11,153 2345 231 0.00075 0.00486 96 12.5 205.7 10.1
d/dg 4,633 843 83 0.00082 0.01036 58 11.5 96.5 8.9
d/fd 5,299 1020 86 0.00027 0.01109 66 11.1 90.2 8.6
Notes.<30,8,0.31,0.34>. Means for 100 problems.

A comparison of the data in Tables 5 and 6 gives evidence of a marked difference
between MAC and forward checking when propagation heuristics are used, as already
noted. From Table 6, we can see that, although there is a degree of difference in the
promise measure (here, mistakes) that is related to this difference, the main effect is on
the fail-firstness measure. Differences among propagation heuristics are also based on
differences in fail-firstness,viz the difference between max static degree and the other
heuristics in this class.

Table 5.Search & Policy Measures with MAC (One Solution)

heuristic nodes|dom| fwdeg mistakes bad tree sz mistakedepth faillength
dom 262 1.88 6.4 6.3 33 3.9 4.4
d/dg 143 1.80 6.3 6.1 18 3.5 3.5
d/fd 130 1.85 6.5 6.2 15 3.2 3.1
bkd 481 2.43 6.8 8.2 52 3.3 3.4
ff2 163 1.80 6.4 6.1 21 3.5 3.8
ff3 154 1.95 6.5 6.3 18 3.2 3.3
ff4 122 2.16 6.3 6.5 14 2.8 2.4
fd 163 2.92 7.0 8.3 16 2.3 1.8
dg*fd 151 2.78 6.9 8.0 15 2.3 1.9
edgsm 160 3.21 8.3 8.4 16 2.4 1.9
prom 232 3.11 7.2 9.3 21 2.6 2.2
stdeg 147 3.27 7.4 7.9 15 2.4 1.9
kappa 129 2.27 6.8 7.2 14 2.5 2.2
DVO1* 113 2.04 6.6 6.4 12 2.8 2.5
Notes.<30,8,0.31,0.34>. Means for 100 problems.

90 Richard J. Wallace

Table 6.Search & Policy Measures with FC (One Solution)

heuristic nodes|dom| fwdeg mistakes bad tree sz mistakedepth faillength
dom 2324 1.33 6.1 8.4 254 6.5 9.6
d/dg 1072 1.35 5.9 8.6 116 6.0 8.6
d/fd 1112 1.41 6.2 9.8 100 6.7 8.3
bkd 27,846 1.73 5.9 14.0 1716 7.4 9.8
ff2 1224 1.34 6.1 8.5 132 5.9 8.8
ff3 2653 2.23 6.6 15.8 158 8.9 7.9
ff4 1230 2.74 6.8 20.3 60 8.6 5.8
fd 50,154 2.86 6.9 23.0 2066 6.5 7.3
dg*fd 26,213 2.65 6.9 20.7 1265 6.5 7.1
edgsm 50,778 2.86 6.9 23.0 2103 6.5 7.3
prom
stdeg 13,699 3.05 7.2 17.6 749 6.6 7.3
kappa 3594 1.80 6.6 15.1 232 6.7 7.0
DVO1* 2212 1.87 6.4 14.5 146 7.6 8.1
Notes.<30,8,0.31,0.34>. Means for 100 problems. Difficulties with array overflows
prevented data for promise from being collected in time, although results appear to be
similar to other propagation heuristics.

5 Conclusions and Future Work

The present results seem to bear out the contention made earlier, that by using the
policy framework we can better assess heuristic performance. These results have also
made it clear that there are quite a number of interesting differences in performance
to elucidate. They also indicate that, in contradiction to our original expectations, it is
probably necessary to consider both policies for difficult as well as for easy problems.

In future work, we will want to test other recently devised heuristics (impact, weighted
degree). We also need to apply the approach to structured problems, where the be-
haviour of heuristics is sometimes quite different than with problems having unre-
stricted connectivity and patterns of relatedness within constraint relations. It may also
help to elucidate the sometimes troublesome interactions between symmetry-breaking
and variable ordering heuristics.

Eventually, of course, we need to move on to better statistical models of perfor-
mance. However, the present framework can serve as a guide for work in this direction.

Acknowledgements. The present method for calculating the promise measure is due
to J. C. Beck.

References

1. Bessìere, C., Zanuttini, B., Ferńandez, C.: Measuring search trees. In: ECAI 2004 Workshop
on Modelling and Solving Problems with Constraints. (2004) 31–40

Heuristic Policy Analysis and Efficiency Assessment 91

2. Wallace, R.J.: Factor analytic studies of csp heuristics. In: Principles and Practice of Con-
straint Programming-CP’05. (2005) to appear

3. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence14 (1980) 263–314

4. Beck, J.C., Prosser, P., Wallace, R.J.: Toward understanding variable ordering heuristics
for constraint satisfaction problems. In: Proc. Fourteenth Irish Artificial Intelligence and
Cognitive Science Conference-AICS’03. (2003) 11–16

5. Beck, J.C., Prosser, P., Wallace, R.J.: Variable ordering heuristics show promise. In: Princi-
ples and Practice of Constraint Programming-CP’04. LNCS No. 3258. (2004) 711–715

6. Beck, J.C., Prosser, P., Wallace, R.J.: Trying again to fail-first. In: Recent Advances in
Constraints. Papers from the 2004 ERCIM/CologNet Workshop-CSCLP 2004. LNAI No.
3419, Berlin, Springer (2005) 41–55

7. Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM22
(1979) 251–256

8. Bessìere, C., Regin, J.C.: MAC and combined heuristics: Two reasons to forsake FC (and
CBJ?) on hard problems. Principles and Practice of Constraint Programming-CP’96 (1996)
61–75

9. Beck, J.C., Prosser, P., Wallace, R.J.: Failing first: An update. In: Proc. Sixteenth European
Conference on Artificial Intelligence-ECAI’04. (2004) 959–960

10. Smith, B.M., Grant, S.A.: Trying harder to fail first. In: Proc. Thirteenth European Confer-
ence on Artificial Intelligence-ECAI’98, John Wiley & Sons (1998) 249–253

11. Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems. In: Proc.
Tenth European Conference on Artificial Intelligence-ECAI’92. (1992) 31–35

12. Epstein, S.L., Freuder, E.C., Wallace, R., Morozov, A., Samuels, B.: The adaptive constraint
engine. In van Hentenryck, P., ed.: Principles and Practice of Constraint Programming -
CP2002. LNCS. No. 2470, Berlin, Springer (2002) 525–540

13. Gent, I., MacIntyre, E., Prosser, P., Smith, B., Walsh, T.: An empirical study of dynamic vari-
able ordering heuristics for the constraint satisfaction problem. In: Principles and Practice of
Constraint Programming-CP’96. LNCS No. 1118. (1996) 179–193

14. Bessìere, C., Chmeiss, A., Saı̈s, L.: Neighborhood-based variable ordering heuristics for
the constraint satisfaction problem. In: Principles and Practice of Constraint Programming-
CP’01. LNCS No. 2239. (2001) 565–569

92

Declarative Approximate Graph Matching Using
A Constraint Approach ?

Stéphane Zampelli, Yves Deville, and Pierre Dupont

Université Catholique de Louvain,
Department of Computing Science and Engineering,

2, Place Sainte-Barbe
1348 Louvain-la-Neuve (Belgium)

\{sz,yde,pdupont\}@info.ucl.ac.be

Abstract. Graph pattern matching is a central application in many
fields. However, in many cases, the structure of the pattern can only be
approximated and exact matching is then far too accurate. This work
aims at proposing a CSP approach for approximate subgraph match-
ing where the potential approximation is declaratively included in the
pattern graph as optional nodes and forbidden edges. The model, cov-
ering both monomorphism and isomorphism problem, also allows addi-
tional properties, such as distance properties, between pairs of nodes in
the pattern graph. Such properties can be either stated by the user, or
automatically inferred by the system. The model is built through the
definition of parametric morphism constraints, allowing an efficient im-
plementation of propagators. An Oz/Mozart implementation has been
developped. Experimental results show that our general framework is
competitive with a specialized C++ Ullman (exact) matching algorithm,
while also offering approximate matching.

1 Introduction

Graph pattern matching is a central application in many fields [1]. Many different
types of algorithms have been proposed, ranging from general methods to specific
algorithms for particular types of graphs. In constraint programming, several
authors [2, 3] have shown that graph matching can be formulated as a CSP
problem, and argued that constraint programming could be a powerful tool to
handle its combinatorial complexity. However, many issues should be considered
such as the evaluation of the performance of a CSP approach against traditional
algorithms, the development of new global constraints enhancing the pruning,
the extension of exact matching to approximate matching.

In many areas, the structure of the pattern can only be approximated and
exact matching is then far too accurate. Approximate matching is a possible
solution, and can be handled in several ways. In a first approach, the matching
? Acknowledgments: This research is supported by the Walloon Region, project

BioMaze (WIST 315432). Thanks also to the EC/FP6 Evergrow project for their
computing support.

94 Zampelli et al.

algorithm may allow part of the pattern to mismatch the target graph (e.g.
[4–6]. The matching problem can then be stated in a probabilistic framework
(see, e.g. [7]). In a second approach, the approximations are declared by the user
within the pattern, stating which part could be discarded (see, e.g. [8]). This
approach is especially useful in fields, such as bioinformatics, where one faces
a mixture of precise and imprecise knowledge of the pattern structures. In this
approach, which will be followed in this paper, the user is able to choose parts
of the pattern open to approximation.

Within the CSP framework, a model for graph monomorphism has been pro-
posed by Rudolf [3] and Valiente et al. [2]. Our modeling is based on these works.
Sorlin [9] proposed a filtering algorithm based on paths for graph isomorphism
and part of our approach can be seen as a generalization of this filtering. A
declarative view of matching has also been proposed in [10].

Objectives This work aims at proposing a CSP approach for approximate
subgraph matching where the potential approximation is declaratively included
in the pattern graph as mandatory/optional nodes/edges. We also want a frame-
work where additional properties between pairs of nodes in the pattern graph,
such as distance properties, can be either stated by the user, or automatically
inferred by the system. In the former case, such properties can define new ap-
proximate patterns. In the latter case, these redundant constraints enhance the
pruning.

Results The main contributions of this paper are the following:

– An extension of the CSP model for pattern subgraph matching covering both
monomorphism and isomorphism problems, and allowing the specification
of additional constraints between pairs of nodes, as well as the derivation of
redundant constraints providing more pruning.

– A definition of approximate subgraph matching, including the specification
of optional nodes and forbidden edges in the pattern graph, and its associated
CSP model.

– A definition of parametric morphism constraints, allowing a simple expres-
sion of the above problems.

– An implementation of propagators for the generic constraints.
– Experimentations showing that our general framework is competitive with

a specialized C++ Ullman (exact) matching algorithm, while also offering
approximate matching.

Outline Sections 2 and 3 introduce basic definitions of subgraph matching
and describe the basic framework for monomorphism. Section 4 generalizes the
basic monomorphism constraints to parametric constraints in the exact case.
Instances of these parametric constraints, such as isomorphism constraints and
path constraints, are described in Section 5. Section 6 introduces the approx-
imate matching problem and describes how this problem can be solved by an
approximate version of the parametric constraints. Section 7 presents a compar-
ison of our CSP approach with Ullman based graph matching algorithm and
shows that the proposed approach is competitive. Section 8 concludes this paper
and presents research directions.

Approximate Constrained Subgraph Matching 95

2 Background

Before presenting the basic CSP for exact and approximate subgraph matching,
we define the notion of subgraph matching.

A graph G = (N,E) consists of a node set N and an edge set E ⊆ N×N ,
where an edge (u, v) is a pair of nodes. The nodes u and v are the endpoints of
the edge (u, v).

The neighborhood function V (a) is the set of neighbors of a node a in
the underlying graph.

A subgraph of a graph G = (N,E) is a graph S = (N ′, E′) where N ′ is a
subset of N and E′ is a subset of E.

A subgraph isomorphism between a pattern graph Gp = (Np, Ep) and
a target graph Gt = (Nt, Et) is an injective function f : Np → Nt respecting
(u, v) ∈ Ep ⇔ (f(u), f(v)) ∈ Et.

A subgraph monomorphism between Gp and Gt is an injective function
f : Np → Nt respecting (u, v) ∈ Ep ⇒ (f(u), f(v)) ∈ Et.

A subgraph matching is either a subgraph isomorphism or a subgraph
monomorphism.

A constraint model to solve the exact subgraph matching problem has been
proposed by several authors [2] [3]. This model focuses on monomorphism and
will form our basic monomorphism constraints. The variables X = {x1, ..., xn}
are the nodes of the pattern graph and their respective domain D(xi) is the
set of target nodes. The assignment must respect two conditions: all variables
have a different value and the structure of the pattern must be kept (monomor-
phism condition). The first condition is implemented with the classical Alld-
iff (x1, ..., xn) constraint [11] [12]. The second condition is translated into a
monomorphism constraint.

2.1 Monomorphism Constraint

The monomorphism constraint states that if an edge exists between two pattern
nodes, then an edge must exist between their corresponding images :

∀ (i, j) ∈ Ep : (f(i), f(j)) ∈ Et .

The corresponding basic monomorphism constraint is defined as :

MC(xi, xj) ≡ (i, j) ∈ Ep ⇒ (xi, xj) ∈ Et .

In the rest of the paper, N = |Np|, E = |Ep|, D = |Nt| and d is the av-
erage degree of the target graph. A classical AC-consistency algorithm would
cost O(ED2) amortized time [2]. By using the problem structure, its amortized
complexity can be reduced to O(NDd) [2]. We note n the average degree of the
pattern graph.

A global constraint MC(x1, ..., xn) can be formulated, instead of having one
constraint MC per node pair:

96 Zampelli et al.

MC(x1, ..., xn) =
∧
i,j

MC(xi, xj) .

The global basic monomorphism constraint MC(x1, ..., xn) can be expressed
as:

∀ i ∈ Np ∀ a ∈ Nt : |D(xi) ∩ Vt(a)| = 0⇒ a /∈ D(xj) ∀ j ∈ Vp(i) ,

where Vp(i) = {j ∈ Np | (i, j) ∈ Ep} and Vt(i) = {j ∈ Nt | (i, j) ∈ Et}.
The proposed propagator keeps track of relations between all the target nodes

and the domain D(xi) in a structure S(i, a) = |D(xi) ∩ Vt(a)| representing the
number of relations between a target node a and D(xi). Whenever the neighbors
of a target node a have no relation with D(xi), that is when S(i, a) = 0, node a
is pruned from all neighbors of xi. The Algorithm 2.1 shows an implementation
of the global morphism constraint. It has a O(NDd) amortized time complexity,
and the structure S(i, a) has O(ND) spatial complexity [2]. The preprocessing
to compute S(i, a) costs O(NDd). The global MC constraint is thus algorith-
mically global as it achieves the same consistency than the original conjunction
of constraints, but more efficiently.

Algorithm 1: Morphism Constraint
Propagate MC(i,a)
// Element a exits from D(xi)
for b ∈ Vt(a) do

S(i, b)← S(i, b)− 1
if S(i, b) = 0 then

foreach j ∈ Vp(i) do
D(xj)← D(xj) \ {b}

2.2 Local Alldiff Constraint

A redundant constraint pruning the search space has been proposed in [2]. This
constraint is a local Alldiff constraint [11], enforcing that the number of candi-
dates available in the union of the domains of xi’s neighbors should not be less
than the actual number of xi neighbors in the pattern graph:

LA(xi) ≡ | ∪j∈Vp(i) D(xj) ∩ Vt(xi)| ≥ |Vp(i)| . (2)

An algorithmic global constraint LA(x1, ..., xn) can be formulated, instead
of having one constraint LA per node :

LA(x1, ..., xn) ≡
∧
i

LA(xi) .

A structure CT (i, a) = | ∪j∈Vp(i) D(xj) ∩ Vt(a)| is updated through the use
of an intermediate structure R(i, a) = |{j ∈ Vp(i) | a ∈ D(xj)}|. The structure

Approximate Constrained Subgraph Matching 97

R(i, a) counts the number of neighbors of xi which have a in their domain.
Whenever R(i, a) equals 0, CT (i, b) diminishes by 1 for all b in the neighbor of a
in the target graph. The expression |Vp(i)| can be obtained in O(1). Algorithm
2 describes an implementation of the LA(x1, ..., xn) constraint.

The amortized complexity of this redundant constraint is O(NDd) and its
space complexity is O(ND). The preprocessing time to build the CT (i, a) and
R(i, a) structures is O(NDd).

Algorithm 2: Local alldiff constraint
Propagate LA(i,a)
// Element a exits from D(xi)
for j ∈ Vp(i) do

R(j, a)← R(j, a)− 1
if R(j, a) = 0 then

foreach b ∈ Vt(a) do
CT (j, b)← Ct(j, b)− 1
if CT (j, b) < |Vt(j)| then

D(xj)← D(xj) \ {b}

3 Generic Subgraph Matching Constraints

In this section we present new parameterized global constraints able to handle
different type of constraints. These constraints will be instantiated to different
matching constraints.

The MC constraint is redefined as a parametric constraint, taking pattern
pair node relations A and target pair node relations B as parameter :

MCp(x1, ..., xn, A,B) ≡
∧
i,j

(i, j) ∈ A⇒ (xi, xj) ∈ B .

The propagator of this parametric MC constraint is given by Algorithm 1,
where the neighborhood functions Vp(·) and Vt(·) are specialized to the consid-
ered instance of the constraint. More precisely, Vp(i, A) = {j ∈ Np | (i, j) ∈ A}
and Vt(a,B) = {b ∈ Np | (a, b) ∈ B} respectively. As a consequence, S(i, a) is
redefined as |D(xi) ∩ Vt(a,B)|.

The LA constraint can also be parameterized with the relations A and B :

LAp(xi, A,B) ≡ | ∪j∈Vp(j,A) D(xj) ∩ Vt(xi, B)| ≥ |Vp(i, A)|

LAp(x1, ..., xn, A,B) ≡
∧
i

LA(xi, A,B)

Algorithm 2, with suitable specific structures, is a possible implementation
for instances of this constraint.

The problem of subgraph monomorphism can then be expressed as :

alldiff(x1, ..., xn) ∧MCp(x1, ..., xn, Ep, Et) ∧ LAp(x1, ..., xn, Ep, Et)

98 Zampelli et al.

4 Specifying Additional Constraints

Additional constraints for the matching problem can be expressed as instances
of the parametric morphism constraint.

4.1 Isomorphism as Monomorphism Matching

Isomorphism condition states that if an edge does not exist between two pattern
nodes, then an edge should not exist between their corresponding images :

∀ (i, j) /∈ Ep : (f(i), f(j)) /∈ Et .

The problem of subgraph isomorphism can be stated easily by using comple-
mentary edge sets Ep = {(i, j) ∈ Np × Np | (i, j) /∈ Ep } and Et = {(i, j) ∈
Nt ×Nt | (i, j) /∈ Et } as parameters :

alldiff(x1, ..., xn) ∧ MCp(x1, ..., xn, Ep, Et) ∧ MCp(x1, ..., xn, Ep, Et)
∧ LAp(x1, ..., xn, Ep, Et) ∧ LAp(x1, ..., xn, Ep, Et)

4.2 Path and Shortest Path Distance Constraint

In this section we formulate a new constraint between pair of nodes based on
the path and shortest path distance. It can be seen as a generalization of other
works based on shortest path distance as filtering and checking methods [9] [13],
where only initial filtering and checking is achieved. In our method, the path
constraints does this initial filtering but also propagates.

Definition 1 A node a is at distance k from node b in a graph if and only if
there exists a shortest path of distance k between them. dist(a, b) denotes the
shortest path distance between a and b.

A shortest path monomorphism constraint (for a given distance k) can be
formulated as MCdist(x1, ..., xn, k) ≡

∧
i,j dist(i, j) = k ⇒ dist(xi, xj) ≤ k.

Similarly, a shortest path isomorphism constraint (for a given distance k) can
be formulated as MCdist(x1, ..., xn, k) ≡

∧
i,j dist(i, j) = k ⇒ dist(xi, xj) = k .

Suppose Ekp = {(i, j) ∈ Np × Np | dist(i, j) = k} and Ekt = {(a, b) ∈
Nt ×Nt | dist(a, b) ≤ k}. Then MCdist is equivalent to MCdist(x1, ..., xn, k) ≡
MC(x1, .., xn, E

k
p , E

k
t).

The expression path(i, j, k) denotes that there is a path of length k be-
tween i and j. The path constraint can be formulated as MCpath(x1, ..., xn) ≡∧
i,j path(i, j, k)⇒ path(xi, xj , k) .

Suppose Ekp = {(i, j) ∈ Np × Np | path(i, j, k)} and Ekt = {(a, b) ∈ Nt ×
Nt | path(a, b, k)}. We can see that MCpath is equivalent to MCpath(x1, ..., xn) ≡
MC(x1, .., xn, E

k
p , E

k
t).

The number of (Ekp , E
k
t) couples is bound by the diameter of the pattern

graph, which is, in the worst case, O(N). The time complexity of all these new

Approximate Constrained Subgraph Matching 99

constraints is thus O(N2Dd) and their spatial complexity O(N2D). Prepro-
cessing time to compute path and shortest-path distance adjacency matrices is
O(D3).

Shortest path constraints lead to poor pruning when k increases since the
average degree of the graphs Ekp and Ekt is O(dk). All path constraints are
however redundant, meaning they are necessary conditions of the matching.
Only a subset of these constraints can be chosen. One could select only path
of distance two and three, resulting in a O(ND3d) = O(NDd) time complexity
and a O(3ND) = O(ND) spatial complexity. One could use the path distance
only from one specific node to all the another nodes. We call this kind of node
an orbit. Each orbit will cost an additional O(NDd). One could select specific
path distance constraints between chosen nodes.

5 Approximate Subgraph Matching

5.1 Problem Definition

A useful extension of subgraph matching is approximate subgraph matching,
where the pattern graph and the found subgraph in the target graph may differ
with respect to their structure.

Optional nodes In our framework, the approximation is declared upon the
pattern graph. Some nodes are declared optional, i.e. nodes that may not be in
the matching. Specifying optional edges in a monomorphism problem is useless
as it is equivalent to omitting the edge in the pattern. The status of the edges
depends on the optional state of their endpoints. An edge having an optional
node as one of its endpoints is optional. An optional edge is not considered in
the matching if one of its endpoints is not part of the matching. Otherwise, the
edge must also be a part of the matching.

Forbidden edges Edges may also be declared as forbidden between their two
endpoints (u, v), meaning that if u and v are in the domain of f , then (u, v) must
not exist in the target graph. A pattern graph with all its complementary edges
declared as forbidden induces a subgraph isomorphism instead of a subgraph
monomorphism.

A pattern graph with optional nodes and forbidden edges forms an approxi-
mate pattern graph.

Definition 2 An approximate pattern graph is a tuple (Np, Op, Ep, Fp) where
(Np, Ep) is a graph, Op ⊆ NP is the set of optional nodes and Fp ⊆ Np ×Np is
the set of forbidden edges, with Ep ∩ Fp = ∅.

The corresponding matching is called an approximate subgraph matching.

Definition 3 An approximate subgraph matching between an approximate
pattern graph Gp = (Np, Op, Ep, Fp) and a target graph Gt = (Nt, Et) is a partial
function f : Np → Nt such that :

1. Np \Op ⊆ dom(f)

100 Zampelli et al.

2. ∀ i, j ∈ dom(f) : i 6= j ⇒ f(i) 6= f(j)
3. ∀ i, j ∈ dom(f) : (i, j) ∈ Ep ⇒ (f(i), f(j)) ∈ Et
4. ∀ i, j ∈ dom(f) : (i, j) ∈ Fp ⇒ (f(i), f(j)) /∈ Et

The notation dom(f) represents the domain of f . Elements of dom(f) are
called the selected nodes of the matching. This means that dom(f) can be repre-
sented by a finite set variable. Its lower bound flb consists of all selected nodes,
and its upper bound fglb consists of selected nodes and nodes that could be
selected.

Condition 1 requires mandatory nodes to be in the matching. Condition 2
is the injective condition, also present in the exact case. Condition 3 enforces
that an edge between two selected endpoints must always be present in the
target. Condition 4 forbids the presence of an edge in the matching between
node (f(u), f(v)) if the edge (u, v) was declared forbidden and u, v are in the
matching. According to this definition, if Fp = ∅ the matching is a subgraph
monomorphism, and if Fp = Np ×Np \ Ep, the matching is an isomorphism.

Condition 3 has an important impact on the set of possible matchings, as
shown in Figure 1. In this figure, mandatory nodes are represented as filled
nodes, and optional nodes are represented as empty nodes. Mandatory edges
are represented with plain line, and optional edges are represented with dashed
lines. Forbidden edges are represented with a plain line crossed. Intuitively, one
could think that edge (5, 6) in the pattern could be discarded, while node 6 could
be selected together with edge (4, 6). In fact, because of condition 3, matching
of node 6 would require the edge (5, 6) to be present in the target. Only two
subgraphs match this pattern as shown on the right side of Figure 1. The nodes
and edges not selected in the target graph are grey.

Pattern Target Matching instances of the pattern graph

1

2 3

4 5

6

a

b c

d e

f

Fig. 1. Example of approximate matching

In an approximate subgraph matching, the number of possible solutions may
be higher than in exact matching. One could therefore add some optimization
criteria on the results, such as maximizing the number of edges in the matching.

Approximate Constrained Subgraph Matching 101

5.2 Parametric Constraints for Optional Nodes

Morphism constraint on this approximate matching should handle the optional
nodes, but also be parameterized, because expressiveness and pruning should be
kept. The approximate morphism constraint can be defined as follows :

MCpa(x1, ..., xn, A,B) ≡
∧
i,j(i, j) ∈ A ∧ i, j ∈ dom(f)⇒ (xi, xj) ∈ B

The former constraint states that a morphism relation between two pattern
nodes xi and xj must be forced if and only if they are present in the domain of
f . Using a MC-like implementation, the MCpa constraint can be rewritten as :

∀ i ∈ Np ∀ a ∈ Nt : (|D(xi) ∩ Vt(a)| = 0
∧ i ∈ dom(f))⇒ a /∈ D(xj) ∀ j ∈ Vp(i) .

The additional condition i ∈ dom(f) states that only selected nodes should
propagate under the morphism condition. The propagation of the morphism
constraint of an optional i is computed but performed only when i is in the
domain of f .

As depicted in Figure 2, all selected nodes propagate in their neighborhood
but optional nodes propagate only when they are selected.

Fig. 2. Pruning method for the approximate morphism condition

MCpa is a simple extension of the implementation of MCp one (Algorithm
1). If i is not selected and there exists a such that S(i, a) = 0, the propagator
waits for node i to be selected to trigger the actual propagation.

5.3 Constraints for Forbidden Edges

A constraint for the forbidden edges (condition 4 in the matching) can be ob-
tained by using parameterized MCpa :

MCpa(x1, ..., xn, Fp, Et)

The constraints for the approximate matching problem are then :

alldiff(x1, ..., xn) ∧ MCpa(x1, ..., xn, Ep, Et) ∧ MCpa(x1, ..., xn, Fp, Et) .

Using these two MCpa constraints has a major drawback. The neighborhood
function V p(i) = {j | (i, j) ∈ Fp} and especially V t(a) = {b | (a, b) /∈ Et} may

102 Zampelli et al.

increase time complexity, because most of the time is spent in the loop upon
V t(a). Whatever the average degree of the target graph is, one of the constraints
has a O(ND2) complexity. Moreover, a second structure S(i, a) = |D(xi)∩V t(a)|
has to be created. These two constraints can however be expressed within a single
propagator, thanks to S(i, a) = 0⇔ S(i, a) = |D(xi)|. Indeed, S(i, a)+S(i, a) =
|D(xi)∩V (a)|+|D(xi)∩V (a)| = |D(xi)∩(V (a)∪V (a))| = |D(xi)∩Nt| = |D(xi)|.

The two propagators implementing the two instances of the MCpa constraint
can be implemented in an unique propagator MCFA described in Algorithm 3.
Record that S(i, a) = num represents the number of relations between target
node a and D(xi). Since S(i, a) is computed over D(xi) that may be different
from the actual D(xi), a counter size is added to S(i, a) structure, representing
the size of D(xi) over which value num is computed.

Algorithm 3: Morphism and Forbidden Edges Constraint
PropagateMCFA(i,a,Ep1 ,Ep2 ,Et)
// Element a exits from D(xi)
S(i, a, Et).size← S(i, a, Et).size− 1
for b ∈ V (a,Et) do

S(i, b, Et).num← S(i, b, Et).num− 1
num = S(i, b, Et).num
size = S(i, b, Et).size
if size == num then

PropaNeigh(i,b,Ep2)

if num == 0 then
PropaNeigh(i,b,Ep1)

Procedure PropaNeigh(i,b,Ep)
Wait until i ∈ dom(f)
for j ∈ V (i, Ep) do

D(xj)← D(xj) \ b

The LA constraint may also be adapted for approximate matching. Con-
straint LA infers propagation on its xi variable on the basis of xi neighborhood.

Definition 4 The selected neighborhood function V +
p (i), with respect to a finite

set variable D = [flb, fgb] representing dom(f) of a node i in an approximate
pattern graph is the set { j | j ∈ Vp(i) ∧ j ∈ flb}.

The function V +
p (i) creates an LA+

pa constraint, playing the same role as in
the exact case :

LA+
pa(xi, A,B) ≡ | ∪j∈V +

p (i,A) D(xj) ∩ Vt(xi, B)| ≥ |V +
p (i, A)|

LA+
pa(x1, ..., xn, A,B) ≡

∧
i

LA+
pa(xi, A,B) .

Approximate Constrained Subgraph Matching 103

Similarly to the LAp constraint, LA+
pa plays a pruning role. It can be im-

plemented by maintaining the neighborhood variable, with an O(d) time com-
plexity, whenever the domain of xi is pruned. The structure R+(i, a) = |{ j ∈
V +
p (i, A) | a ∈ D(xj) }| depends not only on the domain of the neighborhood of
xi but also on the neighborhood variable. Whenever the lower bound of V +

p (i, A)
changes, the structure R+(i, ·) must be updated in O(D), resulting in a O(ND2)
amortized complexity. Moreover, R+(i, a) may be incremented from zero to one,
resulting in an increment of CT+(i, a) = | ∪j∈V +

p (i,A) D(xj)∩ Vt(a,B)|, which is
not monotone. Nevertheless, when condition CT+(i, a) < |V +

p (i, A)| is fulfilled,
a can be safely pruned from xi, because if there is not enough candidates for a
subgroup of the neighborhood, node i cannot be mapped to node a, even if the
condition still holds for the group.

5.4 Extending approximate pattern

Until now parametric constraints has been used for designing global or redundant
constraints. In fact they can also be instantiated to constraints declaring distance
constraints between specific pattern nodes. Such properties state new informa-
tion on the pattern graph. For example, a constraint PathAtMost(xi, xj , k)
could state that there exists a shortest path of distance k or less between node
i and j :

PathAtMost(xi, xj , k) ≡ dist(xi, xj) ≤ k .

Similarly, a constraint Path(xi, xj , k) could state that there exists a path of
length k between node i and j :

Path(xi, xj , k) ≡ path(xi, xj , k) .

A matching declaring this Path constraint between two pattern nodes i and j
states the existence of a path of length k, in the target graph, between nodes f(i)
and f(j). Such additional constraints enriches the approximation on the pattern
graph. It is clear that parametric constraints can be instantiated to other types
of constraints as long as they are properties concerning pair nodes of the pattern
and that those properties can be precomputed or dynamically computed on the
target graph. For example, richer path constraints could state that there exists
a path of length k containing two nodes of a given type.

6 Experiments

Our CSP model for approximate subgraph matching has been implemented in-
side the CSP framework of Oz/Mozart (www.mozart-oz.org). Both parametric
propagators MCpa(x1, ..., xn, A,B) and LApa(x1, ..., xn, A,B) were implemented
as well as MCFA. Various transformations of Ep and Et were automated to in-
stantiate propagators for the forbidden edges and the distance constraints. We

104 Zampelli et al.

also included facility constraints to declare distance constraints between specific
pattern nodes.

First part of the experimental tests aims at comparing the CSP approach
with a dedicated algorithm for subgraph matching. The selected algorithm is an
improvement of Ullmann’s algorithm [14] called vflib, described into [13]. The
C++ implementation provided by the authors is used. We have also reimple-
mented the vflib algorithm in Oz/Mozart.

Two distinct sets of graphs were selected. The first set comes from [15] and
consists of 3000 directed instances divided in three classes : first one has prob-
ability η = 0.01 (noted r001 in Table 1) that an edge is present between two
distinct node n and n′, second one has a 0.05 probability (noted r005) and third
one has a 0.1 probability (noted r01). Those graphs were used to evaluate vflib
algorithm performance [13]. In our experiments, target graph size (the number
of nodes in the target graph) ranges from 20 to 200, pattern graph size is 20% of
the target graph size, and all solutions are searched. From a topological point of
view, a N nodes graph generated with a probability of η has a mean degree of
ηN and each node has a degree close to this mean degree. We call that kind of
graphs uniform because a subgraph has a structure close to another subgraph
in the same graph. The second set contains graphs having different topological
structures as explained in [2]. These graphs were generated using the Stanford
GraphBase [16] and are all graphs tested in [2], consisting of 406 directed in-
stances.

Tables 1,2 and 3 show the results for the first graph database and the Graph-
Base graphs. The subgraph matching is a monomorphism. Total and mean time
reported concern solved instances only. Following the methodology used into [2],
we put a time limit on any given run. In Table 1, left column describes the
number of problems solved within a time limit of 5 minutes and right column
within 10 minutes, for each set of a given target graph size 60, 80, 100, and 200.
All benchmarks were performed on an Intel Xeon 3 Ghz. The three algorithms
(original C++ vflib, vflib in Oz, and our CSP in Oz) solve all instances for
graph size 20 and 40 within time limit. On the first graph database, one can also
measure the overhead of implementing vflib algorithm in Oz. The CSP approach
is outperformed by the vflib algorithm for the first graph database in Table 1,
but outperforms the vflib algorithm for the Stanford GraphBase set. This comes
from the fact that topological properties in the first graph database set are dif-
ferent from GraphBase set. In uniform graphs, the probability that a variable
has an empty domain thanks to conjunction of MC(xi, xj) constraints is low.
This explains that CSP performances decrease as target size increases in Table
1. The vflib algorithm is effective in this case. When measuring performance on
the set of graphs which is not uniform, CSP outperforms the vflib algorithm
when looking either for one solution or for all solutions.

Benefits of the unique MCFA propagator instead of the conjunction of the
two MCpa are shown in Table 4. The subgraph isomorphism problem is solved
by using forbidden edges. Left column shows a set of runs with both MCpa
handling the isomorphism. Right column shows the same set of runs with the

Approximate Constrained Subgraph Matching 105

unique propagator MCFA handling the isomorphism. As expected, the MCFA
propagator solves more problems, and mean time over solved problems decreases.

In most cases redundant path constraints do not reduce the total time as
average degree increases with distance. Path constraints are useful for enhancing
the expressiveness of the pattern graph. We tested influence of specifying an
additional distance constraint between two nodes (left graph in Figure 3). The
pattern graph has size 20. As expected, the greater the distance, more time
is needed to find all solutions as the search space is higher. This experiment
underlies the feasibility using additional distance constraints between nodes,
viewed as expressive constraints instead of redundant constraints, in the pattern
graph if the distance is not too high (≤ 3). Such an approximate pattern may
be especially usefull in domains such as bioinformatics. Approximate matching
has been evaluated by declaring two constraints of distance 3 shortest path
on the pattern graph and 40% of its nodes as optional. The pattern graph is
matched against 100 distinct instances of a target graph made of 100 nodes,
searching for all solutions. Two curves are shown in the right graph in Figure 3
in a logarithmic scale. The lower one shows the matching of the pattern graph
without its distance constraints and optional nodes. The upper one represents
the running time of the approximate matching. A constant factor exists between
the two sets of runs and a majority of the executions are below 10 seconds.

Table 1. Comparison over uniform directed graphs.

vflib C++ 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 100 0 96 4
80 100 0 94 6 98 2
100 100 0 88 12 99 1
200 74 26 84 16 97 3

vflib C++ 10 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 100 0 96 4
80 100 0 94 6 98 2
100 100 0 89 11 99 1
200 81 19 87 13 99 1

ozvflib 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 85 15 76 24
80 100 0 76 24 83 17
100 100 0 56 44 88 12
200 16 84 53 47 69 31

ozvflib 10 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 89 11 81 19
80 100 0 79 21 85 15
100 100 0 62 38 91 9
200 18 82 57 43 79 21

CSP MC 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 96 4 86 14
80 100 0 84 16 91 9
100 100 0 82 18 93 7
200 33 67 77 23 51 49

CSP MC 10 min.
r001 r005 r01

solved unsol solved unsol solved unsol
60 100 0 96 4 91 9
80 100 0 86 14 93 7
100 100 0 86 14 99 1
200 40 60 87 13 86 14

Table 2. Comparison over GraphBase directed graphs.

One solution 5 min.
solved unsol total time mean time

vflib C++ 80,5% 19,5% 8.89 min. 0.02 min.
ozvflib 78,5% 21,5% 17.67 min. 0.04 min.
CSP 87% 13% 36.64 min. 0.09 min.

All solutions 5 min.
solved unsol total time mean time

vflib C++ 63,7% 36,3% 12.01 min. 0.02 min.
ozvflib 59,8% 40,2% 11.52 min. 0.02 min.
CSP 68,7% 31,3% 31.4 min. 0.07 min.

106 Zampelli et al.

Table 3. Comparison over GraphBase undirected graphs.

One solution 5 min.
solved unsol total time mean time

vflib C++ 64,4% 35,6% 8.14 min. 0.006 min.
ozvflib 58,2% 41,8% 8.6 min. 0.04 min.
CSP 64,4% 35,6% 18.24 min. 0.01 min.

All solutions 5 min.
solved unsol total time mean time

vflib C++ 48,3% 51,7% 9.31 min. 0.007 min.
ozvflib 39,5% 60,5% 4.43 min. 0.003 min.
CSP 57,7% 42,3% 11.39 min. 0.009 min.

Table 4. MCpa and MCfa versus MCFA

CSP MCp and MCfa 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
100 100 0 100 0 96 4
200 79 21 62 38 10 90

CSP MCFA 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
100 100 0 100 0 99 1
200 83 17 80 20 34 66

7 Conclusion

In this paper, we proposed a CSP approach for approximate subgraph match-
ing. The model handles both monomorphism and isomorphism problems. It also
allows the specification of additional constraints between pairs of nodes (such
as distance constraints), as well as the derivation of redundant constraints pro-
viding more pruning. Approximation is specified through optional nodes and
forbidden edges, as well as additional constraints. The CSP model is expressed
through two parametric constraints, allowing a simple and versatile modeling
of various classes of matching problems. Propagators of the constraints have
been described, supported by an Oz/Mozart implementation. Experimentations
showed that our CSP approach for exact matching is competitive with a spe-
cialized C++ Ullman matching algorithms, and illustrated its versatility for
approximate subgraph matching.

The proposed framework for declarative approximate subgraph matching
open various research directions. Better heuristics could be developed when
searching for an approximate matching. Our algorithm for exact matching could
also be compared with other algorithms dedicated to the largest common sub-
graph problem. We also intend to apply our approximate matching algorithm
for the analysis of biochemical networks. New approximations could be defined
on the pattern graph, along with new constraints and propagators. Finally, as

Fig. 3. Influence of distance over running time and approximate matching running
times

Approximate Constrained Subgraph Matching 107

the (approximate) matching is expressed as a combination of (parameterized)
constraints, subgraph matching could be integrated in a constraint language
handling graph variables, such as CP(Graph) [17].

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(3) (2004) 265–298

2. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Mathematical. Structures in Comp. Sci. 12(4) (2002) 403–422

3. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern
matching. In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: TAGT.
Volume 1764 of Lecture Notes in Computer Science., Springer (1998) 238–251

4. Wang, J.T.L., Zhang, K., Chirn, G.W.: Algorithms for approximate graph match-
ing. Inf. Sci. Inf. Comput. Sci. 82(1-2) (1995) 45–74

5. Messmer, B.T., Bunke, H.: A new algorithm for error-tolerant subgraph isomor-
phism detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(5) (1998) 493–504

6. DePiero, F., Krout, D.: An algorithm using length-r paths to approximate subgraph
isomorphism. Pattern Recogn. Lett. 24(1-3) (2003) 33–46

7. Robles-Kelly, A., Hancock, E.: Graph edit distance from spectral seriation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27-3 (2005) 365–378

8. Giugno, R., Shasha, D.: Graphgrep: A fast and universal method for querying
graphs. In: ICPR (2). (2002) 112–115

9. Sorlin, S., Solnon, C.: A global constraint for graph isomorphism problems. In
Régin, J.C., Rueher, M., eds.: CPAIOR. Volume 3011 of Lecture Notes in Computer
Science., Springer (2004) 287–302

10. Mamoulis, N., Stergiou, K.: Constraint satisfaction in semi-structured data graphs.
In Wallace, M., ed.: CP. Volume 3258 of Lecture Notes in Computer Science.,
Springer (2004) 393–407

11. Regin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proc.
12th Conf. American Assoc. Artificial Intelligence. Volume 1., Amer. Assoc. Arti-
ficial Intelligence (1994) 362–367

12. van Hoeve, W.J.: The alldifferent constraint: A survey. CoRR cs.PL/0105015
(2001)

13. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the vf
graph matching algorithm. In: ICIAP, IEEE Computer Society (1999) 1172–1177

14. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1) (1976)
31–42

15. Foggia, P., Sansone, C., Vento, M.: A database of graphs for isomorphism and
sub-graph isomorphism benchmarcking. CoRR cs.PL/0105015 (2001)

16. Knuth, D.E.: The Stanford GraphBase. A Platform for Combinatorial Computing.
acm, ny (1993)

17. Dooms, G.: Cp(graph): Introducing a graph computation domain in constraint
programming (accepted paper). CP2005 (2005)

108

