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A Constraint Algebra

Fahiem Bacchus1? and Toby Walsh2??

1 Department of Computer Science, University of Toronto, Canada. fbacchus@cs.toronto.ca
2 Cork Constraint Computation Center, University College Cork, Ireland. tw@4c.ucc.ie

Abstract. Many constraint toolkits provide logical connectives like disjunction,
negation and implication that permit complex constraint expressions to be built
from more primitive constraints. However, the propagation of complex constraints
is typically delayed and so give little pruning. In this paper, we present a simple
and light weight way to propagate such constraint expressions. We prove that
computing the maximal set of inconsistent assignments for a constraint expres-
sion is intractable in general. We therefore provide a polynomial time function
which computes a tractable subset compositionally. We characterise precisely
when this function computes maximal inconsistent sets. In such cases, our func-
tion enforces generalized arc-consistency on the constraint expression. We then
lift the reasoning from inconsistent assignments to inconsistent bounds of integer,
set or multiset variables. Finally, as our approach requires being able to compute
valid as well as inconsistent assignments and bounds for primitive constraints,
we demonstrated that valid assignments and bounds can easily be computed for
many primitive constraints.

1 Introduction

To facilitate the modeling of problems as constraint programs, constraint toolkits pro-
vide a wide range of primitive constraints along with propagators for these constraints.
However, only limited mechanisms for combining these primitive constraints are avail-
able, and typically such combinations are not propagated very effectively. For example,
whilst many toolkits permit disjunctions of constraints, the propagation of such disjunc-
tions is generally delayed until all but one of the disjunctions are disentailed (and the
remaining disjunct must hold).

In this paper, we discuss a simple algebra for combining primitive constraints. We
build complex propositional constraint expressions from primitive constraints using the
logical connectives conjunction, disjunction and negation. Expressions involving im-
plication, equivalence, exclusive-or, etc., can therefore also be represented. We show
how a simple extension to constraint propagators will permit such complex constraint
expressions to be propagated in a compositional way. Such an algebra can therefore
be incorporated into any current constraint toolkit by simply extending the propagators
for the primitive constraints. We can therefore provide the user with a rich language
for specifying their problem, whilst preserving some of the propagating power of the
primitive constraints.
? Supported by Natural Science and Engineering Research Council Canada.
?? Supported by Science Foundation Ireland.
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The paper is structured as follows. We first present some background. We then
define a simple constraint algebra and discuss the complexity of making an arbitrary
constraint expression in this algebra generalized arc consistent (GAC). A polytime al-
gorithm for computing inconsistent assignments for a constraint expression is provided.
This function is compositional, and computes inconsistent assignments from the incon-
sistent and valid assignments of the primitive constraints within the constraint expres-
sion. We then characterise when this function computes maximal inconsistent sets. In
such cases, pruning the values computed by this function will ensure that the constraint
expression is GAC. Following this, we show how bounds consistency can be achieved
on constraint expressions involving integer, set or multiset variables. To apply our ap-
proach, we need to extend the propagators of primitive constraints so that they can
compute valid as well as inconsistent assignments and bounds. A wide range of exam-
ples is given to demonstrate that this is typically not difficult to achieve. We end with a
discussion of related work and some conclusions.

2 Inconsistent and Valid assignments
A constraint satisfaction problemis a set of variables, each with a finite domain of
values, and a set of constraints that specify allowed values for subsets of variables.
Each constraint consists of a relation of allowed values and a scope of variables to
which the constraint is applied. For convenience, we represent the domainsDof the
variables in a problem by a set of possible assignments. For example, if we have just
two variablesX andY with 0/1 domains, thenD = {X = 0, X = 1, Y = 0, Y =
1}. We letdomain(X) be the set of values in the domain of the variableX. That is,
domain(X) = {a | X = a ∈ D}. An assignment setτ is a set of assignments to
variables such that every variableX in scope(τ) (the set of variables appearing inτ )
is assigned only one value fromdomain(X). We also usescope(C) for the variables
in the constraintC. Given a constraintC and an assignment setτ with scope(C) ⊆
scope(τ), we writeC(τ) iff the assignments inτ satisfiesC. That isC(τ) iff there exists
X1 = a1, . . . Xk = ak ∈ τ with scope(C) = {X1, . . . , Xk} andX1 = a1, . . . Xk =
ak satisfiesC. We write¬C(τ) otherwise.

An assignment is (generalized arc)inconsistentfor a constraint iff all assignment
sets containing it fail to satisfy the constraint. That is,X = a is inconsistent forC
iff ∀τ.

(
scope(C) ⊆ scope(τ) ∧X = a ∈ τ

)
→ ¬C(τ). A constraintC has an unique

maximal set of inconsistent assignmentsMaxInc(C). For example, given the constraint
X < Y with X = {0, 1, 2} andY = {1, 2}, then{X = 2} is the maximal set
of inconsistent assignments. No possible extension ofX = 2 satisfies the constraint
X < Y , but all other assignments can be extended to satisfy the constraint. Assignments
that areconsistenthave at least one witness falsifying the above condition; i.e.,X =
a is consistent iff there is an assignment setτ (called asupport) with scope(τ) =
scope(C) ∧X = a ∈ τ ∧ C(τ). A constraintC is GAC (Generalized Arc Consistent)
iff every value of every variable inscope(C) has at least one support.

If X = a is inconsistent, we can prunea from the domain ofX. It is well known
that a constraintC can be made GAC by simply pruning all values inMaxInc(C) from
the domains of their respective variables. This process might reduce the domains of all
variables to the empty set, achieving GAC in a trivial way.
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Valid assignments are the dual of inconsistent assignments, and are essential in the
algebra we develop. An assignment isvalid wrt a constraint iff all assignment sets
containing that assignment satisfies the constraint. That is,X = a is valid for C iff
∀τ.
(
scope(C) ⊆ scope(τ) ∧ X = a ∈ τ

)
→ C(τ). As with inconsistent values ev-

ery constraintC has a unique maximal set of valid assignments,MaxValid(C). For
example, given the constraintX < Y with X = {0, 1, 2} andY = {1, 2}, the max-
imal set of valid assignments is{X = 0}. All possible extensions ofX = 0 satisfy
the constraintX < Y , but no other assignment always satisfies the constraint. All of
the concepts presented for inconsistent assignments have dual versions for valid as-
signments. For example, the dual of consistent assignments is the notion of non-valid
assignments. An assignmentX = a is non-valid if there is at least one assignment
setτ with scope(τ) = scope(C) ∧ X = a ∈ τ ∧ ¬C(τ). Another example is that
the dual of a support is a non-support. An assignment setτ is a non-support for an
assignmentX = a in a constraintC iff scope(τ) = scope(C) ∧X = a ∈ τ ∧ ¬C(τ).
A non-support witnesses the non-validity ofX = a.

3 A constraint algebra

To build complex constraints, we combine primitive constraints using the propositional
connectives negation, disjunction and conjunction. Aconstraint expressionis either
a primitive constraintC or any well-founded Boolean expression of the form:true,
false, not(C1), or(C1, . . . , Ck) or and(C1, . . . , Ck), where eachCi is itself a constraint
expression.true is the primitive constraint which is always valid, whilstfalse is always
inconsistent. We also allow the expressionsimplies(C1, C2), iff (C1, C2), xor(C1, C2)
andifthen(C1, C2, C3), but regard these additional connectives simply as abbreviations.
More formally:

implies(C1, C2)↔ or(not(C1), C2)
iff (C1, C2)↔ and(or(not(C1), C2), or(not(C2), C1)

xor(C1, C2)↔ and(or(C1, C2), or(not(C1),not(C2))
ifthen(C1, C2, C3)↔ and(or(not(C1), C2), or(C1, C3))

Each constraint expressionC represents a new constraint whose scope is equal to
the union of the scopes of the primitive constraints inC. An assignment setτ satisfies
C iff scope(C) ⊆ scope(τ) and the Boolean expression representingC evaluates to true
given the truth values of the component primitive constraints underτ . For example,
an absolute value constraintX = abs(Y ) can be written as the constraint expression
ifthen(Y ≥ 0, X = Y,X = −Y ). Similarly, a max constraintX = max(Y,Z)
can be written as the constraint expressionand(X ≥ Y,X ≥ Z, or(X = Y,X =
Z)). Since a constraint expression is itself a constraint, associated with every constraint
expressionC is a maximal set of inconsistent assignments,MaxInc(C), and a maximal
set of valid assignmentsMaxValid(C). We can make the constraint expressionC GAC
by pruning all assignments inMaxInc(C). It is also useful to observe that a simple
consequence of the duality between valid assignments and inconsistent assignments is
thatMaxInc(C) = MaxValid(not(C)).
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Constraint propagation, the detection and deletion of inconsistent values, is one of
the central aspects of constraint programming. How then do we propagate constraint ex-
pressions? Clearly we do not want to design new propagators for every new constraint
expression: this would defeat the usefulness of the algebra. First we examine the com-
plexity of computing all valid and inconsistent assignments for an arbitrary constraint
expression.

3.1 Computational complexity.

The following theorem demonstrates that it is in general intractable to computeMaxInc(C)
or MaxValid(C) for an arbitrary constraint expression.

Theorem 1. Determining if an assignment is inMaxInc(and(C1, . . . , Ck)) is coNP-
Complete as is determining if an assignment is inMaxValid(or(C1, . . . , Ck)). The
hardness does not change when the input of the problem includesMaxInc(Ci) and
MaxValid(Ci) for all i ∈ {1, . . . , k}.

Proof: We show that the complementary problem of deciding ifX = a 6∈ MaxInc(C)
for C = and(C1, . . . , Ck) is NP-Complete. It is clearly in NP since an assignment setτ
with C(τ) andX = a ∈ τ is a poly-time checkable witness. A reduction from 3SAT
allows us to show completeness. We map the Boolean variablesxi in the SAT problem
ϕ to 0/1 variablesXi in the CSP so thatxi = true iff Xi = 1. We also include a new
0/1 variable,X, in the CSP. We constructand(C1, . . . , Ck) whereCi represents thei-th
clause of the 3SAT problem augmented with the new variableX. For example, if the
i-th clause is(x3,¬x5, x7), thenCi will be or(C(X3),not(C(X5)), C(X7), C(X))
where eachC(Xi) is a unary constraint that is satisfied iffXi = 1. SupposeX = 0 is
not in the maximal set of inconsistent assignments. Then there are assignments to all
the other variables that satisfies each of the constituent constraint expressionsCi. Thus,
there is an assignment set that satisfies each clause. As the proof reverses immediately,
X = 0 is not in the maximal set of inconsistent assignments iffϕ is satisfiable. Deter-
mining if an assignment is not in the maximal set of inconsistent assignments is there-
fore NP-complete. By dualityMaxValid(C) = MaxInc(not(C)). Hence, determining
MaxValid for the above expression is polynomially reducible to a co-NP-complete
problem, and it also is co-NP-complete.

In either case, for each of the clause constraintsCi, MaxValid(Ci) andMaxInc(Ci)
are both empty: any assignment to any of the variables inCi has a support and a non-
support. Supplying this information as input cannot make the computation easier, as
these sets are always empty for any 3SAT problem.

Whilst deciding if an assignment is inconsistent is coNP-complete, deciding if a set
of assignments isthe maximalinconsistent set for an arbitrary constraint expression is
DP -complete in general. The complexity classDP contains problems which are the
conjunction of a problem in NP and one in coNP [9]. It is also known as the second
level of the Boolean hierarchy, BH2(NP).

Theorem 2. Determining if a set is the maximal set of inconsistent assignments for a
conjunctionand(C1, . . . , Ck) isDP -complete as is determining if a set is the maximal
set of valid assignments for a disjunctionor(C1, . . . , Ck).
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Proof: We show that deciding that a set is the maximal set of inconsistent assignments
answers positively the NP-complete problem of determining if a 3-cnf formulaϕ1 is
SAT, and the coNP-complete problem of determining if a 3-cnf formulaϕ2 is UNSAT.
Using the same construction as Theorem 1, we represent the clauses inϕ1 with the
constraint expressionsCi containing the new variableX, and the clauses inϕ2 with
the constraint expressionsDi containing the new variableY . Then we construct the
constraint expressionand(C1, . . . , Cj ,D1, . . . ,Dk). {Y = 0} is the maximal set of
inconsistent assignments iffϕ1 is SAT andϕ2 is UNSAT. A dual argument shows that
recognizing whether a set of assignments is the maximal set of valid assignments is also
DP -complete.

Computing valid or inconsistent assignments for complex constraint expressions
can thus be computationally harder than computing such assignments for the constituent
parts. However, it also can be easier. For instance, there exist classes of constraints for
which recognizing if an assignment is inconsistent is coNP-complete, but recognizing if
an assignment is inconsistent for their conjunction is polynomial. Consider

∑
iXi = k

and
∑
iXi = k + 1. Identifying consistent assignments for such constraints is NP-

complete using a simple reduction from subset sum. However, their conjunction is triv-
ially inconsistent.

The complexity of determiningMaxInc(C) for an arbitrary constraint expression is
also closely related to the complexity of query evaluation in relational databases [10,
11]. In particular, ifscope(C) = {X,Y1, . . . , Yk}, determining all assignments toX
that are not inMaxInc(C) is equivalent to evaluating the first-order query∃Y1, . . . , YkC(X)
in a database where the relations are the primitive constraints inC. ThusMaxInc(C)
can be determined withk + 1 such queries. This particular type of query, however has
not been studied in the database literature, and hardness results proved for more general
classes of queries do not entail our results.3

4 Computing inconsistent assignments

Since computing the maximal set of inconsistent assignments for a complex constraint
expression is intractable in general, we propose a simple and light weight method for
computing a subset of the maximal sets in polynomial time. The method is composi-
tional as it computes the inconsistent and valid assignments of a constraint expression
in terms of the inconsistent and valid assignments of its parts. For a constraint expres-
sionC and variable domainsD, the functionsInc(C,D) andValid(C,D) return subsets
of MaxInc(C) andMaxValid(C) respectively. These functions recursively apply the
rules in Table 1, until they reach the primitive constraints. We then assume that each
primitive constraint has a poly-time algorithm to compute inconsistent and valid as-
signments. In section 7 we show that this is a reasonable assumption by demonstrating
such algorithms for a number of different primitive constraints.

We prove that these functions are correct. That is, they compute assignments which
are indeed inconsistent and valid.

3 There are also a number of results on tractable queries that do apply to the problem of com-
puting MaxInc andMaxValid . We are more interested here in approximatingMaxInc and
MaxValid for general (intractable) constraint expressions, so we refer the reader to [11] for
more details on these tractable cases.
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Inc(not(C1),D) = Valid(C1,D)
Valid(not(C1),D) = Inc(C1,D)
Inc(or(C1, . . . , Ck),D) =

⋂
1≤i≤k Inc(Ci,D)

Valid(and(C1, . . . , Ck),D) =
⋂

1≤i≤k Valid(Ci,D)

Inc(and(C1, . . . , Ck),D) = IterativeInc(and(C1, . . . , Ck),D)
Valid(or(C1, . . . , Ck),D) = IterativeValid(or(C1, . . . , Ck),D)

IterativeInc(and(C1, . . . , Ck),D) IterativeValid(or(C1, . . . , Ck),D)
inc :=

⋃
1≤i≤k Inc(Ci,D) valid :=

⋃
1≤i≤k Valid(Ci,D)

repeat repeat
D := D − inc
nxtinc :=

⋃
1≤i≤k Inc(Ci,D)

inc := inc ∪ nxtinc

D := D − valid
nxtvalid :=

⋃
1≤i≤k Valid(Ci,D)

valid := valid ∪ nxtvalid
until(nxtinc = ∅) until(nxtvalid = ∅)

return(inc) return(valid)

Table 1. Functions for computing valid and inconsistent assignments of a constraint expression.
In addition,Inc(true,D) = Valid(false,D) = ∅, andValid(true,D) = Inc(false,D) = D.

Theorem 3. For any primitive constraintCi, if for all subsetsD′ of D, Inc(Ci,D′)
contains only inconsistent assignments andValid(Ci,D′) contains only valid assign-
ments, thenInc(C,D) andValid(C,D) contain only inconsistent and valid assignments
respectively for any constraint expression built from these primitive parts.

Proof: By induction on the structure of the constraint expression. The base case
holds by assumption. The step case uses case analysis. For a constraint expression
not(C1,D), we have thatInc(not(C1),D) = Valid(C1,D). By induction, the assign-
ments inValid(C1,D) are valid. Hence all of these assignments are inconsistent for
not(C1,D). A dual argument shows that the assignments inValid(not(C1),D) are
valid. For a constraint expressionC = and(C1, . . . , Ck), we haveValid(C,D) =⋂

1≤i≤k Valid(Ci,D). SupposeX = a ∈ Valid(C,D). Then for all i, X = a ∈
Valid(Ci,D). By the induction hypothesis, the assignments in eachValid(Ci) are valid.
Consider any assignment setτ such thatX = a ∈ τ andscope(C) ⊆ scope(τ). Since
X = a is valid for eachCi, τ must satisfy allCi and thus must satisfy the conjunction.
HenceX = a is also valid forC. For C = Inc(and(C1, . . . , Ck),D) a similar argu-
ment shows that the assignments in

⋃
1≤i≤k Inc(Ci,D) are inconsistent. Deleting these

assignments fromD cannot cause any consistent assignment to lose its support, hence
Inc(Ci,D′) on this reduced domaindomain ′ must still return inconsistent assignments.
IterativeInc then re-computes

⋃
1≤i≤k Inc(Ci,D) until we reach a fixed point.

Similar arguments also hold for constraint expressions of the formor(C1, . . . , Ck).
In this case, deleting valid assignments fromD cannot cause any non-valid assignment
to lose its non-support andValid(Ci) on the reduced domain must still return valid
assignments.

The algorithm can be optimized by the simple caching scheme in which we re-
member the previously computed valueInc(Ci,D) for each subexpressionCi. If in a
subsequent callInc(Ci,D′), D′ is identical toD when restricted to the variables in
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scope(Ci), then we can reuse the previously computed result forInc(Ci,D). A similar
optimization works forValid(Ci,D). In addition, if we compute and prune inconsistent
values incrementally, we can stop as soon as any variable has a domain wipeout.

4.1 Termination

TheIterativeInc andIterativeValid functions may take a number of iterations to reach
their fixed point. In practice, this fixed point is likely to be reached after only a few
iterations. It is possible to show that only a polynomial number of iterations is ever
required.

Theorem 4. IterativeInc andIterativeValid takeO(nd) iterations to reach their fixed
points for constraint expressions withn variables and domains of sized. There exist
constraint expressions on which they takeΘ(nd) iterations to reach its fixed point.

Proof: As each iteration removes at least one value, we must reach the fixed point in at
mostnd steps. We can give a simple example in which this bound is reached. Consider
and(C1, . . . , Cn) whereCi is Xi = Xi+1 for i < n andX1 − Xn = 1 for i = n.
Supposedomain(Xi) = {1, . . . , d} for everyi. Then in the first iteration,IterativeInc
returns{X1 = 1} as this value is not supported inX1 −Xn = 1. After this is pruned
from D, a second iteration returns{X2 = 1} as this value is now not supported in
X1 = X2. And so on up to thenth iteration which returns{Xn = 1}. After this is
pruned, then + 1th iteration returns{X1 = 2} as this value is now not supported in
X1 − Xn = 1. Hence, there arend iterations before all the values of all the variables
are removed. Note that even if we stop when the first variable has a domain wipeout, it
will still take (n− 1)d+ 1 iterations before the first variable has a domain wipeout.

4.2 Entailment and disentailed

A constraint expression is entailed iff it holds for all possible assignments. A constraint
is disentailed iff it does not hold for any possible assignment. IfValid(C,D) equals the
domains of all of the variables in the scope ofC, thenC is entailed. In such a situation,
we modify the computation ofValid so thatValid(C,D) = D. Similarly, if Inc(C,D)
equals the domains of all of the variables in the scope ofC thenC is disentailed. We
now modify the computation ofInc so thatInc(C,D) = D.

To show the benefit of detecting (dis)entailment in this way, consider the con-
straint expression,implies(even(X), odd(Y )) and the domainsD = {X = 0, X =
2, Y = 1, Y = 2}. Inc(implies(even(X), odd(Y )),D) = Valid(even(X),D) ∩
Inc(odd(Y ),D). Using the unmodified versions,Valid(even(X),D) will return just
valid values forX, whilst Inc(odd(Y )),D) returns just inconsistent values forY . Inc
would then compute the empty set of inconsistent assignments forimplies(even(X),
odd(Y )). Note, however, thatdomain(X) only contains even numbers. Henceeven(X)
is entailed. Therefore the modifiedValid(even(X),D) can returnD, in which case
Inc(implies(even(X), odd(Y ),D) = D ∩ Inc(odd(Y ),D) = {Y = 2}. This is the
maximal set of inconsistent assignments, as required.
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4.3 Maximality

These functions do not always compute maximal sets, even if maximal sets are com-
puted for the primitive constraints from which they are composed. This is not surprising
given that computing maximal sets is intractable in general. The following result pre-
cisely characterizes whenInc returns the maximal inconsistent set of assignments. In
other words, the following result identifies exactly when pruning the values returned by
Inc ensures that a constraint expression is GAC.

We start with a number of definitions. AhypergraphH = (H, EH) is a set of
verticesH and hyperedgesEH each of which is a subset ofH. An acyclic tree de-
composition [11] of a hypergraphH is a treeT satisfying two properties: (1) there is
a one-to-one correspondence between the hyperedges ofH and the nodes ofT ; the hy-
peredge corresponding to a tree nodet is calledt’s label (label(t)); (2) for every vertex
v ∈ H the set of nodest of T such thatv ∈ label(t) form a subtree ofT . The hy-
pergraph of a conjunctive or disjunctive constraint expression,C = and(C1, . . . , Ck) or
C = or(C1, . . . , Ck), has the variables inscope(C) as vertices and the sets of variables
scope(Ci), i = 1, . . . , k as hyperedges. We will relax this definition to take account
of (dis)entailment. IfC = and(C1, . . . , Ck) then we ignore any subexpression that is
entailed when constructing the hypergraph. Similarly, ifC = or(C1, . . . , Ck) then we
ignore any subexpression that is disentailed. Under this relaxation we define a conjunc-
tive or disjunctive constraint expression to beacyclic if its corresponding hypergraph
has an acyclic tree decomposition. For example, a conjunction in which the primitive
constraints are in a chain, and each has only one variable in common with the previous
and next constraint is acyclic. Acyclic constraint expressions are, however, more gen-
eral than chains. We use this notion of acyclicity to characterise whenInc computes the
maximal set of inconsistent assignments.

Theorem 5. For any constraint expressionC and any variable domainsD, Inc(C,D) =
MaxInc(C,D) if:

1. C is a primitive constraint andInc(C,D) = MaxInc(C,D);
2. C = not(C1) andValid(C1,D) = MaxValid(C1,D);
3. C = or(C1, . . . , Ck) andInc(Ci,D) = MaxInc(Ci,D) for i ∈ (1, . . . , k);
4. C = and(C1, . . . , Ck) and (a)Inc(Ci,D) = MaxInc(Ci,D) for i ∈ (1, . . . , k); (b)
C is acyclic; and (c)|scope(Ci) ∩ scope(Cj)| ≤ 1 for i, j ∈ (1, . . . , k);

5. Inc(C,D) = D.

Proof: 1. Immediate. 2. SupposeValid(C1,D) is maximal. Then for anyX = a 6∈
Valid(C1,D), there existsτ with X = a ∈ τ and¬C1(τ). HenceX = a cannot be
in Inc(not(C1),D) asτ is one assignment that prevents it being inconsistent. Hence
Inc(not(C1),D) is maximal.

3. SupposeInc(Ci,D) are maximal. ConsiderX = a 6∈ Inc(or(C1, . . . , Ck),D).
ThenX = a 6∈

⋂
1≤i≤k Inc(Ci,D). That is,X = a 6∈ Inc(Cj ,D) for somej ∈

(1, . . . , k). As Inc(Cj ,D) is maximal, there existsτ with X = a ∈ τ andCj(τ). Thus
X = a cannot be inInc(or(C1, . . . , Ck),D) asτ is one assignment that prevents it
being inconsistent. HenceInc(or(C1, . . . , Ck),D) is maximal.
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4. SupposeX ∈ scope(C) with X = a ∈ D, but X = a 6∈ Inc(C,D). We
must show thatX = a 6∈ MaxInc(C,D). Let Dc = D − Inc(C,D), i.e., the con-
sistent assignments remaining in the variable domains. From Table 1 we observe that
Inc(Ci,Dc) = ∅ and by condition (a)MaxInc(Ci,Dc) = ∅ for all i ∈ (1, . . . , k). Con-
sider the acyclic tree decomposition associated withC. Orient this tree so that the root
is labeled withscope(Ci) for someCi with X ∈ scope(Ci). Note that by property (2) of
an acyclic tree decomposition and condition (c), each of the subtrees belowCi can have
at most one variable in common with the other subtrees. Furthermore if two subtrees do
have a variable in common that variable must be in thescope(Ci).

SinceX = a ∈ Dc it must have some supportτ on Ci such thatτ ∈ Dc. Now we
extend this support downwards in the tree decomposition to the children ofCi: C1

j , . . . ,
C`j . Each such childCj shares only one variable withCi, sayY , andY must be assigned
some value inτ , sayY = b. SinceY = b ∈ Dc it must have a supportτj in Cj such
thatτj ∈ Dc. Thus we can extendτ to a support forand(Ci, Cj) for each child ofCi.
Furthermore the supportsτj for the individual children ofCi cannot be in conflict:Cj
andCj′ can only share a variable already assigned byτ , henceτj andτj′ must agree
with τ and with each other on the value assigned to this variable. Thus we can extend
τ to a support for all ofCi’s children. Furthermore, by the same argument each support
τj for the childCj can be extended to a support for all of the conjuncts in the subtree
belowCj . Hence,τ can be extended to a support for all ofC, and sinceX = a ∈ τ ,
X = a 6∈ MaxInc(C,D).

Note that ifand(C1, . . . , Ck) contains any entailed conjuncts, these can be elimi-
nated without changing the maximal set of inconsistent assignments. We can then apply
the argument above to the remaining acyclic part of the conjunction.

5. Immediate sinceMaxInc(C,D) ⊆ D.
In fact, we can show that these 5 cases are the only ones in whichInc is always

guaranteed to be maximal. This reverse direction needs a little care asInc may compute
MaxInc by chance. However, these 5 cases are the only ones in which, irrespective of
the constraint subexpressions,Inc is guaranteed to computeMaxInc. A dual result
holds, and characterizes precisely whenValid computesMaxValid .

Another way of viewingInc is that when we run it on a conjunction of primitive
binary constraints,C = and(C1, . . . , Ck), we enforce arc consistency. Furthermore,
if C is acyclic then it has tree width 1. This is precisely the condition required for arc
consistency to achieve GAC on the conjunction. For non-binary constraints the tree
width of an acyclic expression is equal to the maximum scope of one of its conjunction
(minus 1), and thus can be much larger than 1. Hence, we require the extra condition
bounding the size of scope intersections to ensure GAC.

5 Bounds consistency

Set and multiset variables, and constraints upon them, are useful in many situations [4,
14]. We will therefore show how to deal with such variables. The central notion needed
is bound consistency. We define this simultaneously for finite domain, set and multiset
variables. We can therefore reason about constraints which involve finite domain, set
and multiset variables. For example, we might wish to reason about a constraint like
or(|S| < N, |S| > M) which contains both a set variable,S and the finite domain
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integer variables,M andN . In what follows, we assume that all finite domain variables
are integers, but any ordered domain will do.

Bounds consistency infers bounds on integer, set or multiset variables. A bound on
an integer variableN is any inequality,N ≤ m or N ≥ m with min(N) ≤ m ≤
max(N). A bound on a set variableS is any membership constraint,a ∈ S or b 6∈ S
with a ∈ ub(S) andb ∈ ub(S) − lb(S), wherelb(S) andub(S) are known upper and
lower bounds onS wrt set containment. It may seem odd that a membership constraint
is called a “bound”, but such a constraint is a bound on what can or cannot be in the
set. With multiset variables, this becomes even more apparent. A bound on a multiset
variableM is any occurrence constraint,occ(a,M) ≤ m or occ(a,M) ≥ m with
occ(a, lb(M)) ≤ m ≤ occ(a, ub(M)).

Bounds consistency infers such bounds by looking for assignments which satisfy the
constraints. Such assignments must use values within the current bounds on the domains
of the variables. An assignment setτ for a constraintC is proper, writtenproper(τ, C)
iff scope(τ) = scope(C), for each integer variableN with N = m ∈ τ we have
min(N) ≤ m ≤ max(N), and for each set or multiset variableX with X = a ∈ τ , we
havelb(X) ⊆ a ⊆ ub(X). If a proper assignment setτ for a constraintC satisfies that
constraint, we writeC(τ). We write¬C(τ) otherwise.

We say that a bound on a variable isbound inconsistentwrt a constraint iff all
proper assignment sets satisfying the bound fail to satisfy the constraint. For exam-
ple,N ≥ m is bound inconsistent wrtC iff ∀τ.(proper(τ, C) ∧ N = n ∈ τ ∧ n ≥
m)→ ¬C(τ). Similarly,a ∈ S is bound inconsistent wrtC iff ∀τ.(proper(τ, C) ∧ S =
b ∈ τ ∧ a ∈ b) → ¬C(τ). Finally, occ(a,M) ≤ m is bound inconsistent wrtC iff
∀τ.(proper(τ, C) ∧ M = b ∈ τ ∧ occ(a, b) ≤ m) → ¬C(τ). There is an unique
maximal set of bound inconsistent bounds,MaxBoundInc(C). For instance, given the
constraint|X−Y | = N with {1} ⊆ X ⊆ {1, 2}, {3} ⊆ Y ⊆ {1, 3, 4} andN = {2, 3}
thenMaxBoundInc(|X − Y | = N) = {N ≥ 3, 2 6∈ X, 1 ∈ Y }. The boundN ≥ 3 is
bound inconsistent as there is no proper assignment set withN = 3 which can satisfy
|X−Y | = N . Similarly,2 6∈ X and1 ∈ Y are bound inconsistent since the only proper
assignment sets which satisfy|X − Y | = N have2 ∈ X and1 6∈ Y .

Bounds that arebound consistenthave at least one witness falsifying the conditions
for bound inconsistency. For example, ifN ≤ m is bound consistent wrtC then there
is a proper assignment setτ with N = n ∈ τ , n ≤ m, andC(τ). Similarly, if a 6∈ X
is bound consistent wrtC then there is a proper assignment setτ with X = b ∈ τ ,
a 6∈ b, andC(τ). Finally, if occ(a,M) ≥ m is bound consistent wrtC then there is a
proper assignment setτ with M = b ∈ τ , occ(a, b) ≥ m, andC(τ). For instance, given
again the constraint|X − Y | = N with {1} ⊆ X ⊆ {1, 2}, {3} ⊆ Y ⊆ {1, 3, 4}
andN = {2, 3} then the boundsN ≥ 2 and1 ∈ X are both bound consistent since
X = {1, 2}, Y = {3, 4} andN = 2 satisfy the constraint and the two bounds.

The witnessτ that shows that a bound is bound consistent is called abound support
for the bound. We extend this notion of bound support to include assignments as well
as bounds. Given a constraintC and an integer variableN within its scope, the bound
support forN = m is a proper assignment setτ with N = m ∈ τ andC(τ). Similarly,
given a constraintC and a set or multiset variableX within its scope, the bound support
for X = a is a proper assignment setτ with X = a ∈ τ andC(τ). For example, given
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again the constraint|X − Y | = N , X = {1, 2}, Y = {3, 4} andN = 2 is a bound
support forN = 2, forX = {1, 2} and forY = {3, 4}.

Bound valid bounds are the dual of bound inconsistent assignments. We will need
bound validity when dealing with constraint expressions involving (explicit or implicit)
negation. For instance, the bound inconsistent bounds ofnot(C) are exactly the bound
valid bounds ofC. More formally, a bound isbound valid wrt a constraint iff any proper
assignment set satisfying the bound must satisfy the constraint. For example,N ≥ m
is bound valid wrtC iff ∀τ.(proper(τ, C) ∧N = n ∈ τ ∧ n ≥ m) → C(τ). Similarly,
a ∈ S is bound valid wrtC iff ∀τ.(proper(τ, C)∧S = b ∈ τ ∧ a ∈ b)→ C(τ). Finally,
occ(a,M) ≤ m is bound valid wrtC iff ∀τ.(proper(τ, C) ∧M = b ∈ τ ∧ occ(a, b) ≤
m)→ C(τ).

As with bound inconsistency, there is an uniquemaximal set of bound valid bounds,
MaxBoundValid(C). For instance, given again the constraint|X−Y | 6= N with {1} ⊆
X ⊆ {1, 2}, {3} ⊆ Y ⊆ {1, 3, 4} andN = {2, 3} thenMaxBoundValid(|X − Y | 6=
N) = {N ≥ 3, 2 6∈ X, 1 ∈ Y }. The boundN ≥ 3 is bound valid as all proper
assignment sets withN = 3 satisfy |X − Y | 6= N . Similarly, 2 6∈ X and1 ∈ Y
are bound valid since all proper assignment sets with2 6∈ X or 1 ∈ Y will satisfy
|X − Y | 6= N . Note that|X − Y | 6= N is equivalent tonot(|X − Y | = N), and hence
MaxBoundValid(|X − Y | 6= N) = MaxBoundInc(|X − Y | = N).

6 Enforcing BC

When solving a constraint satisfaction problem, we can tighten the lower and upper
bounds on each integer variable, prune values from the upper bound of set or multiset
variables, and add values to the lower bounds until each constraint is bound consistent.
More formally, a constraintC is BC (bound consistent) iff for each integer variableN
in scope(C), N = min(N) andN = max(N) have bound support, and for each set
or multiset variablesX in scope(C), lb(X) andub(X) are respectively the intersection
and union of values assigned toX which have bound support. A set of constraints is
BC iff each constraint is itself BC.

Given a bound inconsistent bound, we can prune values in the domains of the vari-
ables which are ruled out by this bound. For the boundN ≥ m, we prunem and values
larger from the domain ofN . For the boundN ≤ m, we prunem and values smaller
from the domain ofN . For the bounda ∈ S, we prunea from ub(S). For the bound
a 6∈ S, we adda to lb(S). For the boundocc(a,M) ≥ m, we reduce the number
of occurrences ofa in ub(M) to m − 1. Finally, for the boundocc(a,M) ≤ m, we
increase the number of occurrences ofa in lb(M) to m + 1. Pruning all the values
ruled out by the maximal set of bound inconsistent bounds will make a constraint BC
or cause a domain wipeout. To return to our example with the constraint|X − Y | = N
where{1} ⊆ X ⊆ {1, 2}, {3} ⊆ Y ⊆ {1, 3, 4} andN = {2, 3}. Recall that
{N ≥ 3, 2 6∈ X, 1 ∈ Y } is the maximal set of bound inconsistent bounds. There-
fore we can prune 3 fromN , add 2 tolb(X), and delete 1 fromub(Y ). This gives
{1, 2} ⊆ X ⊆ {1, 2}, {3} ⊆ Y ⊆ {3, 4} andN = {2}. With these domains, the
constraint|X − Y | = N is BC.

To enforce BC on a constraint, we need therefore to compute the maximal set of
bound inconsistent bounds. Unfortunately, this is intractable in general. We have already
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proved that determining if an assignment is inMaxInc(and(C1, . . . , Ck)) is coNP-
complete, and if a set of assignments is equivalent toMaxInc(and(C1, . . . , Ck)) is
DP -complete. As these proofs only used Boolean variables, we can represent the exam-
ples in these with proofs with 0/1 variables, and (in)consistency is equivalent to bounds
(in)consistency. Therefore, determining if a bound is inMaxBoundInc(and(C1, . . . , Ck))
is coNP-complete, and if a set of bounds is equivalent toMaxBoundInc(and(C1, . . . , Ck))
isDP -complete.

If each primitive constraint has an associated algorithm to compute bound incon-
sistent and bound valid bounds, we can instead useInc andValid to compute sets of
inconsistent and valid bounds. It is not hard to show thatInc andValid will only return
bound inconsistent and bound valid bounds, and that maximality of bound inconsistency
is preserved for constraint disjunction but not necessarily for constraint conjunction. We
can even mix algorithms which compute bound inconsistent or bound valid bounds with
those that compute inconsistent or valid assignments. When computingInc andValid ,
we merely need to treat the boundM ≥ m as short hand for the set of assignments
{M = n | m ≤ n ≤ max(M)}, and the boundM ≤ m as short hand for the set of
assignments{M = n | min(N) ≤ n ≤ m}. We can then compute the intersection of
bounds and assignments.

7 Applications

7.1 Modeling

To show the benefits of combining constraints together with propositional connectives,
we consider the orchestra rehearsal problem [13]. This isprob039 in CSPLIB. The
task is to schedule musicians in an orchestra who are rehearsing a set of pieces so that
appropriate musicians are present for each piece. The model discussed in [13] uses
multiple viewpoints to represent and propagate the constraints efficiently. Channelling
constraints to link these viewpoints together are therefore needed. The channelling con-
straints take the following forms:

iff (Xi = 1, or(Xi−1 = 1, Yi = 1))

iff (Zk = j, and(Xj = 1, Xj−1 = 0))

The model also contained specialized problem specific optimality constraints of the
form:

implies(X < Y,WX = 1)

All of these constraints can be easily represented and reasoned with using the techniques
described in this paper.

7.2 Valid Assignments

To propagate constraint expressions, we need algorithms for computing inconsistent
and valid assignments or bounds for the primitive constraints. In the rest of this section,
we show this can be done easily and effectively for a variety of constraints.
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Inequalities With inequality constraints, constraint propagation only prunes bounds
on the variables. To compute the maximal bound valid bounds, we can exploit the fol-
lowing relations:MaxBoundValid(C) = MaxBoundInc(not(C)), not(X < Y ) iff
X ≥ Y , not(X ≤ Y ) iff X > Y , not(X > Y ) iff X ≤ Y andnot(X ≥ Y ) iff
X < Y .

All-different The constraintalldifferent([X1, . . . , Xn]) ensures thatXi 6= Xj for all
i < j. We can use an algorithm due to Régin [12] to compute the maximal set of in-
consistent assignments. It is also easy to compute the maximal set of valid assignments.
Let S be the set of values that appear in the domain of more than one variable. IfS is
not empty, then no assignment can be valid. IfS is empty, then the variable domains
are disjoint and all assignments are valid.

Among The constraintamong(N , [X1, . . ., Xn], [d1, . . ., dm]), introduced in CHIP
[2], ensures thatN is equal to the number of theXi whose values lie among thedj .
Let a =

∑
i(domain(Xi) ⊆ {d1, . . . , dm}) andb =

∑
i(|domain(Xi) ∩ {d1, . . . ,

dm}| > 0). The maximal set of valid assignments containsN = a whena = b, and
Xi = m whenmin(N) = max (N) = a = b andm ∈ domain(Xi).

Count The constraintcount(d, [X1, . . ., Xm], op, N ]) whereop ∈ {=, 6=, >, <, ≥,
≤}, introduced in SICStus Prolog [1], ensures that|{i | Xi = d}| op N . For example,
count(d, [X1, . . . , Xm],=, N ]) ensures thatN is equal to the number of variables in
theXi that take the valued. The maximal set of valid assignments can again be easily
computed. For instance, given againcount(d, [X1, . . . , Xm],=, N ]), then the maximal
set of valid assignments containsN = a whena = b andXi = m whenmin(N) =
max (N) = a = b andm ∈ domain(Xi).

Element The constraintelement(I, [d1, . . . , dn], X) ensures thatX = dI . This allows
us to “look up” theI-th value in the array,dj . It is again easy to compute valid assign-
ments. The maximal set of valid assignments containsI = j whenj ∈ domain(I) and
domain(X) = {dj}, andX = m whenm ∈ domain(X) and for allj ∈ domain(I)
we havedj = m.

Member constraint The constraintmember(N, [X1, . . . , Xm]) ensures that at least
oneXi takes the same value asN . It is again easy to compute valid assignments.
The maximal set of valid assignments containsN = i wherei ∈ domain(N) and
there is somej with domain(Xj) = {i}, andXk = m wherem ∈ domain(Xk),
|domain(N)| = 1 and there is somej with domain(Xj) = domain(N), or where
m ∈ domain(Xk) anddomain(N) = {m}.

Minimum and maximum The constraintmax (N , [X1, . . . ,Xm]) is satisfied iffN
is the maximum of the values taken by theXi, whilst min(N, [X1, . . . , Xm]) is satis-
fied iff N is the minimum. It is simple to see that such constraints only prune bounds,
and that bound inconsistent bounds can be easily computed. Computing bound valid
bounds for such constraints also involves simple bound reasoning. For example, con-
sider min(N, [X1, . . . , Xm]). If max (N) = min(N) = n and there existsi with
max (Xi) = min(Xi) = minj(Xj) = n thenN ≤ n, N ≥ n, and for anyXj ,
Xj ≤ k, Xj ≥ l for any k or l in range(Xj) are the maximal bound valid bounds.
Otherwise, there are no bound valid bounds.
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8 Related work

Bessìere and Ŕegin have proposed a GAC-schema like algorithm for enforcing GAC on
a conjunction of primitive constraints [3]. However, as could be expected from Theo-
rem 1, their algorithm requires timeO(dn) in the worst case.

Lhomme has recently proposed an arc-consistency algorithm for disjunctions of
primitive constraintsor(C1, . . . , Ck) [8]. This algorithm works by testing each assign-
ment for membership in

⋂
1≤i≤k MaxInc(Ci). If the assignment is not inMaxInc(Ci)

for somei the remainingMaxInc sets do not have to be tested. However, in general
MaxInc for all of the primitive constraints may have to be (implicitly) computed.

The cardinality constraint can be used to implement conjunction, disjunction, nega-
tion, as well as a host of other useful constraints [5]. However, only a very restricted
form of consistency is enforced on the cardinality constraint. We can demonstrate sim-
ple examples on which we can perform more pruning. For example, ifC1 isX = 0,C2

is X = 1 andD = {X = 0, X = 1, X = 2} thenInc(or(C1, C2),D) = {X = 2}.
Pruning the value 2 fromX makes the problem GAC. However, the equivalent cardi-
nality constraint,card(N, [C1, C2]) whereN ≥ 1 is consistent without any domain
prunings.

To perform more global pruning on cardinality constraints expressing disjunction,
cc(FD) introduced constructive disjunction [6]. If any of the disjuncts,Ci in a con-
structive disjunction,C1 ∨c . . . ∨c Ck is entailed by the constraint store, then the con-
structive disjunction is satisfied. Otherwise, each constraintCi is added in turn to the
constraint store and propagated. The resulting inconsistent assignments are recorded,
the state restored, and the next constraint is processed. The intersection of the incon-
sistent assignments found for each constraint are then taken to be the inconsistent as-
signments for the disjunction. Constructive disjunction can do more pruning than en-
forcing GAC on the disjunctive constraint expression. For example, even though both
or(X = 0, Y = 0) andX = Y on 0/1 variable are GAC, propagatingX = 0∨c Y = 0
andX = Y prunesX = Y = 1. This extra pruning arises from interaction between the
disjunctive constraint and the other constraints in the constraint store (X = Y in our
example). GAC on the disjunction, on the other hand, is entirely local to the disjunction.
For this reason, constructive disjunction can be very expensive, and may not justify its
costs in practice [7].

In contrast to these previous works, we have provided a tractable and more light
weight method for computing a subset ofMaxInc that does a useful amount of con-
straint propagation. Our algorithm is compositional as it uses the propagators provided
for the primitive constraints. Hence it can be applied to complex, nested logical expres-
sions.

9 Conclusion

We have proposed a simple and light weight method for propagating complex constraint
expressions built from primitive constraints using logical connectives. Since computing
the maximal set of inconsistent assignments for a constraint expression is intractable in
general, we have constructed a polynomial time function which computes a tractable
subset compositionally. We characterised when this function is guaranteed to compute
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the maximal set of inconsistent assignments. We then lifted our reasoning from in-
consistent assignments to inconsistent bounds, and demonstrated how we can achieve
bounds consistency on complex constraint expressions involving integer, set or multi-
set variables. Finally, as our approach requires being able to compute valid as well as
inconsistent assignments and bounds for primitive constraints, we demonstrated that
valid assignments and bounds can easily be computed for many primitive constraints.
There remain many interesting directions to follow both from a theoretical and practical
perspective. For example, how do we compute and use nogoods for constraint expres-
sions? Finally, perhaps the most important question is how effective in practice will be
the constraint propagation obtained fromInc?
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Abstract. Singleton arc consistency (SAC) is a local consistency that
ensures that a constraint network can be made arc consistent after any
assignment of a value to a variable. A first contribution of this paper is
to show experimentally that the optimal-time algorithm proposed in [5]
(which was analyzed only theoretically) is efficient in practice compared
to previous SAC algorithms. However, it can be costly in space on large
problems, even with the small improvements we propose at the beginning
of this paper. To reduce this space consumption, we propose another
SAC algorithm requiring less space but no longer optimal in time. An
experimental study on random problems highlights the good performance
of this second algorithm.

1 Introduction

Ensuring that a given local consistency does not lead to a failure when we enforce
it after having assigned a variable to a value is a common idea in constraint
solving. It has been applied (sometimes under the name ’shaving’) in constraint
problems with numerical domains by limiting the assignments to bounds in the
domains and ensuring that bounds consistency does not fail [13]. In SAT, it
has been used as a way to compute more accurate heuristics for DPLL [10, 14].
Finally, in constraint satisfaction problems (CSPs), it has been proposed and
studied under the name Singleton Arc Consistency (SAC) ([9, 19]).

Some nice properties give to SAC a real advantage over the other local consis-
tencies enhancing the ubiquitous arc consistency. Its definition is much simpler
than restricted path consistency [3], max-restricted-path consistency [8], or other
exotic local consistencies, and its operational semantics can be understood by a
non-completely-expert of the field. Enforcing it only removes values in domains,
and thus does not change the structure of the problem, as opposed to path con-
sistency [17], k-consistency [11], etc. Finally, implementing it can be done simply
on top of any AC algorithm.

Non optimal SAC algorithms were proposed in [9] and [1] while an optimal
one has recently been described in [5]. In Section 3 of this paper, we rewrite
the algorithm proposed in [5] in a slight different way that does not change
its worst-case time and space complexities while improving slightly its practical



18 Christian Bessière and Romuald Debruyne

performance. We call it SAC-Opt. However, the optimal time complexity is kept
at the cost of a high space complexity that prevents the use of this algorithm
on large problems. We then propose in Section 4 another SAC algorithm, SAC-
SDS, with a better worst-case space complexity but no longer optimal in time.
Nevertheless, its time complexity remains better than the other SAC algorithms
proposed in the past. The experiments presented in Section 5 highlight the good
performance of both SAC-Opt and SAC-SDS.

2 Preliminaries

A finite constraint network P consists of a finite set of n variables X = {i, j, . . .},
a set of domains D = {Di, Dj , . . .}, where the domain Di is the finite set of
values that variable i can take, and a set of constraints C = {c1, . . . , cm}. Each
constraint ci is defined by the ordered set var(ci) of the variables it involves, and
a set sol(ci) of allowed combinations of values. An assignment of values to the
variables in var(ci) satisfies ci if it belongs to sol(ci). A solution to a constraint
network is an assignment of a value from its domain to each variable such that
every constraint in the network is satisfied. We will use cij to refer to sol(c) when
var(c) = (i, j). Φ(P ) denotes the network obtained after enforcing Φ-consistency
on P .

Definition 1 A constraint network P = (X,D,C) is said to be Φ-inconsistent
iff Φ(P ) has some empty domains or empty constraints.

Definition 2 A constraint network P = (X,D,C) is singleton arc consis-
tent iff ∀i ∈ X,∀a ∈ Di, the network P |i=a obtained by replacing Di by the
singleton {a} is not arc inconsistent.

3 An Optimal Algorithm for SAC

SAC-1 [9] has no data structure storing on which values rely the SAC consis-
tency of each value. After a value removal, SAC-1 must check again the SAC
consistency of all the other values.

SAC-2 [1] uses the fact that if we know that AC does not lead to a wipe
out in P |i=a then the SAC consistency of (i, a) holds as long as all the values
in AC(P |i = a) are in the domain. After the removal of a value (j, b), SAC-2
checks again the SAC consistency of all the values (i, a) such that (j, b) was in
AC(P |i=a). This leads to a better average time complexity than SAC-1 but the
data structures of SAC-2 are not sufficient to reach optimality since SAC-2 may
waste time redoing the enforcement of AC in P |i=a several times from scratch.

Algorithm 1, called SAC-Opt, is an algorithm that enforces SAC in O(end3),
the lowest time complexity which can be expected. (See [5]).

The idea behind such an optimal algorithm is that we don’t want to do and
redo (potentially nd times) arc consistency from scratch for each subproblem
P |j=b each time a value (i, a) is found SAC inconsistent. (Which represents
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Algorithm 1: The optimal SAC algorithm

procedure SAC-Opt(in P :Problem);
/* init phase */;

1 P ← AC(P ) ; PendingList← ∅;
foreach (i, a) ∈ D do Pia ← nil;

2 foreach (i, a) ∈ D do
3 Pia ← P /* we copy the network and its data structures */;
4 if not(propagateAC(Pia, Di \ {a})) then
5 D ← D \ {(i, a)};
6 propagateAC (P, {(i, a)});

foreach Pjb 6= nil such that (i, a) ∈ Pjb do
7 Qjb ← Qjb ∪ {(i, a)};
8 PendingList← PendingList ∪ Pjb;

/* propag phase */;
9 while PendingList 6= ∅ do

pop Pia from PendingList;
10 if not(propagateAC(Pia, Qia)) then
11 D ← D \ {(i, a)};

foreach (j, b) ∈ D such that (i, a) ∈ Pjb do
12 Qjb ← Qjb ∪ {(i, a)};
13 PendingList← PendingList ∪ Pjb;

n2d2 potential arc consistency calls.) To avoid such costly repetitions of arc
consistency calls, we duplicate the problem nd times, one for each value (i, a), so
that we can benefit from the incrementality of arc consistency on each of them.
An AC algorithm is called ’incremental’ when its complexity on a problem P is
the same for a single call or for up to nd calls, where two consecutive calls differ
only by the deletion of some values from P . The generic AC algorithms are all
incremental.

SAC-Opt can be decomposed in several sequential steps. In the following,
propagateAC(P, S) denotes the function that incrementally propagates in P the
removal of the set S of values when an initial AC call has already been executed,
initializing the data structures required by the AC algorithm in use.

First, after some basic initializations and making the problem arc consistent
(line 1), the loop in line 2 duplicates nd times the arc consistent problem ob-
tained in line 1, and propagates the removal of all the values different from a for
i in each P |i=a, denoted Pia (line 4). If a subproblem Pia has no arc consistent
subdomain, the removal of (i, a) is propagated in P (line 6). The subproblems
corresponding to the subsequent steps of the loop will benefit from this propa-
gation because they are created by duplication of P (line 3).3 For each already

3 This is the main difference between SAC-Opt and the algorithm presented in [5].
SAC-Opt will thus build less and smaller subproblems.



20 Christian Bessière and Romuald Debruyne

checked subproblem Pjb having (i, a) in its domain, (i, a) is put in Qjb for future
propagation (line 7).

Once this initialization phase has finished, the removal of all SAC inconsistent
value has been propagated in all the subproblems except in those in PendingList.
Each problem Pjb in PendingList contains the removals that must be propagated
in its local propagation list Qjb. During the whole loop of the propagation phase,
if the AC propagation of a list Qia in a subproblem Pia fails (line 10), (i, a) is
removed from D, and the list Qjb of each subproblem Pjb having (i, a) in its
domain is updated for a future propagation of this removal.

When PendingList is empty, all the removals have been propagated in the
subproblems and all the values in D are SAC consistent.

Theorem 1 SAC-Opt is a correct SAC algorithm with O(end3) optimal worst-
case time complexity and O(end2) worst-case space complexity.

Proof. (See [5].)

Remarks. We can remark that the Q lists contain values to be propagated. This
is written like this because the AC algorithm chosen is not specified here, and
value removal is the most accurate information we can have. If the AC algorithm
chosen is AC-6 [4], AC-7 [6] , or AC-4 [16], the lists will be directly used like
this. If it is AC-3 [15] or AC-2001 [7], only the variables from which the domain
has changed are necessary. This last information is trivially obtained from the
list of removed values.

We can also point out that if AC-3 is used, we decrease the space complexity
to O(n2d2), but time complexity increases to O(end4) since AC-3 is not optimal.

4 Losing Time Optimality to Save Space

SAC-Opt cannot be used on large constraint networks because of its O(end2)
space complexity. Moreover, it seems difficult to reach optimal time complexity
with smaller space requirements. Indeed, a SAC algorithm has to enforce AC in
each subproblem P |i=a and to be optimal in time it must store sufficient data
to never redo some work in a subproblem. Optimal AC algorithms use at least
a space in O(ed) and it seems therefore unavoidable that an optimal time SAC
algorithm requires nd times more space.

In this section we propose to relax time optimality to reach a satisfactory
trade-off between space and time. To avoid a too general discussion, we instanti-
ate this idea on a AC-2001 oriented SAC algorithm. The “suboptimal” algorithm
we present uses AC-2001 data structures, but the same idea could be imple-
mented with other low-space optimal AC algorithms such as AC-6 and AC-7.
The algorithm SAC-SDS (’Sharing Data Structures’) tries to use the incremen-
tality of the AC algorithms to avoid redundant work, without duplicating on
each subproblem P |i=a the data structures required by optimal AC algorithms.
This algorithm requires less space than SAC-Opt but is not optimal in time.
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Algorithm 2: The SAC-SDS algorithm

procedure SAC-SDS-2001 (in P : Problem);
1 P ← AC-2001(P ) ; PendingList← ∅;
2 foreach (i, a) ∈ D do
3 SupportSACia ← nil ; Qia ← {i}; PendingList ← PendingList ∪ {(i, a)};
4 while PendingList 6= ∅ do

pop (i, a) from PendingList ;
if a ∈ Di then

5 if SupportSACia = nil then SupportSACia ← (D \Di) ∪ {(i, a)};
6 if not( propagateSubAC( (X,SupportSACia , C), Qia)) then
7 Di ← Di \ {a} ;
8 updateSubproblems ((i, a)) ;
9 propagateAC ( (X,D,C), {i}) ;

function propagateAC (in (X,D,C): Problem, in Q: set): Boolean;
while Q 6= ∅ do

pop j from Q ;
foreach i ∈ X such that ∃Cij ∈ C do

foreach a ∈ Di such that Lastija 6∈ Dj do
10 if ∃b ∈ Dj such that b > Lastija ∧ Cij(a, b) then
11 Lastija ← b /* not in propagateSubAC */;

else
12 Di ← Di \ {a} ;

Q← Q ∪ {i} ;
13 updateSubproblems ((i, a)) /* not in propagateSubAC */;

if Di = ∅ then return false;

return true;
procedure updateSubproblems(in (i, a): Value);

foreach (j, b) ∈ D such that (i, a) ∈ SupportSACjb do

14 SupportSACjb ← SupportSACjb \ {(i, a)} ;
Qjb ← Qjb ∪ {i} ;

15 PendingList← PendingList ∪ {(j, b)} ;

The main idea in SAC-SDS is that for each value (i, a), we store a local
propagation list and the domain of AC(P |i=a), denoted by SupportSACia and
called its SAC-support. Thanks to these SAC-supports, we know which values
may no longer be SAC consistent after a removal. These SAC-supports are also
used to follow the AC enforcement in each subproblem P |i=a with the domains
in the state in which they were at the end of the last AC propagation.

SAC-SDS-2001 relies on AC-2001. The data structure Last of this algorithm
will be used for the propagation of AC in P but it will also be used to help the
enforcement of AC in the subproblems P |i=a. This data structure is therefore
shared since it is not duplicated while being used for achieving AC in P and all
the subproblems P |i=a.



22 Christian Bessière and Romuald Debruyne

In SAC-SDS-2001, a value (i, a) is in PendingList if some removals have to
be propagated in P |i=a. In such a case, Qia is a non empty list composed of
all the variables j such that values in Dj have been removed since the last
AC enforcement in P |i=a. After some initializations, SAC-SDS-2001 repeat-
edly pops a value from PendingList and propagates AC in (X,SupportSACia , C),
namely P |i=a, since SupportSACia is the current domain of P |i=a. Remark that if
SupportSACia = nil this is the first enforcement of AC in P |i=a and SupportSACia

must be initialized (line 5). If P |i=a is arc inconsistent, (i, a) is not SAC consis-
tent. It is therefore removed from P (line 7) and from the subproblems (using
updateSubproblems in line 8) before the propagation of this removal (line 9).

The function propagateSubAC used to propagate arc consistency in the sub-
problems is almost similar to propagateAC in AC-2001. The difference comes
from line 11 where the structure Last is not updated. Indeed, this data structure
is useful to achieve AC in the subproblems more quickly (line 10) since we know
that there is no support for (i, a) on Cij lower than Lastija in P (and so in sub-
problems) but since this data structure is not duplicated for each subproblem it
must not be updated by propagateSubAC.

Obviously, while achieving AC in P using propagateAC the data structure
Last is updated and the only difference with AC-2001 is the line 13 where
updateSubproblems is used to remove the SAC inconsistent value (i, a) in all
the subproblems and to update the local propagation lists for future propaga-
tion of these removals.

By using updateSubproblems, SAC-SDS-2001 tries to avoid redoing the same
propagations in all the subproblems. Each removal of a SAC inconsistent value
is first propagated in P before being propagated in the subproblems. Thanks to
updateSubproblems, all the subproblems will benefit from the removals in P .

Theorem 2 SAC-SDS is a correct SAC algorithm with O(end4) time complexity
and O(n2d2) space complexity.

Proof. Correctness. Note first that the structure Last is updated only while
achieving AC in P so that any support of (i, a) in Dj is greater than or equal to
Lastija. The domains of the subproblems being subdomains of D, any support
of a value (i, a) on Cij in a subproblem is also greater or equal to Lastija. This
explains that propagateSubAC can benefit (line 10) from the structure Last
without losing any support.

Suppose that SAC-SDS-2001 is not sound on a problem P and let (i, a) be
the first SAC consistent value it removes while it should not. If (i, a) is removed
at line 7 it would be a SAC inconsistent value since only deleted values are
put in the local propagation lists and by assumption any previously removed
value is SAC-inconsistent. So, (i, a) is removed at line 9 because it is no longer
arc consistent after the removal of some SAC inconsistent values and (i, a) is
therefore not SAC consistent. So, any removed value is SAC inconsistent and
SAC-SDS-2001 is sound.

Completeness comes from the fact that any deletion is propagated. After
the initialization (lines 2-3), PendingList = D and so, the main loop of SAC-
SDS-2001 considers any subproblem P |i=a at least once. Each time a value (i, a)
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is found SAC inconsistent in P , because P |i=a is arc inconsistent (line 6) or
because the deletion of some SAC-inconsistent values make it arc inconsistent
in P (lines 9 and 12 of propagateAC), (i, a) is removed from the subproblems
(using updateSubproblems and PendingList) and the local propagation lists are
updated for future propagation. At the end of the main loop, PendingList is
empty, so all the removals have been propagated and for any value (i, a) ∈ D
SupportSACia is a non empty arc consistent subdomain of P |i=a.

Complexity. The data structure Last requires a space in O(ed). Each of the
nd SupportSACia can contain nd values and there is at most n variables in the
nd local propagation lists. Since e < n2, the space complexity of SAC-SDS-2001
is in O(n2d2). So, considering space requirements, SAC-SDS-2001 is similar to
SAC-2 [1].

Regarding time complexity, SAC-SDS-2001 first duplicates the data struc-
tures and propagates arc consistency on each subproblem (lines 5 and 6), two
tasks which are respectively in nd ·nd and nd · ed2. Each value removal is propa-
gated to all P |i=a problems via an update of PendingList and SupportSACia sets
(lines 8 and 13). This requires nd · nd operations. Each subproblem can in the
worst case be called nd times for arc consistency, and there are nd subprob-
lems. The domains of each subproblem are stored so that the AC propagation
is launched with the domains in the state in which they were at the end of the
previous AC propagation in the subproblem. Thus, in spite of the several AC
propagations on a subproblem, a value will be removed at most once and, thanks
to incrementality of arc consistency, the propagation of these nd value removals
is in O(ed3). (Remark that we cannot reach the optimal ed2 complexity for arc
consistency on these subproblems since we do not duplicate the data structures
necessary for AC optimality.) Thus the total cost of arc consistency propagations
is nd · ed3. The total time complexity is O(end4). ut

As SAC-2, SAC-SDS performs a better propagation than SAC-1 since after
the removal of a value (i, a) from D, SAC-SDS checks the arc consistency of
the subproblems P |j=b only if they have (i, a) in their domains (and not all the
subproblems as SAC-1). But this is not sufficient to have a better worst-case
time complexity than SAC-1. The time complexity of SAC-2 is indeed O(en2d4)
as SAC-1. SAC-SDS improves this complexity because it does not propagate in
the subproblems from scratch since the current domain of each subproblem is
stored (using SupportSAC). Furthermore, we can expect a better average time
complexity since the shared structure Last can reduce the number of arc con-
sistency tests required. Finally, SAC-SDS does not duplicate data structures to
test the arc consistency of a subproblem, so, no restoration of data structures is
required after such a test.

5 Experimental Results

To compare the performances of the SAC algorithms, we used the random uni-
form constraint network generator of [12] which produces instances according to
the Model B [18]. All the algorithms have been implemented in C++. SAC-1 and
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Fig. 1. cpu time results on constraint networks with n=100, d=20, and density=.05.

SAC-2 have been tested using several AC algorithms. In the following, we note
AC-1-X, AC-2-X and SAC-Opt-X the versions of SAC-1, SAC-2 and SAC-Opt
based on AC-X. Note that for SAC-2 the implementation of the propagation list
has been done according to the recommendations made in [2, 1].

5.1 Experiments on sparse constraint networks

Fig. 1 presents cpu time performances on constraint networks having 100 vari-
ables, 20 values in each initial domain, and a density of .05. These constraint
networks are relatively sparse since the variables have five neighbors on aver-
age. For each tightness, 50 instances were generated. Fig. 1 shows mean values
obtained on a Pentium IV-1600 MHz with 512 Mb of memory under Windows
XP.

For a tightness lower than .55, all the values are SAC consistent. On these
under constrained network, the SAC algorithms check the arc consistency of
each subproblem at most once. Storing the SAC-supports to enhance the propa-
gation, as in SAC-2 and in SAC-SDS-2001, does not pay-off on these problems.
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Fig. 2. cpu time results on complete constraint networks with n=100 and d=20.

A brute-force algorithm such as SAC-1 is sufficient. SAC-1-2001 shows the best
performance.

On problems having tighter constraints, some SAC inconsistent values are
removed and at tightness .72 we can see a peak of complexity. However, as men-
tioned in [2], the enhanced propagation of SAC-2 is useless on sparse constraint
networks and SAC-2-X (with X∈ {4, 6, 2001}) is always more expensive than
SAC-1-X on the generated problems.

Around the peak of complexity, SAC-SDS-2001 is the clear winner. SAC-
Opt-2001 and SAC-1-2001 are around 1.7 times slower, and all the others are
between 2.1 and 10 times slower.

5.2 Experiments on dense constraint networks

We used the same computer to evaluate the performance of the SAC algorithms
on complete constraint networks. For each tightness, 50 instances were generated
and Fig. 2 shows mean values.

The performance of SAC-2 and SAC-1 is very close. When all the values are
SAC consistent (tightness lower than .37) the additional data structure of SAC-2
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is useless since there is no propagation. However the cost of building this data
structure is not important compared to the overall time and the time required by
SAC-2 is almost the same as SAC-1. Around the peak of complexity, SAC-2-X
(with X∈ {4, 6, 2001}) requires a little less time than SAC-1-X. SAC-2 has to
repeatedly recheck the arc consistency of less subproblems than SAC-1 but the
cost of testing a subproblem remains the same. On very tight constraints, SAC-1
requires less time than SAC-2 since the inconsistency of the problem is found
with almost no propagation and building the data structure of SAC-2 is useless.

Conversely to what is supposed in [1], using AC-4 in SAC-1 (or in SAC-2)
instead of AC-6 or AC-2001 is not worthwhile. The intuition was that since the
data structure of AC-4 has not to be updated, the cost of its creation would be
light compared to the profit we can expect. However, SAC-1-4 and SAC-2-4 are
far more costly than their versions based on AC-6 or AC-2001.

The best results are obtained with SAC-Opt-2001 and SAC-SDS-2001 which
are between 2.6 and 17 times faster than the others at the peak. These two
algorithms have a better propagation between subproblems than SAC-1 but
they also avoid some redundant work and so reduce the work performed on each
subproblem.

6 Summary and Conclusion

We have presented SAC-Opt, a slightly modified version of the optimal worst-
case time complexity SAC algorithm presented in [5]. However, the O(end2)
space complexity of this algorithm prevents its use on large constraint networks.
Therefore, we have proposed another SAC algorithm, SAC-SDS, that is not
optimal in time but that requires less space than SAC-Opt. Like the optimal
algorithm, SAC-SDS tries to avoid redundant work. Experiments show the good
performance of these new SAC algorithms.
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7. C. Bessière and J.C. Régin. Refining the basic constraint propagation algorithm.
In Proceedings IJCAI’01, pages 309–315, Seattle, WA, 2001.



Optimal and Suboptimal Singleton Arc Consistency Algorithms 27

8. R. Debruyne and C. Bessière. From restricted path consistency to max-restricted
path consistency. In Proceedings CP’97, pages 312–326, Linz, Austria, 1997.

9. R. Debruyne and C. Bessière. Some practicable filtering techniques for the con-
straint satisfaction problem. In Proceedings IJCAI’97, pages 412–417, Nagoya,
Japan, 1997.

10. J.W. Freeman. Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, Philadelphia PA, 1995.

11. E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,
21(11):958–966, 1978.

12. D. Frost, C. Bessière, R. Dechter, and J.C. Régin. Random uniform csp generators.
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Abstract. For many years, arc consistency has been recognized as a
basic property of constraint networks. Among all algorithms that have
been proposed to establish arc consistency, AC3, and more precisely its
recent extensions, still remains competitive. In this paper, we present
three variants for AC3 based algorithms and we focus on the order in
which revisions are applied by them. For the three variants, which respec-
tively correspond to algorithms with an arc-oriented, variable-oriented
and constraint-oriented propagation scheme, we propose some original
revision ordering heuristics and adapt the ones defined in [21]. The ex-
perimentation which has been run both on binary and non-binary prob-
lems confirm that using such heuristics, when arc consistency is used as
a preprocessing or/and when it is maintained during search, turns out
to significantly reduce the number of constraint checks. Furthermore,
we show that the variable-oriented variant is guaranteed to benefit from
such heuristics in terms of cpu time.

1 Introduction

For many years, arc consistency has been recognized as a basic property of
constraint networks. Arc consistency guarantees that any value of the domain of
a variable can be found in, at least, a support of any constraint. This property
can be established by an algorithm to make a constraint network arc consistent
but it can also be maintained during the search of a solution.

Many algorithms have been proposed to establish arc consistency. One of the
very first proposals is the algorithm AC3 [12]. This coarse grained algorithm
involves applying successive revisions of arcs, i.e., of pairs (C,X) composed of a
constraint C and of a variable X belonging to the set of variables of C. Later,
other algorithms such as AC4 [14], AC6 [2] and AC7 [3] have been introduced.
These fine grained algorithms involve applying successive revisions of “values”,
i.e., of triplets (C,X, a) composed of an arc (C,X) and of a value a belonging
to the domain of X.

Even if, theoretically, AC3, unlike AC4, AC6 and AC7, has not an optimal
worst case time complexity (O(md3) for AC3 and O(md2) for AC4, AC6 and
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AC7 where m and d respectively denote the number of constraints and the size
of the uniform domains) and if, in practice, AC3 is not always as fast as AC6
and AC7, AC3 has the great advantage to be easily implemented.

On the other hand, some recent extensions of AC3 have been developed
which, while preserving the simplicity of AC3, turn out to be as competitive
as fine grained algorithms (with, in particular, a worst case time complexity
in O(md2) for most of them). These new algorithms are called AC2000 [5],
AC2001/3.1 [5, 22], AC3d [18], AC3.2 [11] and AC3.3 [11]. It is also interesting to
note that with respect to some desirable properties of arc consistency algorithms,
it is possible to draw a parallel [5] between AC2001/3.1 and AC6 and another [11]
between AC3.3 and AC7. Then, it clearly appears that AC3 based algorithms
are up-to-date algorithms to establish arc consistency.

In this paper, we are interested in the order in which revisions are applied
by AC3-based algorithms. First, we present three variants which respectively
correspond to algorithms with an arc-oriented, variable-oriented and constraint-
oriented propagation scheme. The first one is the most commonly presented,
the second one corresponds to the algorithm proposed by [13, 6], and the third
one is original. Even if, at first glance, all these variants seems to be equivalent,
we shall emphasize a significant difference of their respective behaviour when
considering different revision ordering heuristics. As far as we are aware, the
only works which concern such heuristics are [21, 8, 18] which focus on the arc-
oriented variant to solve binary problems, and [15] which focuses on fine-grained
algorithms.

Then, our contribution is the study of various revision ordering heuristics
with respect to the use of the three variants before and/or during the search of
a solution for binary and non binary problems. In particular, we propose some
original heuristics based on the proportion of removed values in the different
domains and on the current domain size of the different constraints. Also, we
adapt to the three proposed variants, the heuristic of [21] which is based on the
current size of the domains. Experimental results show that using such heuristics
before or/and during the search of a solution can be quite efficient in terms of
constraint checks. Furthermore, we show that the variable-oriented variant is
guaranteed to benefit from such heuristics in terms of cpu time.

This paper is organized as follows. Section 2 introduces some preliminaries.
In Section 3, three variants of the basic arc consistency algorithm are described.
Some revision ordering heuristics are presented in Section 4. Before concluding,
Section 5 gives an experimental evaluation.

2 Preliminaries

Let us introduce some notations frequently used in the rest of the paper:

– |S| denotes the cardinality of a set S, i.e. the number of elements of S,
–
∏k
i=1 Si denotes the Cartesian product over k sets S1, . . . , Sk, i.e. the set
{(a1, . . . , ak) | ai ∈ Si, 1 ≤ i ≤ k},
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Definition 1. A constraint network is a pair (X ,C ) where:

– X = {X1, . . . , Xn} is a finite set of n variables such that each variable Xi

has an associated domain dom(Xi) denoting the set of values allowed for Xi,
– C = {C1, . . . , Cm} is a finite set of m constraints such that each constraint
Cj has an associated relation rel(Cj) denoting the set of tuples allowed for
the variables vars(Cj) involved in the constraint Cj.

We shall say that a constraint C involves (or binds) a variable X if and only
if X belongs to vars(C). The arity of a constraint C is the number of variables
involved in C, i.e., the number of variables in vars(C). A binary constraint
only involves 2 variables. The domain of a constraint C, denoted dom(C), is
the Cartesian product

∏k
j=1 dom(Xij ), where C is a k-ary constraint such that

vars(C) = {Xi1 , . . . , Xik}. For any element t = (ai1 , . . . , aik), called k-tuple, of
dom(C), t[Xij ] denotes the value aij . A k-tuple t is said to be a support of C
iff t ∈ rel(C) and is said to be a support of (X,a) in C iff t is a support of C
such that t[X] = a. Determining if a tuple is allowed by a constraint C (i.e. is a
support of C) is called a constraint check.

An instance of the Constraint Satisfaction Problem (CSP) is defined by a
constraint network. A CSP instance is said to be satisfiable iff the constraint
network to which it corresponds admits a solution, and unsatisfiable otherwise.
Solving a CSP instance involves either finding one (or more) solution or de-
termining its unsatisfiability. A solution is an assignment of values to all the
variables such that all the constraints are satisfied.

To solve a CSP instance, a depth-first search algorithm with backtracking can
be applied, where at each step of the search, a variable assignment is performed
followed by a filtering process called constraint propagation. Usually, constraint
propagation algorithms, which are based on some constraint network properties
such as arc-consistency, remove some values which can not occur in any solution.
Modifying the domains of a given constraint network in order to get it arc
consistent involves performing constraint checks.

Definition 2. Let P = (V ,C ) be a CSP, C ∈ C , V ∈ vars(C) and a ∈
dom(V ). (V, a) is said to be consistent wrt C iff there exists a support of (V, a)
in C. C is said to be arc-consistent iff ∀V ∈ vars(C), ∀a ∈ dom(V ), (V, a) is
consistent wrt C. P is said to be arc consistent iff ∀C ∈ C , C is arc-consistent.

3 AC3 based algorithms

In this section, we present the basic coarse-grained algorithm to establish arc
consistency, namely, AC3 [12]. Even if fine-grained algorithms such as AC4 [14],
AC6 [2] and AC7 [3] have been introduced, the simplicity and relative efficiency
(e.g., [20]) of AC3 have contributed to the fact that it is not still out of date. Fur-
ther, some recent improvements, which are quite competitive with fine-grained
algorithms, have been proposed. These new coarse-grained algorithms (or AC3
based algorithms) respectively correspond to AC2000 [5], AC2001/3.1 [5, 22],
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Algorithm 1 arc-oriented AC3
1: Q← {(C,X) | C ∈ C ∧X ∈ vars(C)}
2: while Q 6= ∅ do
3: pick (C,X) in Q
4: nbRemovals← revise(C,X)
5: if nbRemovals > 0 then
6: if dom(X) = ∅ then return FAILURE
7: else Q← Q∪ {(C′, X ′) | X ∈ vars(C′) ∧ X ′ ∈ vars(C′)∧X 6= X ′ ∧C 6= C′}
8: end if
9: end while

10: return SUCCESS

Algorithm 2 revise(C : Constraint, X : Variable) : integer
1: nbRemovals← 0
2: for each a ∈ dom(X) do
3: if seekSupport(C,X, a) = false then
4: remove a from dom(X)
5: nbRemovals← nbRemovals+ 1
6: end if
7: end for
8: return nbRemovals

AC3d [18], AC3.2 [11] and AC3.3 [11]. Even if, for the sake of simplicity, from
now on, we shall be mainly concerned with AC3, all what follows can be adapted
to other coarse-grained algorithms.

As already stated, AC3 is a coarse-grained algorithm, that is to say, an al-
gorithm whose principle is to apply successive revisions of pairs (C,X), called
arcs, composed of a constraint C and of a variable X belonging to the set of
variables of C. Each revision of an arc (C,X) aims at removing the values of
dom(X) without any support in C.

AC3 requires the management of a set Q recording the revisions to be still
performed. Basically, Q corresponds to a set of arcs [12]. However, it is possible to
consider Q as a set of variables [13, 6, 5, 22], and also, as a set of constraints. We
present these three alternatives in the general context of non-binary constraint
networks.

3.1 Arc-oriented AC3

First, we describe the variant of AC3 which uses an arc-oriented propagation
scheme. This variant, which is simple, natural and the most commonly presented,
is depicted in Algorithm 1. Initially, all arcs (C,X) are put in a set Q. Then,
each arc is revised in turn, and when a revision is effective (at least one value
has been removed), the set Q has to be updated. A revision is performed by a
call to the function revise(C,X), depicted in Algorithm 2, and removes values of
dom(X) that have become inconsistent with respect to C. This function returns
the number of removed values. On the other hand, the function seekSupport
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Algorithm 3 variable-oriented AC3
1: Q← {X | X ∈ X }
2: ∀C ∈ C ,∀X ∈ vars(C), ctr(C,X)← 1
3: while Q 6= ∅ do
4: pick X in Q
5: for each C | X ∈ vars(C) do
6: if ctr(C,X) = 0 then continue
7: for each Y ∈ vars(C) do
8: if needsNotBeRevised(C, Y ) then continue
9: nbRemovals← revise(C, Y )

10: if nbRemovals > 0 then
11: if dom(Y ) = ∅ then return FAILURE
12: Q← Q ∪ {Y }
13: for each C′ | C′ 6= C ∧ Y ∈ vars(C′) do
14: ctr(C′, Y )← ctr(C′, Y ) + nbRemovals
15: end for
16: end if
17: end for
18: for each Y ∈ vars(C) do ctr(C, Y )← 0
19: end for
20: end while
21: return SUCCESS

Algorithm 4 needsNotBeRevised(C : Constraint, X : Variable) : boolean
1: return (ctr(C,X) > 0 and @Y ∈ vars(C) | Y 6= X ∧ ctr(C, Y ) > 0)

determines whether there exists a support of (X, a) in C. According to the the
implementation of this function, we obtain the different AC3 based algorithms.
The algorithm is stopped when the set Q becomes empty.

3.2 Variable-oriented AC3

The second variant of AC3, uses a variable-oriented propagation scheme as pro-
posed by [13, 6]. The principle is to insert inQ all variables with reduced domains.
Initially, all variables are inserted in Q. Then, iteratively, each variable X of Q
is selected and each constraint C binding X is considered. Then, it is possible to
perform the revision of all arcs (C, Y ) with Y 6= X. When the revision of an arc
(C, Y ) involves the removal of some values in dom(Y ), the variable Y is added
to Q.

The reader can notice that the description of Algorithm 3 differs slightly
from the principle presented just above. Indeed, to avoid useless treatments, it
is necessary to introduce some counters in order to determine whether a given
revision is essential. For instance, let us assume a binary constraint Ci,j binding
the variables Xi and Xj . If the selection of the variable Xi involves an effective
revision of (Ci,j , Xj) (i.e., the removal of, at least, a value from the domain of
Xj), and, if next, the selection of Xj involves an effective revision of (Ci,j , Xi),
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Algorithm 5 constraint-oriented AC3
1: Q← {C | C ∈ C }
2: ∀C ∈ C ,∀X ∈ vars(C), ctr(C,X)← 1
3: while Q 6= ∅ do
4: pick C in Q
5: for each Y ∈ vars(C) do
6: if needsNotBeRevised(C, Y ) then continue
7: nbRemovals← revise(C, Y )
8: if nbRemovals > 0 then
9: if dom(Y ) = ∅ then return FAILURE

10: for each C′ | C′ 6= C ∧ Y ∈ vars(C′) do
11: Q← Q ∪ {C′}
12: ctr(C′, Y )← ctr(C′, Y ) + nbRemovals
13: end for
14: end if
15: end for
16: for each Y ∈ vars(C) do ctr(C, Y )← 0
17: end while
18: return SUCCESS

then there is no need to perform again the revision of (Ci,j , Xj) if Xi is again
selected and if the domain of Xi has not been modified elsewhere. As another
illustration (as expressed in [5]), let us assume a ternary constraint Ci,j,k. If the
selection of the variable Xi involves a revision of (Ci,j,k, Xj) and of (Ci,j,k, Xk)
then there is no need to perform again the revision of (Ci,j,k, Xk) if the variable
Xj is selected and if the domains of Xi and of Xj have not been modified
elsewhere.

By associating a counter ctr(C,X) with any arc, it is possible to determine
which revisions are relevant. The value of ctr(C,X) denotes the number of re-
moved values in dom(X) since the last revision involving C. Initially, this value
is arbitrarily fixed to 1 for all counters. Then, when a variable X is selected and
when a constraint C binding X is considered, two situations can happen. If X
is the only variable in vars(C) such that ctr(C,X) > 0, then the revision of
all arcs (C, Y ) with Y 6= X is performed. Otherwise (second situation), all arcs
(C, Y ), including Y = X, are revised. Indeed, it is also relevant to revise (C,X)
since at least another variable of C has been modified elsewhere. This is the
function needsNotBeRevised, described by Algorithm 4 which allows determin-
ing whether the revision of an arc is relevant. When taking into consideration
the second situation and the fact that all counters related to C are reinitialized
to 0 after C has been considered, the test of the line 8 of Algorithm 3 becomes
meaningful: it allows avoiding useless revisions.

3.3 Constraint-oriented AC3

The third AC3 variant uses a constraint-oriented propagation scheme (as
AC3d can be regarded in the binary case) and is depicted in Algorithm 5. The
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principle is to insert in Q all constraints for which at least a revision is necessary.
Initially, all constraints are inserted in Q. Then, iteratively, each constraint C
of Q is selected and each variable X of vars(C) is considered. Similarly as
the variable-oriented variant, the introduction of some counters allows avoiding
useless revisions.

4 Revision ordering heuristics

At this step, it is natural to wonder about the practical interest of the variable-
oriented and constraint-oriented variants. Indeed, as the three variants seem to
be equivalent, we could have just introduce the arc-oriented one since it is simpler
and more natural. The answer is that the nature of the elements of the set Q can
have important repercussions on the overall behaviour of the algorithms. From a
certain perspective, the variable-oriented and constraint-oriented variants have a
grain bigger than the arc-oriented one. Instead of being a drawback (as it seems
to be at first sight), it can be in fact an advantage. This is what we are going
to show by introducing so-called revision ordering heuristics, i.e., heuristics to
order the revisions to be applied by AC3 (or its extensions)1.

Some of the heuristics that we introduce here are original and some other are
simply taken from or adaptations of previous works (a discussion about related
work is proposed later in this section). But, first, we present the revision ordering
heuristic fifo that can be defined without any ambiguity whatever variant is
chosen. This heuristic involves selecting the oldest element of Q (viewed as a
queue).

On the other hand, from now on, we shall introduce the composition of
heuristics whose operator is denoted ◦ (as in [19]). A composed heuristic h2 ◦h1

means that the heuristic h1 is used first, and then, if necessary, the heuristic h2

is used to break ties (a tie is a set of elements that are considered as equivalent
by an heuristic). For all heuristics (including composed ones) presented below,
when a tie is still to be broken, the oldest element of the tie is selected (using
implicitly fifo). Note that other “final” tie-breakers could be studied.

4.1 Variable-oriented heuristics

Each of the variable-oriented heuristics, i.e., heuristics adapted to the variable-
oriented variant, selects a variable X from Q with:

– domv: the smallest current domain size,
– remv: the greatest proportion of removed values in its domain.
– ddeg: the greatest current (also called dynamic) degree,

In some way, domv and remv are complementary. The former is based on
the number of remaining values whereas the latter is based on the number (pro-
portion) of removed values (since the last selection of the variable). Note that
1 We think that the term of “revision ordering heuristics” is more appropriate than

“ordering heuristics” [21], “constraint ordering heuristics” [8] or “arc heuristics” [18].
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considering a raw number of removed values is in favour of large domains (since
there are more opportunities to remove values) and, consequently, usually en-
tails more constraint checks. This is the reason why we have preferred using
proportions.

4.2 Constraint-oriented heuristics

Each of the constraint-oriented heuristics, i.e. heuristics adapted to the constraint-
oriented variant, selects a constraint C from Q with:

– domc: the smallest current domain size,
– remc: the greatest proportion of removed values in its domain.

The heuristics domc and remc are similar to domv and remv. Remember that
we call current domain of a constraint C the Cartesian product of the current
domains associated with the variables in vars(C). It must not be confused with
the constraint size or satisfiability of [21]. Hence, the removed values from the
domain of a constraint correspond to the removed tuples due to the modification
of the domains of some variables. For instance, let us consider a binary constraint
Ci,j involving two variables Xi and Xj . Assume that, at last selection of Ci,j , the
domains of Xi and Xj had 10 values. Then, if, at current selection, the domains
respectively have 6 and 8 values, the size of the current domain Ci,j is 48 and
the proportion of removed values is 52/100.

4.3 Arc-oriented heuristics

Each of the arc-oriented heuristics, i.e., heuristics adapted to the arc-oriented
variant, selects an arc (C,X) from Q with:

– domv: the variable which has the smallest current domain size,
– domc/domv: the smallest ratio between the current domain size of the con-

straint (i.e., the number of tuples in the Cartesian product built from the
current domains attached to the variables involved in the constraint) and
the current domain size of the variable,

– ddeg ◦ domv: the variable which has the smallest current domain size, and
in case of equivalence, the greatest current degree.

4.4 Related work

In this subsection, we present some works related to revision ordering heuristics.
First, let us cite the seminal work of [21] which propose different revision ordering
heuristics to be used with the arc-oriented variant of AC3. These heuristics
devised for binary problems are based on three major features:

– the number of supports in each constraint (called satisfiability),
– the number of values in the domain of each variable,
– the degree of each variable.
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The heuristic sat up is based on satisfiability and allows to obtain interest-
ing results in terms of constraint checks. However, determining the number of
supports in each constraint and maintaining this information is not a very prac-
tical approach. This observation has been stated by [8] which propose another
heuristic κac based on the number of supports in each constraint in order to
minimizing the constrainedness of the resulting subproblem. Some experiments
[8] show that κac, which is time expensive, performs less constraint checks than
sat up and dom j up at the phase transition of arc consistency.

The heuristic dom j up selects the arc (Ci,j , Xi) such that the variable Xj , i.e.
the variable relaxed against, has the smallest current domain size. With respect
to our notation, this heuristic corresponds to domc/domv (when considering
binary problems). There is also a correspondence between dom j up and the
heuristic domv defined for the variable-oriented variant.

The heuristic deg down which corresponds to ddeg is particularly disappoint-
ing in the experiments of [21]. We have made the same observation.

On the other hand, [15] mentions the issue of ordering the removed values
which are put in different queues (a queue per variable). However, this approach
is specific to fine-grained algorithms. [10] propose an original approach by man-
aging propagation events associated with variables. Each event entails the im-
mediate propagation of some constraints binding the variable associated with
this event. A layered propagation architecture schedules the propagation of con-
straints according to a compromise between the provided information and the
computation cost.

Finally, let us mention the work of [18] which emphasizes the importance
of revision ordering heuristics as well as so-called domain heuristics. In [19], a
precise revision ordering heuristic, called comp is presented as being tuned for
AC3d (an arc-oriented AC3-based variant). It is a heuristic composed of 6 basic
criteria. Roughly speaking, it corresponds to (when only considering the two first
criteria) ddeg ◦ domv.

5 Experiments

To compare the efficiency of the heuristics introduced in this paper, we have
implemented them in Java and performed some experiments (run on a PC Pen-
tium IV 2,4GHz 512MB under Linux) with respect to random, academic and
real-world problems. Performances have been measured in terms of the CPU
time in seconds (time), the number of constraint checks (#ccks) and the num-
ber of times (#rohs) a revision ordering heuristic has to select an element in the
propagation set Q. The arc consistency algorithm that has been used for our
experimentation is AC3.2 [11].

5.1 Stand-alone arc consistency

First, we have considered stand alone arc consistency which involves making
arc consistent a CSP instance (that is to say, no search is performed). The first
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P1 P2
variant heuristic time #ccks #rohs time #ccks #rohs

variable fifo 0.064 94, 012 150 0.130 326, 752 67
variable domv 0.065 94, 012 150 0.030 63, 540 55
variable remv 0.065 94, 012 150 0.037 85, 152 26
variable ddeg 0.066 94, 012 150 0.049 102, 379 36

arc fifo 0.071 94, 012 1000 0.177 441, 859 927
arc domv 0.094 94, 012 1000 0.120 204, 346 895
arc domc/domv 0.195 94, 012 1000 0.297 113, 798 1, 060
arc ddeg ◦ domv 0.151 94, 014 1000 0.119 115, 277 490

constraint fifo 0.063 94, 012 500 0.188 484, 108 600
constraint domc 0.096 94, 012 500 0.079 42, 884 463
constraint remc 0.103 94, 012 500 0.053 77, 299 131

Table 1. Stand alone arc consistency on random instances

series of experiments that we have run corresponds to some random problems.
In this paper, a class of random CSP instances will be characterized by a 4-tuple
<n, d,m, t> where n is the number of variables, d the uniform domain size, m
the number of binary constraints and t the number of unallowed tuples.

We present the results, given in Table 1 and Table 2, about some random
binary instances studied in [3, 5, 22]. More precisely, 4 classes, denoted here
P1, P2, P3 and P4, have been experimented. P1 = <150, 50, 500, 1250> and
P2 =<150, 50, 500, 2350> respectively correspond to classes of under-constrained
and over-constrained instances. P3=<150, 50, 500, 2296> and P4=<50, 50, 1225,
2188> correspond to classes of instances at the phase transition of arc consis-
tency for sparse problems and for dense problems, respectively. For each class,
mean results are given for 50 generated instances using the generator of [7].

P3 P4
variant heuristic time #ccks #rohs time #ccks #rohs

variable fifo 0, 244 546, 900 701 0.446 911, 748 203
variable domv 0.219 478, 135 708 0.426 857, 789 225
variable remv 0.233 519, 207 525 0.433 888, 890 173
variable ddeg 0.253 500, 287 669 0.473 911, 748 203

arc fifo 0.266 569, 228 6, 068 0.517 944, 679 12, 659
arc domv 0.333 518, 310 6, 301 1.034 867, 232 15, 195
arc domc/domv 0.903 506, 318 7, 456 4.423 882, 329 16, 926
arc ddeg ◦ domv 0.490 493, 795 5, 781 1.706 867, 232 15, 195

constraint fifo 0.252 561, 398 3, 740 0.460 927, 966 7, 571
constraint domc 0.539 459, 739 5, 652 2.098 823, 478 13, 051
constraint remc 0.496 527, 545 2, 740 2.095 897, 306 6, 055

Table 2. Stand alone arc consistency on random instances

One can immediately notice that the number of heuristic solicitations (#rohs)
is far less important for the variable-oriented variant. In fact, when a variable is
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SCEN#05 SCEN#08
variant heuristic time #ccks #rohs time #ccks #rohs

variable fifo 0.276 899, 793 1, 184 0.243 830, 824 212
variable domv 0.159 294, 882 625 0.095 39, 795 69
variable remv 0.228 585, 194 815 0.119 150, 047 64
variable ddeg 0.286 652, 228 943 0.214 365, 830 125

arc fifo 0.315 981, 555 19, 701 0.560 2, 178, 674 17, 040
arc domv 2.291 742, 330 20, 731 4.478 876, 989 8, 067
arc domc/domv 7.921 251, 064 8, 567 4.662 30, 674 816
arc ddeg ◦ domv 4.916 687, 107 18, 660 10.099 904, 712 8, 748

constraint fifo 0.303 964, 764 12, 000 0.461 1, 877, 001 5, 508
constraint domc 4.277 261, 892 9, 010 2.043 25, 028 781
constraint remc 4.890 298, 310 7, 036 3.112 74, 614 984

Table 3. Stand alone arc consistency on RLFAP instances

selected in the propagation set Q, it entails a number of revisions related to the
degree of the variable. On the other hand, for the arc-oriented variant, when an
arc is selected, it just entails one revision, and, for the constraint-oriented variant,
when a k-ary constraint is selected, it entails at most k revisions. Hence, the
variable-oriented variant has a bigger grain than the other variants: the number
of constraints checks performed after each solicitation is far more important.

We also observe that the variable-oriented variant clearly appears to be the
fastest one when using some revision ordering heuristics, and, more precisely,
the heuristic domv. This behaviour can be explained as follows. The variable-
oriented variant requires less solicitations, as stated above, and each solicitation
is cheap. Indeed, the overhead of picking the best element in the propagation
set is limited for the variable-oriented variant, unlike other ones, since there are
less variables than constraints and arcs.

In terms of constraint checks, the best heuristics are the constraint-oriented
heuristic domc and the variable-oriented domv whereas the worse heuristics are
the three versions of fifo. However, the time performance of these “standard”
heuristics is not too bad as, systematically, the first element of the propagation
set is selected.

Next, we have tested real-world instances, taken from the FullRLFAP archive2,
which contains instances of radio link frequency assignment problems. Table 3
presents the results obtained for two instances, denoted SCEN#05 and SCEN#08,
studied in [3, 18, 22], and confirms all remarks expressed above. Note that there
is a gap between the standard heuristics fifo and some other heuristics with
respect to the number of constraints checks required for SCEN#08. A similar
behaviour has been observed by [18].

5.2 Maintaining arc consistency during search

As it appears that one of the most efficient complete search algorithms is the
algorithm which Maintains Arc Consistency during the search of a solution [16,
2 We thank the Centre d’Electronique de l’Armement (France).
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bqwh-15-106 Q1 Q2
variant heuristic time #ccks time #ccks time #ccks

variable fifo 4.68 1.601M 166.43 100.192M 44.21 15.321M
variable domv 3.87 1.211M 122.77 66.270M 39.86 8.860M
variable remv 4.11 1.270M 132.22 77.955M 45.59 11.292M
variable ddeg 5.57 1.879M 194.13 102.730M 71.76 14.565M

arc fifo 4.76 1.615M 173.26 103.099M 44.20 15.639M
arc domv 6.28 0.921M 251.91 60.276M 69.39 9.329M
arc domc/domv 26.81 1.193M 932.59 66.183M 124.54 8.858M
arc ddeg ◦ domv 28.91 1.015M 1, 170.90 60.305M 222.01 9.317M

constraint fifo 4.66 1.599M 169.65 100.915M 43.24 15.444M
constraint domc 11.41 0.858M 491.94 52.753M 94.46 7.060M
constraint remc 19.28 1.306M 809.09 80.343M 144.21 11.528M

Table 4. Maintaining arc consistency on random instances

4], we have implemented a MAC3.2 version which integrates the dom/ddeg [4,
17] variable ordering heuristic, and the lexicographic value ordering heuristic.

First, to study the behaviour of the different heuristics wrt problems involving
random generation, we have considered the following classes of instances :

– one class, denoted bqwh-15-106, of 100 satisfiable balanced Quasigroup With
Holes (bQWH) instances [9] of order 15 with 106 holes,

– two classes Q1=<80, 10, 400, 35> and Q2=<900, 10, 1250, 70> of 100 ran-
dom binary instances situated at the phase transition of search for rela-
tively dense problems (≈ 12%) with low tightness (35%) and sparse problems
(≈ 0.3%) with high tightness (≈ 70%), respectively.

Table 4 presents the results obtained for all these classes. When considering
the number of constraint checks, one can observe that all heuristics based on
domc or domv are the best ones. More precisely, the constraint-oriented heuristic
domc outperforms all other ones and saves about 50% of the constraint checks
required by fifo heuristics. We also note that the coarser grain of the variable-

SCEN#11 GRAPH#14
variant heuristic time #ccks #rohs time #ccks #rohs

variable fifo 88.950 36.379M 470, 966 1.713 1.237M 5, 700
variable domv 80.547 22.238M 308, 608 1.730 1.189M 4, 428
variable remv 82.461 22.329M 310, 253 1.775 1.188M 4, 428
variable ddeg 98.475 34.808M 595, 373 2.666 1.215M 4, 978

arc fifo 90.381 33.688M 7, 548, 869 1.711 1.237M 39, 838
arc domv 93.596 18.511M 4, 781, 551 4.271 1.218M 35, 870
arc domc/domv 214.370 21.169M 4, 336, 842 22.552 1.180M 30, 517
arc ddeg ◦ domv 410.737 18.775M 4, 833, 847 24.614 1.218M 35, 961

constraint fifo 90.054 36.130M 5, 586, 648 1.708 1.237M 30, 030
constraint domc 111.995 17.318M 3, 256, 374 6.901 1.190M 24, 032
constraint remc 158.468 22.079M 4, 136, 456 7.847 1.188M 23, 197

Table 5. Maintaining arc consistency on RLFAP instances
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variant heuristic cc-7-2 cc-7-3 gr-34-9 gr-34-10 qa-5 qa-6

variable fifo 9.159 238.630 47.853 1, 736.913 62.104 5, 943.426
variable domv 8.688 213.966 31.238 1, 174.526 56.138 4, 331.342
variable remv 8.531 222.600 35.666 1, 292.841 57.310 4, 636.216
variable ddeg 8.955 291.663 52.885 1, 907.120 69.987 6, 435.984

arc fifo 10.263 276.240 56.017 1, 997.052 68.729 5, 679.748
arc domv 39.856 735.510 90.419 5, 025.990 129.377 10, 096.466
arc domc/domv 129.977 2, 636.612 251.786 13, 871.150 457.250 49, 364.050
arc ddeg ◦ domv 498.214 7, 918.398 1, 121.336 109, 292.280 719.742 126, 063.110

constraint fifo 9.342 229.128 52.504 1, 951.002 65.983 5, 516.274
constraint domc 19.926 736.137 98.216 6, 747.980 205.111 18, 382.519
constraint remc 38.754 1, 210.565 528.161 30, 428.539 335.617 33, 818.809

Table 6. cpu time when maintaining arc consistency on academic instances

variant heuristic cc-7-2 cc-7-3 gr-34-9 gr-34-10 qa-5 qa-6

variable fifo 3.196M 116.585M 42.836M 1, 609.906M 56.326M 3, 584.318M
variable domv 3.196M 111.633M 34.882M 1, 347.494M 47.610M 2, 765.204M
variable remv 3.196M 111.652M 38.052M 1, 434.013M 48.741M 2, 876.704M
variable ddeg 2.977M 121.794M 46.012M 1, 660.198M 56.327M 3, 584.320M

arc fifo 3.155M 118.312M 45.175M 1, 680.035M 58.098M 3, 631.175M
arc domv 2.261M 93.980M 26.979M 1, 028.886M 42.862M 2, 179.902M
arc domc/domv 1.766M 92.250M 32.315M 1, 213.946M 45.920M 2, 677.797M
arc ddeg ◦ domv 2.503M 106.447M 27.121M 1, 031.489M 42.861M 2, 179.929M

constraint fifo 3.196M 116.252M 44.733M 1, 684.691M 56.366M 3, 580.447M
constraint domc 1.366M 80.645M 29.084M 1, 115.535M 40.467M 2, 125.472M
constraint remc 2.843M 113.639M 40.145M 1, 462.286M 48.367M 2, 882.489M

Table 7. #ccks when maintaining arc consistency on academic instances

oriented heuristics has an impact on the number of constraint checks (domv

entails more checks than domc). However, it is highly compensated by the small
overhead of such heuristics as explained above.

Finally, we introduce three additional tables that confirm our previous re-
sults. Table 5 corresponds to the real-world instances SCEN#11 and GRAPH
#14 of the RLFAP archive. Tables 6 and 7 respectively correspond to the cpu
time and the number of constraint checks required to solve the following aca-
demic instances:

– two chessboard coloring instances [1], denoted cc-7-2 and cc-7-3, involving
quaternary constraints,

– two Golomb ruler instances3, denoted gr-44-9 and gr-44-10, involving binary
and ternary constraints,

– two prime queen attacking instances4, denoted qa-5 and qa-6, involving only
binary constraints.

To summarize, the efficiency of all variable-oriented heuristics based on cur-
rent domain sizes has been established both for stand alone arc consistency and
3 See problem006 at http://4c.ucc.ie/~tw/csplib/
4 See problem029 at http://4c.ucc.ie/~tw/csplib/
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for MAC. On the other hand, the arc-oriented and constraint-oriented heuristics
which allow saving some constraint checks, are quite costly. Nevertheless, there
are at least three alternatives to improve all heuristics:
– restricting the search of the best element to a subset of Q,
– performing the search of the k best elements every k selections,
– improving the management of Q using a pigeonhole sort [21].

Such an optimization is proposed by [19] with the heuristic comp which
belongs to the group of the best heuristics (when considering constraint checks).
[19] uses an efficient representation for the queue which allows compensating the
time spent on selection and maintenance.

6 Conclusion

Our first motivation, in this paper, was to clarify the situation about the different
propagation schemes of AC3-based algorithms. Indeed, we can define three vari-
ants which respectively correspond to algorithms with an arc-oriented, variable-
oriented and constraint-oriented propagation scheme. We have presented general
versions of these algorithms so that they can be applied to non-binary problems
whereas being careful about avoiding useless revisions (for variable-oriented and
constraint-oriented variants). To determine which variant is the more appro-
priate to establish arc-consistency, we have studied the impact of introducing
so-called revision ordering heuristics. Such heuristics have been proposed by [21]
with respect to the arc-oriented variant and experimentations performed when
arc consistency is used as a preprocessing of binary problems.

In this paper, we have extended our understanding of revision ordering heuris-
tics by:
– introducing new heuristics and adapting heuristics of [21] with respect to

the different variants of AC3-based algorithms,
– experimenting these heuristics when arc consistency is maintained during

the search of a solution for binary and non binary problems.

Experimental results show that heuristics based on the number of removed
values are disappointing, unlike heuristics based on the number of remaining
values. The best heuristics save up to 50% of constraint checks when compared
to the “standard” heuristic fifo. Hence, it confirms for MAC the observation of
[21]. Also, the best variable-oriented heuristics can save about 25% of cpu-time
when compared to fifo. However, it turns out that constraint-oriented and arc-
oriented heuristics are penalized in terms of CPU time. The reason is that the
constraint-oriented and arc-oriented variants need to record more elements in
the propagation set Q than the variable-oriented variant. Hence, both variants
are time-consuming when one heuristic iterates all recorded elements in Q.

To conclude, even if there exists some perspectives to optimize all these
heuristics by avoiding systematic iterations of Q, we believe that a AC3-based
variable-oriented variant associated with a revision ordering heuristic based on
domv should preserve its advantage (as it could also benefit from such improve-
ments).



Revision Ordering Heuristics 43

References

1. M. Beresin, E. Levin, and J. Winn. A chessboard coloring problem. The College
Mathematics Journal, 20(2):106–114, 1989.

2. C. Bessière. Arc consistency and arc consistency again. Artificial Intelligence,
65:179–190, 1994.
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Abstract. Hyvönen [5] and Faltings [4] observed that propagation al-
gorithms with continuous variables are computationally extremely inef-
ficient when unions of intervals are used to precisely store refinements of
domains.
These algorithms were designed in the hope of obtaining the interesting
property of arc-consistency, that guarantees every value in domains to
be consistent w.r.t. every constraint.
In this paper, we show that a pure backtrack-free filtering algorithm
enforcing arc-consistency will never exist. But surprisingly, we show that
it is easy to obtain a property stronger than arc-consistency with a few
steps of bisection.
We define this so-called box-set consistency and detail an efficient algo-
rithm to enforce it.

1 Introduction

Solving systems of nonlinear equations over the reals with interval constraint
programming usually resorts to a combination of local filtering, interval analysis
and domain splitting.

Local filtering techniques are based on an interval narrowing operator, called
projection, that computes compatible values for different variables linked by a
constraint. Sometimes, the projection results in a union of intervals: for instance
with the constraint x2 = y, if y varies within [1, 4] then the domain of variation
for x obtained by projection is either [−2,−1] or [ 1, 2].

In this case, the hull consistency algorithm [1] (also known as 2B consistency
[6]) computes the enclosing interval of the union immediately, therefore losing
track of each “gap” between intervals. Another approach, inspired by the well-
known arc-consistency, would be to store and propagate unions of intervals.

Arc-consistency has never been applied successfully. We explain with an ex-
ample that this failure is not due to bad algorithmic choices, but to a property
inherent to continuous CSPs.

Yet, we show that it is possible in a solving strategy that includes a specific
splitting technique, called natural splitting, to obtain boxes that verify not only
arc consistency but another property called box-continuity. The lazy version of
this new algorithm causes no time overhead in practice and gives promises.
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The paper is organized as follows. In section 2, we sum up the concepts of con-
straint programming over the reals. In section 3, we explain why arc-consistency
cannot be achieved. We define a stronger consistency and show related proper-
ties. In section 4, an algorithm that enforces this consistency is given.

2 Background

2.1 Constraint Reasoning over the Reals

A numerical constraint satisfaction problem (NCSP) is a 3-uple (C,V,B).
C is a set of constraints c1, ..., cm (equations or inequations) relating a set V
of variables x1, ..., xn. Each variable is given an initial domain of real values
Dx1 , .., Dxn , and the problem is to find all the n-tuples of values (v1, ..., vn),
vi ∈ Dxi (1 ≤ i ≤ n), such that constraints are all satisfied when simultaneously
each variable xi is assigned to vi. Such a n-tuple is called a solution. Usually,
domains are represented by intervals and a box designates a cartesian product of
domains. B = Dx1 × ...×Dxn is the initial box of the problem. In this paper, we
will resort also to a more complex representation of domains, where a variable
domain is assigned a union of intervals. In this case, the cartesian product B of
domains will be called a h-box (a box with “gaps”).

We will use intensively a relation of problem inclusion. Let us define it once
and for all.

Definition 1 (Sub-NCSP). Let P = (C, V,B) and P ′ = (C ′, V ′, B′) be two
NCSP. P is included in P ′ iff C = C ′, V = V ′ and B ⊂ B′

In practice, NCSP are large nonlinear problems that are intractable by sym-
bolic solving techniques. Traditional numerical methods do not suit either be-
cause we are looking for all the solutions. Solving can be achieved by combining
local filtering, domain splitting, and interval analysis.

Local filtering techniques refine domains of variables thanks to partial prop-
erties of the problem, that is, properties which hold on subproblems. These
techniques converge in polynomial time, and the resulting box (or h-box) is said
to be locally consistent.

The general scheme for finding solutions consists in a search tree, where local
filtering is enforced at each node. Once local consistency is reached, the domain
of one variable is chosen and split in two sub-domains, which leads to two sub-
nodes in the tree.

A major approach for local filtering is the well-known hull consistency, ob-
tained by a Waltz-like propagation algorithm [9]. The algorithm is detailed fur-
ther. Here are the underlying concepts :
- Projection: Refine the domain of a variable x with respect to a specific con-
straint c, using interval arithmetics [8].
- Propagation: Propagate reductions over the other variables linked to x by
another constraint c′.
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2.2 Projections

Let c be a binary constraint relating variables x and y. We denote Πc
x the

projection 1 of c over x, a function that takes an h-box B = Dx1 × ... × Dx ×
... ×Dy × ... ×Dxn as input and computes all possible values for x in Dx as y
varies within Dy. Formally, if D′x is the result of Πc

x applied on B, we have:
D′x = {v ∈ Dx | ∃w ∈ Dy, c(v, w) is satisfied}. This definition can be easily
generalized to k-ary constraints:

Definition 2 (Projection). Let c be a constraint relating variables x, y1, ..., yk.
We call projection of c over x the following function:
Πc
x : B → {v ∈ Dx | ∃(v1, ..., vk) ∈ Dy1 × ...×Dyk , c(v, v1, ..., vk) is satisfied}

Example 1. c : x+ y = z
Πc
x : Dx ×Dy ×Dz −→ (Dz 	Dy) ∩Dx

where 	 is the natural extension of the arithmetic operator minus. Note that
computing this projection requires also an intersection with Dx.

Basically, the projection of a constraint f(y, x1, ..., xn) = 0 over y requires to
find an implicit function φ such that f(y, x1, ..., xn) = 0⇔ y = φ(x1, ..., xn).

Sometimes, there is not a unique implicit function but several continuous
functions (φ1, φ2, ...), then we talk about disjunction and in this case Πc

y gives a
union of intervals:

Example 2. c : x2 = y
Πc
x applied on Dx × Dy with Dx = [−2, 2] and Dy = [1, 4] gives the union

D′x = [−2,−1] ∪ [ 1, 2]

The set of values returned by a projection may be either an interval (exam-
ple 1) or a union of intervals (example 2). To place our discussion in the most
general case, we consider hereinafter that a projection returns a set U of dis-
joint intervals, that we will call abusively a union, and write |U | the number of
intervals contained in U 2.

2.3 Propagation

Modifying (or revising) the domain of a variable may have repercussions on the
other variables. Propagate means to memorize in a queue (or an agenda) all the
pairs < c, x > of constraint/variable such that the projection of c over x can
be effective. When the queue is empty, we are sure that no more reduction is
possible and that we have reached a fix point.
1 Also called Solution function [5].
2 Unions of disjoint intervals could be defined algebraically with their operators and

their arithmetic. But their use is rather intuitive, so we will not give such a formalism
here. Sometimes we just substitute unions for intervals, to avoid to overwhelm this
paper with definitions.
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In this paper, we will refer to a procedure Propagate(NCSP (C, V,B), in-out
Queue Q, Constraint c, Variable x), that updates the propagation queue
Q after a projection of c over x.

If revising a domain consists in applying the projection operator Π defined
above, the resulting NCSP is arc-consistent:

Definition 3 (Arc-Consistency). Let P = (C, V,B = Dx1 × ... ×Dxn) be a
NCSP.
P is arc consistent iff ∀ < c, x >∈ C × V with x related by c, Dx = Πc

x(B)

Remark 1. In this paper, we will talk about the arc-consistency of a box (or an
h-box) B to designate the arc-consistency of the problem (C, V,B) with the set
C and V given by the context.

We will see in section 3.1 that arc-consistency is not feasible with continu-
ous variables, so usually the revising operation is not the projection itself, but
an outer approximation. Computations are all interval-based and this operator
avoids to manage unions. The resulting problem is hull-consistent:

Definition 4 (Hull-Consistency). Let P = (C, V,B = Dx1 × ...×Dxn) be a
NCSP.
P is hull consistent iff ∀ < c, x >∈ C × V with x related by c, Dx = �Πc

x(B)

The symbol � stands for the hull operation. Example: �{[0, 1], [2, 3]} = [0, 3].
Propagation, arc-consistency, and hull consistency are extensively covered

in literature, see [2] for example. To summarize, here is a generic algorithm
HC Filtering of hull consistency filtering.

Procedure 1 HC Filtering(NCSP (C, V,B))
var Q : Queue
for all pairs < c, x > in C × V do

if x is related by c then
add < c, x > in Q

while Q is not empty do
pop a pair < c, x > from Q
D′x ←− � Πc

x(B)
if D′x ⊂ Dx then
Propagate((C, V,B), Q, c, x)
Dx ← D′x // Dx is the domain of x in B

This algorithm originates from Waltz [9] and was applied first over finite
domain constraints under the acronym AC3 [7] to obtain arc-consistency. With
intervals, HC3 [3] introduces a decomposition of the system into primitive con-
straints 3 for which projections can be computed, and HC4 [2] is an upgraded
3 A primitive constraint is a basic mathematical relation (such as z = x + y or y =
cos(x)) for which projections are known. A system of standard equations can always
be decomposed into an equivalent system of primitive constraints.
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version of HC3 that produces the same result sparing decomposition. Both enforce
hull-consistency.

3 A stronger property than arc-consistency

In this section, we introduce a new kind of consistency, on a theoretical point
of view. The rest of the paper will be devoted to the way it can be enforced.
Contrary to arc-consistency, it can be obtained in reasonable time and even
more, in some cases, provide improvements compared to the classical approach
just given above.

3.1 Arc-Consistency

First of all, let us rule out an ambiguity. Talking about the arc-consistency of
a problem may have two different meanings, depending on the context. We may
refer to the property, which can be either true or false. But we may talk also
about the largest arc-consistent subproblem. In the latter case, we will use the
following definition:

Definition 5 (AC Part). The AC part of a NCSP is the maximal arc-consistent
sub-NCSP, for the order relation of inclusion (see definition 1).

Example 3. Let P = ({x = y}, {x, y}, Dx ×Dy) be a NCSP with Dx = [−1, 1]
and Dy = [0, 2]

In the AC part of P , domains become [0, 1]× [0, 1]. Indeed, any arc-consistent
sub-NCSP of P has an h-box with intervals [α, β], 0 ≤ α ≤ β ≤ 1, and the
(unique) maximal element of these h-boxes is [0, 1]× [0, 1].

We show below that even with very simple constraints, the AC part of a
problem may have a non-representable domain, as an infinity of intervals. Hence,
arc-consistency filtering is not applicable over continuous domains, whatever the
underlying algorithm is.

We are going to illustrate our claim on the following system of 2 equations:

Example 4. Let P = ({c1, c2}, {x, y}, B) be the following NCSP :
B = Dx ×Dy = [1, 9]× [1, 9]
(c1) : ( 3

4 (x− 5))2 = y
(c2) : y = x

Lemma 1. In the AC part of P , domains of x and y are an infinity of disjoint
non-empty intervals.
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Necessary condition Let f1 and f2 be the following (real-valued) functions:
f1 : y −→ 4

3

√
y + 5

f2 : y −→ 5− 4
3

√
y

Let F1 (resp. F2) be the “optimal” extensions to intervals 4 of f1 (resp. f2),
Φ1 (resp. Φ2) the extension to unions of intervals associated to F1 (resp. F2).
Finally, let Φ be the function such that Φ(U) = Φ1(U) ∪ Φ2(U).

Consider an algorithm that, in turn, computes the following operations:
Dx ← Φ(Dy) et Dy ← Dx. We omit intersections with domains on purpose, and
this is why, a priori, we do not call these operations projections . Let us denote
Xn (resp. Yn) the domain of x (resp. y) after the nth execution of Dx ← Φ(Dy)
(resp. Dy ← Dx). X0 and Y0 are initial domains.

The figures below depict the first steps of propagation. The h-boxes shown
are successively X0 × Y0, X1 × Y0, X1 × Y1 and X2 × Y2.
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Fig. 1. First steps of AC filtering

As we see, the size of unions grows exponentially. Let us show some properties
of this algorithm.

4 F is optimal iff for any interval I, F (I) = �f(I)
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Property 1. ∀n ≥ 1, Xn ⊂ Xn−1 and Yn ⊂ Yn−1. In other words, the result of
each operation is included in the current domain of the variable.

Proof. By induction. We can check by hand that X1 ⊂ X0 and Y1 ⊂ Y0. Assume
Xn ⊂ Xn−1:
Xn ⊂ Xn−1 =⇒ Yn+1 ⊂ Yn =⇒ Φ(Yn+1) ⊂ Φ(Yn) because interval arithmetic is
inclusion monotonic, and then Xn+1 ⊂ Xn. N

Property 2. The number of intervals doubles at each step (∀n |Xn| = 2×|Xn−1|),
and more precisely, each interval is split into two disjoint intervals.

Proof. Assume that Xn and Yn contain p disjoint intervals whose bounds are
between 1 and 9. As functions f1 and f2 are monotonous on [1, 9], Φ1(Yn) and
Φ2(Yn) will contain both p disjoint intervals 5. Still with inclusion monotonicity
of interval arithmetic, since F1([1, 9])∩F2([1, 9]) = ∅, the 2×p intervals obtained
will be all disjoint and then |Yn+1| = |Xn+1| = |Φ(Yn)| = 2× p.
Moreover, Φ(X0) = Φ([1, 9]) ⊂ [1, 9] and thanks to the property 1, we can check
that intervals of Xn+1 and Yn+1 are included in [1, 9]. N

Property 3. Bounds of intervals are always maintained in domains. That is to
say, if [a, b] is an interval of Xn

6, then ∀p ≥ n, a and b are interval bounds of
Xp.

Proof. First of all, since f1 and f2 are monotonous, for any interval I, bounds
of F1(I) and F2(I) take support on bounds of I. Now, the property is shown by
induction: First, bounds 1 and 9 for x and y are always maintained because:
- (x=9, y=9) is a solution of the problem
- x=1 cannot be removed by computing X ← Φ(Y ) since y=9 is a support.
- y=1 cannot be removed by computing Y ← X since x=1 is a support.
If we assume now that the bounds of all the intervals in the representation of
Xn are maintained for all p ≥ n, then bounds of Xn+1 will also be maintained
for all p ≥ n+ 1 since they take support on bounds of Yn, i.e. Xn, and they are
included in Xn (property 1). N

Now, property 1 allows us to say that adding an intersection with domains
at each step has no effect. Therefore, this algorithm computes successively pro-
jections over x and over y:

(Dx ← Πc1
x (B)) −→ (Dy ← Πc2

y (B)) −→ (Dx ← Πc1
x (B)) −→ ...

Property 2 leads immediately to the following fact : The number of intervals
in Xn tends to infinity, and even if the size of intervals may tend to zero, each
interval contains necessarily one non-removable point (property 3), so we are
dealing with an infinity of non-empty disjoint intervals. The AC part of the
problem is contained in the result of this algorithm after an infinity of iterations.
In a nutshell :
5 F1 and F2 are optimal
6 We cannot carry on regardless of a bit of rigor here. By saying that [a, b] is an interval

of Xn, we mean that [a, b] is an element of an union seen as a set of disjoint intervals.
So we consider [a, b] ∈ Xn, and not only [a, b] ⊂ Xn
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In the AC part of P , domains are included in an infinity of non-empty disjoint
intervals.

Sufficient condition Consider the following numerical series :
u0 = 9
un = f2(un−1)

We prove easily that un → 25
9 when n → +∞. This convergent series is

represented on the following picture :
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Let A be the set {un, n ∈ N} ∪ { 25
9 }. Clearly, the h-box X × Y = A × A is

arc-consistent since each point un has a support for both constraints. This h-box
being included in the initial box [1, 9] × [1, 9] of P , then by definition, the AC
part of P contains necessarily this h-box.

Now, it suffices to observe that for all n, un is exactly a bound of an interval
of Xn (a bound “discovered” at the nth step of the algorithm above). Proof is
similar to property 2: It comes from the monotonicity of f1 and f2, and from
the fact that F1([1, 9]) ∩ F2([1, 9]) = ∅.

Conclusion We have shown that in the AC part of P , the domain (either for
x or for y) includes a set of points un (sufficient condition), these points being
separated by “gaps” because they are bounds of disjoint intervals (necessary
condition). These gaps are inconsistent values that do not belong to the AC
part of P . So we have proven the lemma 1.

Remark : In the AC part of P , intervals can be punctual.

3.2 Box-Set Consistency

We have seen that arc-consistency cannot be achieved over continuous domains.
We formally present in this section a stronger consistency that can be achieved.

Let us go back to the example of the previous section, at any step. Let I be
an interval of Dx which contains none of the 2 solutions. If we build a box with
I and any interval of the current domain Dy, it is not arc-consistent and does
not contain any arc-consistent sub-box (see definition 3 and remark 1).
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Actually, there are exactly 2 arc-consistent sub-boxes in this example, which
are zero-sized boxes around the solutions.

Let us generalize. The following figure depicts a system of 3 variables pair-
wisely linked by binary constraints. Domains have several intervals, and an arrow
between two intervals I and J means that every value of I has a compatible value
in J and conversely.

X1 X2

Y1 Y2

Z1 Z2

X

Y

Z Z3

We see that the h-box (X1∪X2)×(Y1∪Y2)×(Z1∪Z2∪Z3) is arc-consistent.
But there are only two arc-consistent sub-boxes composed with these intervals,
which are X2 × Y2 × Z2 and X2 × Y2 × Z3.

The box X1×Y1×Z1 is not arc-consistent because X1 and Z1 are not linked.
Actually, X1, Y1 and Z1 do not belong to any arc-consistent sub-box, and they
can be removed from the domains.

In this paper, we present algorithms that find the maximal arc-consistent
sub-boxes of a problem.

Definition 6 (Box-set Consistency). Let P = (C, V,B) be a NCSP. The
box-set consistency of P is the set {B′} of maximal boxes such that (C, V,B′) is
an arc-consistent sub-NCSP of P .

We can either use each of these boxes as a choice point in the original system
P (and therefore carry on with splitting), or collect these boxes to get one h-box,
which would be X2 × Y2 × (Z2 ∪ Z3) in this example.

Box-set consistency is stronger than arc-consistency as the following example
illustrates:

Example 5. Dx = Dy = Dz = [−2, 2] Dw = [1, 4]
Constraints are x2 = w, x = y, y = z and x = −z.
Arc-consistency is achieved with the following domains :
Dx = Dy = Dz = [−2,−1] ∪ [1, 2], Dw = [1, 4]
And box-set consistency discards the whole box (in the domain of x, neither
[−2,−1] or [1, 2] belong to an arc-consistent sub-box).

But it is weaker than global solving. It suffices to consider this NCSP:

Example 6. Dx = [0, 2] Dy = [0, 2] Dz = [0, 2]
Constraints are x = y, x+ z = 2 and y = z.
As the initial box is already arc-consistent, it is box-set consistent. But the real
solution is {(1, 1, 1)}.
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3.3 Remark

Box-set consistency can be defined in another fashion. We can characterize arc-
consistent boxes as solutions of a problem over the intervals, i.e. a problem where
variables take interval values instead of real values. In this way, Z1 (in the figure
above) would not belong to a solution, and could be discarded as an inconsistent
“value”. To introduce the definition of this induced problem over the intervals,
let us start with a single constraint:

Definition 7 (Arc-Extension of a constraint). I represents the set of inter-
vals.
Let c(x, y) be a constraint relating variables x and y. We call arc-extension of c
and denote arc(c) the relation defined on I× I such that:

arc(c)(X,Y )⇐⇒
{
∀x ∈ X, ∃y ∈ Y | c(x, y)
∀y ∈ Y, ∃x ∈ X | c(x, y) (1)

In a nutshell, arc(c)(X,Y ) states that c is arc-consistent. The definition of
arc-extension for n-ary constraints is straightforward.

Now the arc-extension of a NCSP is simply defined as follows:

Definition 8 (Arc-Extension of a NCSP). Let P be a NCSP with m con-
straints c1, ..., cm relating n variables x1, ..., xn in an initial box Dx1 × ...×Dxn .

The arc-extension of P is the set of

– n variables X1, ..., Xn, with Xi ∈ I
– m constraints arc(c1), ..., arc(cm)
– Initial domains : ∀i (1 ≤ i ≤ n) Xi ⊂ Dxi

The solutions of this problem are the maximal arc-consistent boxes.

3.4 Number of boxes of a box-set consistent problem

[5] has shown that the number of intervals for a given variable v in a box-set
consistent problem is bounded by ((p− 1)× a) + 1) = O(p× a), where p is the
maximum number of intervals obtained by one projection, and a is the arity of
the variable, that is the number of constraints in which v appears. This leads
to a total number of boxes of a box-set consistent problem that is bounded by
(p × a)n. In Hyvönen’s terminology, this number bounds the size of the global
application space.

This result holds on problems with only primitive constraints, and without
multiple occurrences of a variable in a same constraint.

The result can easily be extended to problems with any type of constraints by
considering, instead of n, the number n′ of variables in the decomposed system.

On the contrary, the result seems difficult to hold in the general case. In-
deed, the box-set consistency of a problem where the variables with multiple
occurrences are renamed does not imply the box-set consistency of the (initial)
problem, and we have not found straightforward bounds.
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4 The natural splitting algorithm

In this section, we show an algorithm that enforces box-set consistency. This
algorithm is based on a strategy of bisection called natural splitting. Two versions
are presented. Both resort to a projection operator that computes unions, but
the second version uses this operator only once per box whereas in the first
version it is embedded in a propagation loop.

4.1 The key idea

Let us go back to the algorithm of hull-consistency filtering HC Filtering (see
2.3), and assume that this procedure has been applied on a box B. If for every
variable the latest projection has produced only one interval, we will show that
B is arc-consistent. If one of the last projections produced at least 2 intervals, the
idea is to split the domain of this variable into these 2 intervals. This bisection
is called natural splitting, to contrast with the semantic-less midpoint splitting.

We hope in this way that such a disjunction will not occur anymore on both
sub-boxes. We apply the same process on each of the sub-boxes : hull filtering
and natural splitting, until we obtain a fix point.

To distinguish constraints whose projections produce 1 interval from those
that produce several intervals, we use the term box-continuity. We begin by
introducing this notion and give the algorithm afterwards.

4.2 Box-Continuity

Box-continuity is the key property of our approach. We will say that a constraint
c is box-continuous on a given box when projections of c do not create gaps, i.e.
when the result set of a projection of c over whatever variable contains a single
interval. Formally:

Definition 9 (Box-Continuity). Let c be a constraint relating variables x1, ..., xk,
B a box.
c is box-continuous on B ⇐⇒ ∀i (1 ≤ i ≤ k) |Πc

xi(B)| = 1.

Box-continuity is not related to the “classical” mathematical definition of
continuity for the functions involved in the constraint : for instance, the function
f1 : (x, y) −→ x2 − y is continuous on B = Dx ×Dy = [−2, 2] × [1, 4] whereas
c1 : f1(x, y) = 0 is not box-continuous since Πx(c1)(B) = {[−2,−1], [ 1, 2]}.

Conversely, f2 : (x, y) −→ I(x − y), where I(z) is the integer part of z, is
not continuous on D = Dx ×Dy = [−2, 2] × [−2, 2] whereas c2 : f2(x, y) = 0 is
box-continuous since Πx(c2)(B) = Πy(c2)(B) = {[−2, 2]}

4.3 First version

To perform natural splitting, we need to know where are the gaps produced by
the last projections of HC Filtering. One way to retrieve this information im-
mediately is to modify HC Filtering to allow union labeling. When the domain
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of a variable is revised, instead of computing the hull of the projection imme-
diately, we can keep a union and computes the hull only when this domain is
used as a parameter of another projection. Without changing anything to the
algorithm, this trick provides a way to detect box-continuity very easily. Indeed,
once hull-consistency is achieved, if the domain of every variable is a single in-
terval, it means that the latest projection performed over any variable resulted
in a unique interval, i.e. that all the constraints are box-continuous (on the box).

The following procedure is the first version of our algorithm. It applies the
“union” variant of HC Filtering, and split the box as long as a domain in the
box contains a gap:

Procedure 2 Naive BoxSet(NCSP (C, V,B), in-out solutions)

2: for all pairs < c, x > in C × V do
if x is related by c then

4: add < c, x > in Q
while Q is not empty do

6: pop a pair < c, x > from Q
D′x ←− Πc

x(�Dx1 × ...×�Dxn)
8: if (�D′x ⊂ �Dx) then

Propagate((C, V,B), Q, c, x)
10: Dx ← D′x

12: if (exists a variable xi with |Dxi | > 1) then
for j = 1 to |Dxi | do

14: B ← �Dx1 × ...×�Dxi−1 ×Dj
xi ×�Dxi+1 × ...�Dxn

Naive BoxSet((C, V,B), solutions)
16: else

if (B is not empty) then
18: add B to solutions

Lines 2-10 are the union variant of HC Filtering. Lines 12-15 perform nat-
ural splitting.

4.4 Properties

Consider, in the execution of Naive BoxSet, the point where the box B is added
to solutions, i.e. at line 18. If we have reached this point, it means that no gap
could be found in B, or in other words, that every constraint is box-continuous
on B. But B is also hull-consistent so the following proposition applies to B:

Proposition 1. If every constraint is box-continuous on a box B then:
B is hull-consistent ⇐⇒ B is arc-consistent

Proof. Once the fix point of a hull consistency filtering is reached, we have
for every pair < c, x > of constraint/variable: Dx = �Πc

x(B). As c is box-
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continuous, �Πc
x(B) = Πc

x(B) and then Dx = Πc
x(B), which means that the

domain of x is arc-consistent regarding c. The converse relation is obvious. N

Hence, B is an arc-consistent box. As a rule of thumb: Hull consistency and
Natural Splitting gives the box-set consistency of the problem.

4.5 Lazy version

In practice, managing unions in HC Filtering is highly inefficient. Moreover,
results of projections are computed all along the propagation loop although
we are interested only by the last ones. Imagine now that we got a way to
check quickly whether a constraint is box-continuous or not. We could apply
HC Filtering as it is (without unions), and once the fix point is reached check
the constraints one after the other until we find a constraint c that is not box-
continuous. If one is found, there is at least one variable x involved in c for which
we can exhibit a gap inside the domain. So we compute an exact projection this
time to disclose the gap, and finally use it as a candidate for splitting.

So, our solving strategy now is simply a combination of three steps: hull-
consistency filtering, gap search, and natural splitting:

Procedure 3 Lazy BoxSet(NCSP (C, V,B), in-out solutions)

2: HC Filtering((C, V,B))

4: if B is empty then
return

6: C′ ← C
found ← false

8: while (not found) and (C′ 6= ∅) do
pop c from C′

10: if c is not box-continuous then
V ′ ← the set of variables in V related by c

12: while (not found) and (V ′ 6= ∅) do
pop x from V ′

14: U ←− Πc
x(B)

if |U | > 1 then
16: found ← true

18: if found then
for all intervals I in U do

20: Dx ←− I
Lazy BoxSet((C, V,B), solutions)

22: else
add B to solutions
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Line 2 in Lazy BoxSet enforces a hull consistency filtering. In lines 6 to 16,
we try to find a gap in the box. In case of success, lines 19 to 21 execute a natural
split, otherwise, the box is stored in solutions (lines 23).

4.6 Detection of Box-Continuity

With an implementation of HC Filtering like HC4 [2], it is easy to detect box-
continuity of a constraint during the filtering step of Lazy BoxSet.

The projection operator of HC4 must be slightly modified to update this
property while exploring the syntax tree of a constraint. The rule is simple:
before projecting a constraint c, the projection operator sets the box-continuity
boolean of c to true. If a disjunction appears somewhere in the tree, this boolean
is set to false.

Thus, in practice, detecting box-continuity is computationally insignificant
and permits to dramatically reduce the number of calls to the general projection
operator embedded in Lazy BoxSet. This remark is relevant for all the prob-
lems, because at some point in the search, a majority of boxes are small enough
for functions to be all monotonous. It is straightforward that with monotonous
functions, detection of box-continuity always succeeds so that the projection
operation is not costly.

4.7 Difference with Hyvönen’s method

In [5], natural splitting is also used in a similar solving strategy. But an impor-
tant difference makes our version much more powerful. In [5], no hull filtering is
used before splitting and only box-continuous constraints are projected before
instantiating variables. In a majority of non-linear problems, this extremely de-
creases the performances by generating an exponential number of “overlapping
situations” [5], as this example illustrates:

Example 7. Let P = (C, {x1, ..., x50, y}, Dx1 × ...×Dx50 ×Dy) be a NCSP.
Dx1 = ... = Dx50 = [−2, 2] and Dy = [1, 4].
C includes the following constraints:
x2

1 = y
...
x2

50 = y
Finally, C contains a trivially unsatisfiable constraint: x2

1 = −x2
1

We assume that constraints are treated in their declaration order. For all
i (1 ≤ i ≤ 50), projection of x2

i = y over xi gives {[−2,−1], [1, 2]} so that
HC Filtering will not perform any reduction (bounds of [−2, 2] are preserved).
After these 50 unfruitful projections, HC Filtering will fall on the last con-
straint, that makes the whole box inconsistent. So Lazy BoxSet terminates al-
most immediately.

In contrast, as no constraint is box-continuous, the method in [5] will intro-
duce a choice point for every variable xi and deploy a search tree of 250 leaves
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before detecting inconsistency. A combinatorial explosion occurs. We observed
this difference with simple problems of distance equations. In the general case,
the proposed algorithm is more costly than our naive version.

Another drawback is that the domain of a variable must be divided statically
into sub-intervals (the actual application space) where constraints are all box-
continuous. This computation is only possible with primitive constraints.

5 Conclusion

We have tried to put an end to the question of arc-consistency with continuous
domains, by showing precisely on a simple example that it is not applicable.

However, we have given a way to obtain the box-set consistency, i.e. all the
arc-consistent sub-boxes of a problem, using a new splitting strategy called nat-
ural splitting.

The Lazy BoxSet algorithm enforcing box-set consistency has been imple-
mented, and so far, validated on toy problems. This implementation includes
a projection operator for handling any type of constraints (not only primitive
constraints). We will discuss about this crucial operator in a future paper, along
with the conditions under which it can be applied.

Beyond this implementation, we believe that box-set consistency is a strong
hence interesting property. We are currently investigating possible combinations
of box-set filtering and interval analysis.
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1 Introduction

Constraint satisfaction problems (csp) [22] have proven to be an efficient model
for solving many combinatorial and complex problems. Moreover, recurring pat-
terns and sub-problems in those problems are now handled through global con-
straints [2, 4, 18]. Global constraints have been a good advocate for using con-
straint programming techniques to solve real-life problems.

Explanations (specializing (a)tms [7]) and generalizing nogoods [21]) have
been initially introduced to improve backtracking-based algorithms [8]. How-
ever, they have been recently used for many other purposes [11] including new
solving techniques [13, 14], dynamic constraint solving [23, 6] and user interac-
tion [15]. Explanations represent an explicit and limited trace of the behavior of
the solver. They are mainly used both for dynamic solving and user-interaction
purposes. Maintaining and computing explanations may be particularly costly.
Fortunately, explanation-based algorithms efficiently solve problems thanks to
mechanism reducing thrashing during the resolution.

Introducing both explanations and global constraints in a constraint solver is
a real challenge. Indeed, three points may be kept in mind: (1) providing precise
and meaningful explanations to be offered to the user extracting the locality of
part of the reasoning of the global constraint, (2) altering the efficiency of the
original constraint as few as possible i.e. developing algorithms within the con-
straints efficient for both filtering and explanation capabilities and (3) providing
algorithmic tools for both incrementality (taking into account new events from
filtering) and decrementality (in order to be able to replace backtracking with
repair-based techniques as explanation-based solvers usually offer).

In this paper, we illustrate those three points with a global constraint encap-
sulating flow theory that maintains a feasible flow in a given network, similar to
the flow constraint in [5]. Such a constraint is useful for several real-life problems
involving resource allocation and is well suited for illustrating the challenges of
embedding explanations. In the following, we first set the context of our study in
Section 2 and introduce the flow constraint (Section 3). Then, the three points
are successively addressed in Sections 4, 5 and 6 keeping the flow constraint as an
illustration. Finally, some experiments are introduced showing the interest and
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the efficiency of our approach in Section 7 with respect to the three challenges
defined below.

2 Context

2.1 Constraint Satisfaction Problems

Following [22], a Constraint Satisfaction Problem is made of two parts: a syn-
tactic part and a semantic part. The syntactic part is a finite set V of variables,
a finite set C of constraints and a function var : C → P(V ), which associates a
set of related variables to each constraint. Indeed, a constraint may involve only
a subset of V . Constraints are defined by their set of allowed tuples providing
the semantic part of the constraint network. A tuple is a set of couples (var, val)
where var ∈ var(c) and val ∈ dvar its domain (set of allowed values for var).
Notice that domains are considered here as unary constraints.

2.2 Global constraints

In practice, constraints are seldom provided as a set of allowed tuples. Usu-
ally, arithmetic or symbolic expressions are used to describe the constraints of
a given csp. Moreover, global constraints [2, 18] are now often use to encompass
several recurring patterns arising in optimization problems. Following [4] we will
focus here on operationally global constraints: Operational globality considers
both a constraint and a consistency notion. The constraint is said to be global if
there exists no decomposition scheme for which the consistency notion removes
as many local inconsistencies as on the original constraint. This concept is im-
portant because it compares the pruning of the constraint and its decompositions
wrt a consistency notion. If the constraint prunes more than its decompositions,
then, from a CSP standpoint, it is operationally global, since the closure of the
decomposition cannot recover the consistency achieved on the original constraint.

Such a constraint, from an implementation point of view, usually involves
specific filtering algorithms that maintain a given support structure4 in order
to provide useful information for powerful domain reductions or early identifica-
tion of failures. For example, for the allDifferent constraint [17], a reference
matching is usually maintained which is used to compute strongly connected
components for the sake of the filtering algorithms.

2.3 Explanations for constraint programming

An explanation [11] for constraint programming contains enough information
to justify a decision (throwing a contradiction, reducing a domain, etc.): it is
composed of the constraints and the choices made during the search which are
sufficient to justify such an inference.
4 Notice that the support structure may not be explicitly maintained within the con-

straint but algorithmic tools are usually provided in order to be able to access it in
a reasonable time.
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Definition 1. An explanation of an inference (X ) consists of a subset of orig-
inal constraints (C′ ⊂ C) and a set of instantiation constraints (choices made
during the search: d1, d2, . . . , dk) such that: C′ ∧ d1 ∧ . . . ∧ dn ⇒ X .

An explanation e1 is said to be more precise than explanation e2 if and only
if e1 ⊂ e2.

The more precise an explanation, the more useful it is. However, this is not a
sufficient condition. There can be numerous minimal explanations. This is why
we have chosen to find a compromise between precision and ease of computation.

Computing explanations The most interesting explanations are those which
are minimal regarding inclusion. Those explanations allow highly focused infor-
mation about dependencies between constraints and variables. Unfortunately,
computing such an explanation can be exponentially costly. A good compromise
between precision and ease of computation consists in using the solver embedded
knowledge to provide explanations [12]. Indeed, constraint solvers always know,
although it is scarcely explicit, why they remove values from the domain of the
variables. By making that knowledge explicit, quite precise and interesting expla-
nations can be computed as constraint solvers are supposed to efficiently perform
their task! Therefore, explanations strongly depend both on the constraint solver
at hand and on the way the problem is modelled.

2.4 User accessible explanations

The primary usage of explanations is to provide the user some feed-back about
resolution. Precise and meaningful explanations are therefore required. More-
over, some kind of user interface for explanations is also required. Indeed, expla-
nations as we introduced them, reflecting the behavior of the solver, may be far
from the user representation of the problem. Tools are needed to translate that
internal information to a problem related representation [15].

2.5 Explanations for dynamic constraint solving

Solving dynamic constraints problem has led to different approaches [23]. Two
main classes of methods can be distinguished: proactive and reactive methods.
On the one hand, proactive methods propose to build robust solutions that
remain solutions even if changes occur. On the other hand, reactive methods try
to reuse as much as possible previous reasonings and solutions found in the past.
They avoid restarting from scratch and can be seen as a form of learning. Using
explanations falls is such a reactive techniques [11, 6].

Explanations for dynamic constraint retraction Dynamic constraint re-
traction is basically a two-step process [6]: enlarging the current environment (in
order to undo past effects of the retracted constraint which are the events whose
explanation contains the retracted constraints) and restoring a given consistency
for the resulting constraint network.
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Search as a dynamic process Using explanations to help solving (as in Dy-
namic Backtracking [8] or in mac-dbt [13]) modifies the way search is done.
In those algorithms (as in decision-repair [14]) backtracking is replaced by
a repair mechanism as handling contradiction is no longer handled by getting
back to an already explored safe situation. Contradiction can now be precisely
explained allowing modifications in the set of decisions (usually variable assign-
ments) performed in a chirurgical way.

Those recent algorithms introduce new events in a constraint solver (domain
enlargement) and a new kind of incrementality: decremental requirements.

2.6 Global constraints and explanations: operational requirements

Implementing global constraints in an explanation-aware setting leads to three
challenges:

– computing (quasi-)minimal and user meaningful explanations. Explanations
computing for and by a global constraint should provide as much informa-
tion as possible ie, as paradoxal as it may appear, explanations should be
as local as possible. Moreover, they should be easily interpreted in terms
of the underlying theory of the constraint in order to be translated into
comprehensible terms for a user. Consider for example the allDifferent
constraint where a value is removed from the domain of a variable when the
variable and its value are in two different strongly connected components in
the graph representing the current reference matching. In order to provide an
explanation for that situation some more information need to be computed
and a theoretical analysis should be performed [20]. Usually, the support
structure need to be enhanced in order to provide efficient tools for efficient
explanations during propagation5.

– efficiency of the constraint must be preserved. Adding explanations capabili-
ties into a global constraint must not degrade its performance to an unbear-
able level. The key point for such constraints is to incrementally maintain
the enhanced support structure. Recomputing from scratch the information
upon each value removal should be avoided in order to maintain a low com-
putational cost of the filtering algorithms. Indeed, the idea is to be able to
design a propagation algorithm efficient both for filtering and explanation
computation.

– incrementality and decrementality should be provided. As with explanations,
backtracking can easily be replaced with some kind of repair mechanisms,
constraints should be able to provide both incremental AND decremental
algorithms need to be designed in order to provide efficient and powerful
constraints for new search algorithms.

In the following, we will illustrate those three points with a global constraint
that maintains a feasible flow in a given network.
5 Notice that this is not always the case: see the stretch constraint for example[20].
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3 Application to the flow Constraint

We chose here to illustrate the way global constraints should be instrumented
for explanation-based solvers with a flow constraint. Such a constraint is meant
to maintain a feasible flow in a given network. We recall some information about
flow theory and introduce the global constraint.

3.1 Flow Theory

The subsection content is based on the book “Network Flows” by Ahuja, Magnati
and Orlin [1]. We only give a quick survey of the main definitions and properties
used in this paper. The interested reader will find much more details and all
proofs in it.

Let’s note G = (N,A) an acyclic directed graph with N the set of nodes and
A the set of arcs.

Definition 2 (Feasible Flow). The following equations model a feasible flow
problem on G between two specifics nodes of N , the source s and the sink t:

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xij =

v for i = s
0 ∀i ∈ N\{s, t}
−v for i = s

(1)

∀(i, j) ∈ A, lij ≤ xij ≤ uij , lij ≥ 0 (2)

Equations (1) ensure flow conservation at each node, (2) impose that the
amount of flow going through each arc is between its lower bound lij and upper
bound uij . We refer to x = {xij} satisfying (1) and (2) as a feasible flow and the
value of v as the value of the flow. Figure 1 gives an example of a feasible flow
problem.
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Fig. 1. Flow example in an acyclic oriented graph

Let’s now introduce cuts and their capacity. A cut is a partition of the set
of nodes N into two subsets. Flow theory is interested by a specific type of cut,
the s− t cut.

Definition 3 (s− t Cut). An s− t cut (S, S̄) is a partition of the set of node
N into two subsets S and S̄ = N − S such as s ∈ S and t ∈ S̄.
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A cut is denoted by (S, S̄), we use also this notation to refer to the set of
arcs (i, j) such as i ∈ S and j ∈ S̄. The capacity of a cut gives bounds on the
amount of flow we can send from one set of the nodes to the other one. It plays
a central role for explanation in a flow constraint (see Section 4).

Definition 4 (Capacity of an s− t Cut).

C(S, S̄) =
∑

(i,j)∈(S,S̄)

uij −
∑

(i,j)∈(S̄,S)

lij (3)

For example, in Figure 1, the capacity of the cut ({1, 2, 3, 4}, {5, 6}) is 15. It
is equal to the difference between the sum of the maximum capacities u16 = 5,
u45 = 5 and u35 = 6 and the minimum capacity l14 = 1.

Let us introduce two properties linking cut capacity and flow value v.

Property 1 The value v of any flow x is less than or equal to the capacity of
any s− t cut in the network

This property is quite intuitive as any flow should pass through every s − t
cuts and therefore can not exceed their capacity.

Property 2 (Max-Flow Min-Cut) the maximum value v of the flow x from
s to t equals the minimum capacity among all s− t cuts.

This last property shows the dual aspects of flow problems, any maximum flow
problem is equivalent to a minimum cut problem.

3.2 Semantics

The flow constraint studied in this paper is a direct translation in a global
constraint of the feasible flow problem (see definition 2). Compared to Chip flow
constraint [5], it is restricted to flow feasibility on acyclic graph. The following
call flow(pb,G,s,t,V) in a Choco program [16] defines a flow on G between
s and t of value v where:

– G is a list formulation of the graph G; an arc (i, j) is defined by couple
(j,Xij) in the list G[i] where Xij is the variable denoting the flow going
through the arc (i, j) ∈ A with its domain dXij

=[lij ..uij ],

– s and t are the index of the source and sink nodes s and t in the list G,
– V is the variable denoting the flow value v between source and sink,

The feasible flow given in Figure 1 corresponds to the following Choco call.

Problem pb = new Problem();

IntVar X12 = pb.makeEnumIntVar("X12", 0, 5);

...

CapaEdge[][] G = new CapaEdge[][]{

{new CapaEdge(X12,2), new CapaEdge(X16,6)}, //(1,i) arcs

{new CapaEdge(X23,3), new CapaEdge(X24,4)}, //(2,i) arcs

...

pb.post(flow(G, 1, 5, V));
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The following section presents propagation principles and flow algorithms
used in the flow constraint.

3.3 Flow Algorithms

To implement a Flow constraint, propagation algorithms should answer the fol-
lowing questions:

1. Is the support set empty or not?
2. What are the bounds of V according to G?
3. What are the bounds of Xij of G according to V or other Xij variables?

The first point is equivalent to solving the Feasible Flow Problem of (2).
The two last points are related to Minimum and Maximum Flow Problems with
Minimum Capacity.

Feasible Flow Problem Finding a feasible flow is obvious when there is no
minimum capacity on arcs (i.e. ∀(i, j) ∈ A, lij = 0). For such a graph an empty
flow is a feasible one. When some lij are greater than zero, Berge gives in [3] an
algorithm based on solving a maximum flow problem on a transformed graph.
This graph has two interesting property:

1. a feasible flow x exists in G if and only if the value of a maximal flow in the
transformed graph saturates arcs of its source and sink;

2. all arc’s minimum capacity in the transformed graph is zero so standard
maximum flow algorithm could be applied.

This method is used straightforwardly to find a feasible flow or to prove that
the support of a flow constraint is empty. In the rest of the paper, we use Φ to
denote a support, i.e. a feasible flow of G.

Minimum and Maximum Flow Problem with Minimum Capacity The
existence of minimum capacity on arcs makes computing minimum or maximum
flow more complex. A two stage algorithm should be applied:

1. find a feasible flow Φ using the previous algorithm;
2. applying a maximum flow algorithm on the residual network6 containing Φ.

For finding a maximum flow, one just has to solve a maximum flow problem on
the residual network containing Φ. Finding minimum flow is also quite simple.
One has to solve a maximum flow problem on the same residual network but
from the sink t to the source s. Intuitively, this last problem removes as much
flow as possible between t and s while maintaining a feasible flow. Finally, the
resulting flow is feasible and minimum.
6 The residual network is a common graph representation that contains both the flow

and the remaining flow of each arcs. It is used in most graph algorithms to maintain
incrementally a flow.
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Propagation principles Two types of propagation have been defined in the
flow constraint:

1. Flow conservation propagations inside {Xij,∀(i, j) ∈ A} and between
{Xij,∀(i, j) ∈ A} and V
These propagations are local to each node. They insure the flow conservation
constraint (1) by applying the standard (in CP solver) bound propagation
rules of linear formula [9].

2. Global flow propagations from {Xij,∀(i, j) ∈ A} to V
They are global to the graph and based on algorithms described below. They
check the existence of a feasible flow Φ (i.e. a support) and maintain the
value of the flow in the graph, i.e. the domain of the V variable, by solving
a minimum and a maximal flow problems7.

A small modification of the original graph G is used to improve propagations
without any change in the algorithms. We add a new node, denoted st for super
sink, with one arc from sink t to this super sink st with variable V as the arc
domain capacities. This transformation imposes that any feasible flow Φ should
be in the domain of V and so insures bound consistency of the V variable.

The propagation algorithms are combined in the flow constraint according to
the complexity of the underlying algorithms. Here is a sketch of the algorithms.
Propagations based on standard linear equation propagations are called first.
After reaching a fix-point without contradiction, the global flow propagations is
called. These last propagations compute new bounds of the flow variable V. If
they are different from current ones, two situations could occur: if the computed
bounds are inconsistent with current bounds of the flow variable V, a contradic-
tion should be triggered; if the computed bounds reduce the domain of variable
V, the new bounds should be propagated.

We detail in Section 5 how this process could be speed up using a incremental
version of the global flow propagations.

4 Accurate explanations for the flow constraint

Explaining efficiently global constraints is a challenging task: generated expla-
nations must be as precise as possible without slowing down the resolution. This
section presents how to generate precise explanations for the flow constraint
thanks to nearly cost less algorithms based on the cut notion.

Since the flow constraint propagates on variables bounds, we will note expl(x ≥
v) (resp. expl(x ≤ v)) the explanation of the lower bound of variable x and more
precisely the reason why the variable x must be at least equal to v (resp. the
reason why x must be less than or equal to v). With respect to the flow con-
straint, two kinds of filtering removals are deduced: the flow conservation rules
and the minimum, maximum or feasible flow properties.
7 We choose not to solve a minimum and a maximum flow problems on each arc to

maintain Xij bounds as it seems to be too costly. These bounds are only update by
the flow conservation propagations.



Implementing explained global constraints 69

4.1 Flow conservation explanations

As illustrated on equation (1), flow conservation rules are based on the Kirchoff
law. Since flow in the network is considered as positive values on the arcs, the
following rule can be used : ∀i, k ∈ N\{s, t}, (i, k) ∈ A, uik =

∑
j:(j,i)∈A uji −∑

j 6=k:(i,j)∈A) lij .
This rule makes the explanation explicit: the lower and upper bounds in-

volved in this equation imply the value of the new upper bound of xik. The
explanation of this bound is then (∀i, k ∈ N\{s, t}, (i, k) ∈ A):

expl(Xik ≤ uik) =
⋃

j:(j,i)∈A

expl(Xji ≤ uji) ∪
⋃

j 6=k:(i,j)∈A

expl(Xij ≥ lij) (4)

This result can easily be generalised to all filtering rules based on this law.

4.2 Maximal flow explanation

As we are dealing with global properties, computing precise explanations is not
easy. We could actually use the trivial explanation (union of all variables expla-
nations in the network) but this is far from being precise.

In order to keep things clear, all flows are assumed to be feasible in this
section. Properties 1 and 2 guarantee that the maximum value of the flow from
a source s to a sink t equals the minimum cut capacity. Computing such a cut
is nearly costless as soon as a maximal flow is found. Thus a minimum capacity
cut can be used to explain the maximal flow in a network. The capacity of a cut
is defined on Equation 3: C(S, S̄) =

∑
(i,j)∈(S,S̄) uij −

∑
(i,j)∈(S̄,S) lij .

The equation shows that the only way to increase the upper bound of the
flow across the network is to modify one of these bounds. The following property
is now immediate :

Proposition 1 Given a network and a minimal s− t cut (S, S̄) in this network,
an explanation for the maximum flow across the network can be defined as follows
(where expl(Xij ≤ uij) and expl(xij ≥ lij) are maintained bound explanations):

expl(V ≤ C(S, S̄)) =
⋃

(i,j)∈(S,S̄)

expl(Xij ≤ uij) ∪
⋃

(i,j)∈(S̄,S)

expl(xij ≥ lij) (5)

For instance, in the network illustrated on Figure 1, when a maximal flow is
reached, the cut S = {1} is computed. This means that the explanation should
contain the upper bound explanations forx1,6 and x1,2. Such an explanation is
sufficient for justifying the new upper bound of the flow across the network from
1 to 5 – here this upper bound equals u1,5 + u1,6 = 10. The computation of
such an explanation is quite easy when a maximal flow is known: the algorithm
compute reachable nodes from source in the residual graph, and the cut contains
all arcs between these nodes and nodes outside (O(m · n) complexity). This
algorithm does not guarantee minimal explanations, but it provides an algorithm
with an acceptable computing overhead. Since explanations can be exploited
to dynamically remove constraints, they need to be always available for each
variable domain. This makes the use of algorithms like QuickXPlain [10] (based
on dichotomic search of minimal conflict set over constraints) prohibitive.

The same principles are used to compute explanations for minimum flow.
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4.3 Feasible flow

When there is no feasible flow in the graph, a contradiction is raised. This
situation needs to get an explanation. As we saw earlier, searching for a feasible
flow is the same as searching for a maximum flow in a modified graph. Therefore,
the same idea applies. The only issue is to take into account the modifications
the graph in the explanations (see [19] for details).

5 Efficient filtering algorithm and explanation algorithm

The main difficulty of the implementation of a global constraint lies in the dy-
namic nature of CP solvers. Constraints must react to solver events such as
modifications of the domain of their variables, in order to check their feasibility
and deduce some domain reductions or inconsistency. A keen constraint imple-
mentation must trigger as less propagation rules as possible for any set of events.
A solution is to filter solver events with the constraint support structure and to
use incremental algorithms.

5.1 Filtering events with flow constraint support structure

The flow constraint reacts only to bound modification events of its variables: an
increase/decrease of the lower/upper bound of an arc capacity (variables {Xij})
and an increase/decrease of the minimum/maximum flow (variable V). For both
events, we use the same two stage mechanism[16]: flow conservation propagations
rule is triggered immediately and global flow propagations are delayed.

For such delayed propagations, triggered events are filtered through con-
straint support structure. For the flow constraint, we choose a residual network
as the support structure. At any fix-point, it contains a feasible flow Φ. Two
reactions can happen according to Φ:

1. The new domain bounds are consistent with current support flow Φ, i.e. xij
the flow on arc (i, j) in Φ is still in the reduced domain dXij . Triggering a
propagation rule is useless, as Φ is still a support.

2. It is incompatible with current flow Φ, post a new event to the solver in
order to awake the constraint for finding new feasible flow and, if necessary,
computing the new minimal/maximum flow.

5.2 Finding incrementally a new feasible flow

The second item is done incrementally. The basic principle is to start from cur-
rent flow support Φ instead of starting with empty flows. We suppose that making
the few changes to obtain a new valid support is less costly than starting from
scratch.

As explained in Section 3.3, the graph transformation of Berge [3] was de-
signed to search a feasible flow from a null flow by adding new arcs in order to
fill a lack of flow in some nodes and to remove an excess of flows in some other
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ones. It can be generalised to add or remove some flows on any arcs from any
initial flow and so, used to change any flow into a new one consistent with new
bounds on arc capacities.

To build the transformed graph, one should start from any feasible flow and:

– initialise ∀i ∈ N, b(i) = 0 a b vector representing lack or excess of flow at
each node;

– in order to add q units of flow on arc (i, j) (because the lower bound is more
than the support value), remove q from b(i), add q to b(j) and update the
structure;

– in order to remove q units of flow on arc (i, j) (because the upper bound is
less than the support value), add q to b(i), remove q from b(j) and update
the structure.

When all the updated flows have been taken into account, each node i with
b(i) positive (resp. negative) is linked to a new source node (resp. sink node)
with a maximum capacity on the arc equal to b(i).

A feasible flow compatible with all the added and removed flows exists if and
only if maximum flow saturates source and sink arcs. The proof of this property
is a direct extension of the one used in [1] for the feasible flow.

To use this algorithm for an incremental version of propagation rules, one
has to add in the support structure a b vector. For all events on the bounds of
Xij and V variables, the flow constraint should update the support graph and,
if this new bound is inconsistent with current flow Φ, the b vector.

Each filtering decision must be precisely explained. As Section 4 shows, com-
puting explanations depends on cut. Fortunately this is nearly costless as soon
as a maximum flow (in G or G′) is available thanks to the Φ support.

6 Decremental data structures

Incremental algorithms presented in last section depends on up-to-date data
structures. CP solvers provide backtracking mechanisms that maintain past
states of the structure. In dynamic solving (like explanation based algorithms)
decremental process must be included into the constraint to ensure the structure
to be always consistent with the current state of variables.

6.1 Classical solving

All information depending on the state of variables used by the filtering algo-
rithm must be up-to-date. This compels the following data to be maintained
whenever the state is modified:

– the support Φ (a feasible flow), since all filtering algorithms depend on them;
– all data depending on the state of variable, like b values.

With classical backtrack, the state reached after a contradiction is always a
past state. This means that the data structure only needs to be stored before
trying new search decisions: classical trailing method is sufficient.
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6.2 Dynamic solving

In a dynamic context (where a constraint or a decision can be undone even if
this is not the last posted one), trailing is useless as the state reached after
a contradiction is not necessarily a past state anymore. That means that the
constraint must be able to update itself its data structure upon repairing.

With the flow constraint, removing constraints does not make the current
data structure false, since a feasible flow in a network is still feasible in a less
constrained network. This means that in many cases, the constraint only has to
update maximum flow and minimum flow from past supports.

However, in 5.1 we saw that the support is not always up-to-date since com-
patibility check of the support is delayed for the sake of efficiency. Thus it is not
possible to use the current support to build a new one. The following algorithm
scheme is used to overcome this issue:

– when an event is triggered, the event is stored in a stack;
– when a contradiction occurs, the stored support is restored and updated according

to stored events;
– when a feasible flow is found, the support is stored and the stack cleaned.

Similar methods may be useful for all constraints involving delayed filtering
rules. It guarantees that the obtained structure is consistent with the new state
by updating support with past events, while still using incremental filtering
algorithms.

7 Experiments

7.1 Problem presentation

Main constraints The flow constraint is particularly handy to model resource
affectation problems. This is why an employee scheduling problem – inspired
from a Bouygues staff management problem – is presented here. In this em-
ployee scheduling problem, one wants to schedule team of employees in a weekly
planning. Two concerns should be affected:
– a day off : each team has a day off between Monday and Saturday;
– a shift : each team works according to predefined shifts.

The problem must checks the company loads are respected – enough teams
should work according to the load of work – and the assignments should be fair
– a team cannot be affected to the same shift or day off too many times.

For example, the bounds illustrated on Table 1 are used for the bench in the
next section. In this instance, a team cannot be affected more than 3 times to
the same day off, 2 teams should be affected to the evening shift each week, etc.

Additional constraints To force equitable affectation, some other sequencing
constraints are added. For instance, in this bench, a team cannot be affected
to the evening shift during two consecutive weeks. In real life problems, other
constraints such as each team is affected to the Saturday day off at least every
five weeks, must be added.
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Table 1. A simple instance of an employee scheduling problem

Day affectation Shift affectation

mon tue wed thu fri sat early morning day afternoon evening

Team min. 0 0 0 0 0 0 0 0 0 0 0

Team max. 3 3 3 3 3 3 4 4 4 4 5

Week loads 1 1 1 1 1 1 1 1 1 1 2

7.2 Problem modelling

This problem can be modelled with numerous basic occurrence constraints.
However the problem of affecting both days off and shifts can be considered
as two independent flow constraints. Indeed let Teams be the set of teams of
employees, Weeks the set of all weeks in the problem, dayAffectationX variables
stating if a day is affected given a week and a team, and weeklyDayRequirement
and teamDayRequirement affectation bounds for each day.

Then the problem of finding a day affectation for each team and week is
equivalent of finding a flow in the network illustrated on Figure 2(a). Indeed,
the first level of nodes constrains that each week #Teams days off must be
affected (this means that each team must have a day off per week). The second
level constrains the number of days off that can be affected depending on the
day in the week (for instance if the company has a lot of work on Monday, no
day off should be affected on Monday). The third level is composed of affectation
variables modelled as presented before. And the fourth and fifth levels are the
symmetric levels for teams requirement (a team can have specific bounds for day
affectation: for instance, a team should be affected at least three times to the
Saturday day off). Shift affectations are modelled with similar constraint.

sat

Weeks

weeklyDayRequirement[week][day]

mon
mon

dayAffectationX[week][team][day]

teamDayRequirement[team][day]

Teams

#Weeks

#Teams
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(a) A flow model
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(b) Experimentation results

Fig. 2. An employee scheduling problem

7.3 Bench results

This bench has been implemented in several versions and tested on at least
ten runs: an occurrence model without explanations using a classical arc-
consistency and backtracking algorithm in Java version of Choco [16], a flow
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model without explanations using the same algorithms and a flow model with
explanations using the mac-dbt algorithm [13] and Palm[12].

The results on Figure 2(b) show that the flow model is much more stable
than the occurrence one. Indeed, as long as the problem is simple enough, the
poor propagation of the occurrence constraint model is sufficient to find a so-
lution. Furthermore, since propagation is really quick, found results are quite
good compared to the flow model. But as soon as the problem becomes difficult
enough (due to some conflicts between different occurrence constraints mod-
elling subparts of the problem), this model is not efficient anymore: it needs a
longer time to repair past decisions when a contradiction occurs.

Results show that explained version of the model is almost as efficient as
the classical model whereas explanations need to be computed and maintained.
Such efficiency is mainly due to precise explanations avoiding thrashing during
searching a solution and a decrementality algorithm avoiding to compute a new
support from scratch after each contradiction. Some further experimentations
will be led so as to check if such a property is still true with complex search
algorithms (with custom branchings for instance).

7.4 Explanations and user interaction
This application is supposed to be used by a final user. It means that when
no solution is found, the user needs as much information as possible. Using
explanations with the flow constraints provides two kinds of information: First,
an explanation provides explicit inconsistent set of constraints: it is a precious
information for the final user to modify the requests or to localise where the
problem comes from, even if explanations must be modified to make them user-
friendly [15]. Then, since the flow constraint is a global one involving numerous
variables, the user may be interesting by a inconsistent subpart of the network;
if this constraint is the only one responsible for a contradiction, instead of giving
an explanation as introduced in definition 1, it can directly indicates variable
bounds implying such a contradiction so as to point out bounds to modify.

8 Conclusion
In this paper, we introduced important points to be addressed when considering
introducing explanations within global constraints. We illustrated our proposal
with a flow constraint and provided experimental evaluation of our approach.
To generate meaningful explanations, a theoretical study must be led to provide
explanations as precise as possible, while ensuring a certain efficiency of the
algorithm for practical purposes.

Our approach is particularly well designed for real complex problems as the
bench showed. Further experimentations will be led to test this approach on big
instances with real search algorithms.

Last, we already successfully instrumentated other global constraints (namely
stretch, alldifferent, gcc) following the guidelines presented in this paper.
More generic patterns could be covered: cyclic graphs or networks with associ-
ated cost to each edge. Such an explained global constraint menagerie may be
useful for many optimisation problems.
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18. Jean-Charles Régin. Global constraints. Fourth international workshop CA-AI-
OR, 2002.

19. Guillaume Rochart and Narendra Jussien. Explanations for a flow constraint (in
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Abstract. A non-binary Constraint Satisfaction Problem (CSP) can be
solved by converting the problem into an equivalent binary one and ap-
plying well-established binary CSP techniques. An alternative way is to
use extended versions of binary techniques directly in the non-binary
problem. There are two well-known methods in the literature for trans-
lating a non-binary CSP to an equivalent binary one; the hidden variable
encoding and the dual encoding. It has been shown that arc consistency
can be applied in the hidden variable encoding of a non-binary CSP
with the same worst-case time complexity as generalized arc consistency
in the non-binary representation. However, arc consistency in the dual
encoding is so far considered prohibitively expensive to apply. In this pa-
per we describe an arc consistency algorithm for the dual encoding with
O(e3dk) worst-case complexity. This gives an O(dk/e) saving compared
to a generic algorithm and is close to the complexity of generalized arc
consistency in the non-binary representation. Experimental results show
that the new algorithm can be orders of magnitude better than an opti-
mal generic arc consistency algorithm. Also, due to the stronger filtering
achieved in the dual encoding compared to the non-binary representa-
tion, utilization of the new algorithm can make the dual encoding a
competitive option for certain classes of non-binary constraints.

1 Introduction

Many problems from the real world can be represented as CSPs. For exam-
ple, problems from timetabling, scheduling, resource allocation, planning, cir-
cuit design etc. Most of these problems can be naturally modeled using n-ary
(or non-binary constraints). Because of this, an important part of research in
constraint programming is focused on devising efficient filtering algorithms for
specific non-binary constraints. Along these lines, efficient arc consistency algo-
rithms are of primary importance. However, if no specialized filtering algorithm
exists for some non-binary constraint then to process it we must either use a
weak consistency algorithm (e.g. forward checking during search), or a generic
but expensive algorithm for a stronger level of consistency (e.g. arc consistency).
A third alternative is to translate the non-binary constraint into binary, and use
well-developed techniques for binary constraints.
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There are two widely known binary translations; the Dual Encoding (DE)
[7] and the Hidden Variable Encoding (HVE) [11]. Recently, the efficiency of
the above encodings has been studied theoretically and empirically [1, 14, 9, 2].
Among other theoretical results, it has been proved that Arc Consistency (AC) in
the HVE achieves exactly the same consistency level as Generalized Arc Consis-
tency (GAC) in the non-binary CSP [14]. Also, AC in the DE achieves a stronger
level of consistency than GAC in the non-binary problem [14]. Experiments have
shown that algorithms, such as maintaining arc consistency and forward check-
ing, applied in the HVE can be competitive, and is some cases better, than their
counterparts applied in the non-binary representation [1, 9]. For the DE, where
all variables usually have large domains, AC is generally considered too expen-
sive to apply. However, [13] has showed that, despite this disadvantage, there
are problems where search in the dual encoding can be very effective.

In this paper we describe an AC algorithm for the DE of an arbitrary non-
binary CSP with O(e3dk) worst-case time complexity, where e denotes the num-
ber of constraints, d the maximum domain size of the variables, and k the maxi-
mum arity of the constraints. This is significantly lower compared to theO(e2d2k)
complexity of a generic optimal AC algorithm. Also the complexity of the pro-
posed algorithm is close to theO(ekdk) worst-case complexity of an optimal GAC
algorithm for the non-binary representation. To achieve the O(e3dk) bound, we
take advantage of the micro-structure in the binary constraints of the DE by
observing that these constraints are piecewise functional.

Experimental results with randomly generated problems and benchmark
crossword puzzle generation problems demonstrate that applying AC using the
proposed algorithm can offer a very significant speed-up (up to more than 2
orders of magnitude) compared to a generic AC algorithm (AC-2001 [6]). This
improvement allows AC in the DE to be computationally feasible, when the con-
straints are tight. As a result, applying AC in the DE can be competitive and
in some cases more effective that GAC in the non-binary representation and AC
in the HVE, considering that it achieves a stronger level of consistency. This is
demonstrated through experimental results with large sparse non-binary CSPs
and crossword puzzles. We show that for large domain sizes the new algorithm is
not only orders of magnitude faster than AC-2001, but can also be competitive
with an optimal GAC algorithm for the non-binary representation.

The paper is organized as follows. In Section 2 we give some necessary back-
ground. In Section 3 we describe the new AC algorithm for the dual encoding. In
Section 4 we present experimental results that demonstrate the practical value
of the new algorithm. Finally, in Section 5 we conclude and discuss future work.

2 Preliminaries

A CSP is stated as a triple (X,D,C), where X is a set of n variables, D =
{D(x1), . . . , D(xn)} is the domain of each variable xi ∈ X, and C is a set of c
constraints. Each k-ary constraint c is defined over a set of variables (x1, . . . , xk)
by the subset of the Cartesian product D(x1)× . . .×D(xk) which are consistent
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tuples. In this way, each constraint c implies the allowed combination of values
for the variables (x1, . . . , xk). The verification procedure whether a given tuple
is allowed by c or not is called a consistency check. An assignment of a value a
to variable xi, i = 1, 2, . . . , n is denoted by (xi, a).

CSPs are usually represented as graphs, where nodes correspond to variables
and edges to constraints. A solution of a CSP G = (X,D,C) is an instantiation
of the variables x ∈ X, such that all the constraints c ∈ C are satisfied. A value
a ∈ D(xi) is consistent with a binary constraint cij iff ∃ b ∈ D(xj) such that the
assignments (xi, a) ,(xj , b) are allowed by cij . In this case the value b is called a
support for (xi, a) on the constraint cij .

A value a ∈ D(xi) is arc consistent (AC) iff it has support in all D(xj)
such that constraint cij ∈ C. A constraint cij is arc consistent if ∀ a ∈ D(xi),
∃ b ∈ D(xj) such that b is a support for (xi, a). A binary CSP G is arc consistent
iff all the constraints are arc consistent. The above definitions have been extended
to non-binary CSPs. A non-binary constraint is GAC iff for any variable in the
constraint and and any value of that variable, there exist compatible values for
all the other variables in the constraint.

In what follows we will use the notation e for the number of constraints
in a non-binary problem, d for the domain size of the original variables in the
non-binary problem, and k for the arity of the non-binary constraints. For ease
of analysis, the results presented are based on the assumption that all original
variables have uniform domain size and all constraints are of the same arity.
However, these restrictions can be easily lifted.

2.1 Dual Encoding

In the dual encoding each constraint ci of the original n-ary CSP is represented
by a dual variable vi [7]. The domain of each dual variable consists of the set of
allowed tuples in the original constraint. Binary constraints between two dual
variables v1 and v2 exist iff the original constraints c1 and c2 share one or more
variables. These binary constraints disallow pairs of tuples in which shared vari-
ables have different values. In order to show more clearly how the DE works,
consider the following example with six original variables xi, i = 1, . . . , 6 with
0 − 1 domains and four constraints cj , j = 1, . . . , 4. The four constraints of the
CSP are:

x1 + x2 + x6 = 1
x1 − x3 + x4 = 1
x4 + x5 − x6 ≥ 1
x2 + x5 − x6 = 0

Figure 1 depicts the DE for this problem. In the DE we have four dual variables
vi, i = 1, 2, 3, 4. The domains of these variables are the tuples that satisfy the re-
spective constraint. For example, the dual variable v2 associated with the second
constraint has the domain {(0, 0, 1), (1, 0, 0), (1, 1, 1)}. There are binary compat-
ibility constraints between dual variables whose corresponding non-binary con-
straints share one or more original variables. For example there is a constraint
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between v1 and v2 (denoted by R11) because the corresponding non-binary con-
straints of v1 and v2 share original variable x1. This constraint allows a pair of
tuples < ti, tj > iff the value of x1 is the same in both ti and tj . For constraint
R11 the allowed pairs of tuples are: {(< 0, 0, 1 >,< 0, 0, 1 >), (< 0, 1, 0 >,<
0, 0, 1 >), (< 1, 0, 0 >,< 1, 0, 0 >), (< 1, 0, 0 >,< 1, 1, 1 >).

v1 v4

v2 v3

(0,0,1)  (0,1,0)

(1,0,0)

(0,0,1)  (1,0,0)

(1,1,1)

(0,1,0)  (1,0,0)

(1,1,0)  (1,1,1)

(0,0,0)  (0,1,1)

(1,0,1)

R33
R22 & R33

R31

R11

R21 & R33

Fig. 1. Dual encoding of a non-binary CSP.

In the following, we will denote by cvi the non-binary constraint that is en-
coded by dual variable vi. For an original variable xj involved in cvi , pos(xj , cvi)
will denote the position of xj in cvi . For instance, given a constraint cvi on
variables x1, x2, x3, pos(x2, cvi) = 2.

3 Arc Consistency in the Dual Encoding

AC can be enforced in a binary CSP with O(ed2) optimal worst-case time com-
plexity. Since the DE is a binary CSP, one obvious way to apply AC is using a
standard AC algorithm. The domain size of a dual variable corresponding to a
k−ary constraint is of size dk in the worst case. Therefore, if we apply an optimal
AC algorithm (e.g. AC-2001 [6]) then we can enforce AC on one dual constraint
with O(d2k) worst-case complexity. In the DE of a CSP with e constraints of
arity k there are at most e(e − 1)/2 binary constraints (when all pairs of dual
variables share one or more original variables). Therefore, we can enforce AC in
the DE of the k−ary CSP with O(e2d2k) worst-case complexity. This is signif-
icantly more expensive compared to the O(ekdk) complexity bound of GAC in
the non-binary representation and AC in the HVE3. Because of the very high
complexity bound, AC processing in the DE is considered to be impractical,
except perhaps for very tight constraints.
3 AC in the HVE can applied with the same worst-case time complexity as GAC in

the non-binary representation [9].
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However, we will now show that AC can be applied in the DE much more
efficiently using a simple algorithm. This algorithm can enforce AC on the DE of
a n-ary CSP with O(e3dk) worst-case time complexity. The improvement in the
asymptotic complexity is based on the the observation that the constraints in
the DE are piecewise functional. A constraint c on variables xi and xj is called
piecewise if the domains of xi and xj can be partitioned into groups such that
the elements of each group behave similarly with respect to c [8]. A piecewise
functional constraint c on variables xi and xj is a constraint where the domains
of xi and xj can be decomposed into groups such that each group of D(xi) (resp.
D(xj)) is supported by all values in at most one group of D(xj) (resp. D(xi))
[8]. For example, the modulo (xi MOD xj) and integer division (xi DIV xj)
constraints are piecewise functional. Based on [8], we can implement a simple
algorithm that drastically reduces the complexity of AC filtering in the DE.

Consider a binary constraint between dual variables vi and vj . We can par-
tition the tuples in the domain of either dual variable into groups such that all
tuples in a group are supported by the same group of tuples in the other vari-
able. If the non-binary constraints corresponding to the two dual variables share
f original variables x1, . . . , xf of domain size d, then we can partition the tuples
of vi and vj into df groups. Each tuple in a group s includes the same sub-tuple
of the form < a1, . . . , af >, where a1 ∈ D(x1), . . . , af ∈ D(xf ). Each tuple τ in
s will be supported by all tuples in a group s′ of the other variable, where each
tuple in s′ also includes the sub-tuple < a1, . . . , af >.The tuples belonging to s′

will be the only supports of tuple τ since any other tuple does not contain the
sub-tuple < a1, . . . , af >. In other words, a group of tuples s in variable vi will
only be supported by a corresponding group s′ in variable vj where the tuples in
both groups have the same values for the original variables that are common to
the two encoded non-binary constraints. This partitioning of the dual variable
domains means that the constraints in the DE are piecewise functional.

Example 1. Assume we have two dual variables v1 and v2. v1 encodes constraint
(x1, x2, x3), and v2 encodes constraint (x1, x4, x5), where the original variables
x1, . . . , x5 have the domain {0, 1, 2}. We can partition the tuples in each dual
variable into 3 groups. The first group will include tuples of the form < 0, ∗, ∗ >,
the second will include tuples of the form < 1, ∗, ∗ >, and the third will include
tuples of the form < 2, ∗, ∗ >. A star (*) means that the corresponding original
variable can take any value. Each group is supported only by the corresponding
group in the other variable. Note that the tuples of a variable vi are partitioned
in different groups according to each constraint that involves vi. For instance,
if there is another dual variable v3 encoding constraint (x6, x7, x3) then the
partition of tuples in v1 according to the constraint between v1 and v3 is into
groups of the form < ∗, ∗, 0 >, < ∗, ∗, 1 >, < ∗, ∗, 2 >.

In Figure 2 we sketch an AC-3 like AC algorithm for the DE, which we call
PW-AC (PieceWise Arc Consistency). As do most AC algorithms, PW-AC uses
a stack to propagate deletions from the domains of variables. For reasons that we
will explain bellow, this stack processes groups of piecewise partitions, instead
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procedure PW −AC
1: Q← ∅
2: initialize all group counters to 0
3: for each variable vi
4: for each variable vj constrained with vi
5: for each tuple τ ∈ D(vi)
6: counter(GroupOf(S(vi, vj), τ))← counter(GroupOf(S(vi, vj), τ)) + 1
7: for each variable vi
8: for each variable vj constrained with vi
9: for each group sl(vi, vj)
10: if counter(sl(vi, vj)) = 0
11: put sl(vi, vj) in Q
12: return Propagation

function Propagation
13: while Q is not empty
14: pick group sl(vi, vj) from Q
15: δ ← ∅
16: δ ← Revise(vi, vj , sl(vi, vj))
17: if D(vj) is empty return INCONSISTENCY
18: for each group sl′(vj , vk) in δ put sl′(vj , vk) in Q
19: return CONSISTENCY

function Revise(vi, vj , sl(vi, vj))
20: for each tuple τ ∈ D(vj) where τ ∈ sup(sl(vi, vj))
21: remove τ from D(vj)
22: for each group sl′(vj , vk) that includes τ
23: counter(sl′(vj , vk))← counter(sl′(vj , vk))− 1
24: if counter(sl′(vj , vk)) = 0
25: add sl′(vj , vk) to δ
26: return δ

Fig. 2. PW-AC. An AC algorithm for the dual encoding.
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of variables or constraints as is usual in AC algorithms. We use the following
notation:

– S(vi, vj) = {s1(vi, vj), . . . , sm(vi, vj)} denotes the piecewise partition ofD(vi)
with respect to the constraint between vi and vj . Each sl(vi, vj) is a group
of the partition.

– sup(sl(vi, vj)) denotes the group of S(vj , vi) that can support group sl(vi, vj)
of S(vi, vj). As discussed, this group is unique.

– counter(sl(vi, vj)) holds the number of tuples that belong to group sl(vi, vj)
of partition S(vi, vj) and are present in D(vi). That is, at any time the value
of counter(sl(vi, vj)) gives the current cardinality of the group.

– GroupOf(S(vi, vj), τ) is a function that returns the group of S(vi, vj) where
tuple τ belongs. To implement this function, for each constraint between
dual variables vi and vj we store the original variables shared by the non-
binary constraints cvi and cvj . Also, for each such original variable xl we
store pos(xl, cvi) and pos(xl, cvj ). In this way the GroupOf function takes
constant time.

– The set δ contains the groups that have their counter reduced to 0 after a
call to function Revise. That is, groups such that all tuples belonging to
them have been deleted.

The algorithm works as follows. In an initialization phase, for each group
we count the number of tuples it contains (lines 3–6). Then, for each variable
vi we iterate over the variables vj that are constrained with vi. For each group
sl(vi, vj) of S(vi, vj), we check if sl(vi, vj) is empty or not (line 9). If it is empty,
it is added to the stack for propagation.

In the next phase, function Propagation is called to propagate the deletions
(line 12). Once the previous phase has finished, the stack will contain a number of
groups with 0 cardinality. For each such group sl(vi, vj) we must remove all tuples
belonging to group sup(sl(vi, vj)) since they have lost their support. This is done
by successively removing a group sl(vi, vj) from the stack and calling function
Revise. Since group sup(sl(vi, vj)) has lost its support, each tuple τ ∈ D(xj)
that belongs to sup(sl(vi, vj)), is deleted (line 21). Apart from sup(sl(vi, vj)),
tuple τ may also belong to other groups that D(vj) is partitioned in with respect
to constraints between vj and other variables. Since τ is deleted, the counters of
these groups must be updated (i.e. reduced by one). This is done in lines 22–23.
If the counter of such a group becomes 0 then the group is added to the stack
for propagation (lines 24–25). The process stops when either the stack or the
domain of a variable becomes empty. In the former case, the DE is AC, while in
the latter it is not.

3.1 Time Complexity

The PW-AC algorithm consists of two phases. In the initialization phase we set
up the group counters, and in the main phase we delete unsupported tuples and
propagate the deletions. We now analyze the time complexity of PW-AC.
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Theorem 1. The worst-case time complexity of algorithm PW-AC is O(e3dk).

Proof. We assume that for any constraint in the dual encoding, the non-binary
constraints corresponding to the two dual variables vi and vj share at most f
original variables x1, . . . , xf of domain size d. This means that each partition
consists of at most df groups. Obviously, f is equal to k − 1, where k is the
maximum arity of the constraints. In the initialization phase of lines 3–6 we
iterate over all constraints, and for each constraint between variables vi and
vj , we iterate over all the tuples in D(vi). This gives O(e2dk) asymptotic time
complexity. Thereafter, function Revise is called only when a group becomes
empty. This means that it is called at most df times for each constraint. Each
time Revise is called for a group sl(vi, vj), we iterate over the (at most) dk−f

tuples of group sup(sl(vi, vj)), and for each tuple τ we update the counters
of the groups where τ belongs. There are at most e such groups (in case vj
is constrained with all other dual variables). Therefore, for one constraint the
main phase of the algorithm costs O(dfdk−fe)=O(edk) operations. For the e2

constraints of the dual encoding, the complexity, including the preprocessing
step, is O(e2dk + e3dk)=O(e3dk). Q.E.D

3.2 Space Complexity

Since we deal with extensionally specified constraints, the asymptotic space com-
plexity of PW-AC, and any GAC (or AC) algorithm on the non-binary represen-
tation (or binary encoding), is dominated by the O(edk) space need to store the
allowed tuples of the non-binary constraints. Algorithm PW-AC also requires
O(e2df ) space to store the counters for all the groups, O(e2df ) space for the
stack, and O(fe2) space for the fast implementation of function GroupOf .

4 Experimental Study

To evaluate the performance of algorithm PW-AC, we run some experiments
on randomly generated problems and benchmark crossword puzzles. First, we
compared the run times of PW-AC and AC-2001 in the dual encoding of ran-
dom ternary CSPs. Then we compared the run times of the algorithms in the
DE to the run time of GAC-2001 on the non-binary representation, and we also
measured the number of times AC in the dual encoding was able to determine
insolubility compared to GAC in the non-binary representation. Random in-
stances were generated using the extended model B as it is described in [5]. To
summarize this generation method, a random non-binary CSP is defined by the
following five input parameters:

n - number of variables
d - domain size
k - arity of the constraints
p - density percentage of the generated graph
q - looseness percentage of the constraints
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In the following, a class of non-binary CSPs will be denoted by a tuple of the
form < n, d, p, q >. All constraints are ternary. We use a star (*) for the case
where one of the parameters is varied. For example, the tuple < 50, 20, 0.1, ∗ >
stands for the class of problems with 50 variables, domain size 20, graph density
0.1, and varying constraint looseness. For each set of parameters we generated
100 instances and measured the average run times. All the cpu times reported
are in milliseconds. Initialization times for the data structures of PW-AC are
included in the results.
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Fig. 3. Cpu times in < 15, ∗, 0.04, ∗ > problems.

The first set of experiments was carried out on small problems with 15 and
30 variables. We present part of the results to give a flavor of the relative perfor-
mance of AC-2001 and PW-AC under varying domain size, graph density, and
constraint looseness. Figures 3, 4, 5 compare the performance of AC-2001 and
PW-AC in the DE of problems with 15 variables. Experiments were carried out
on a class of sparse problems (Figure 3), a class of medium density (4), and a
class of dense problems (5). In all figures we vary the domain size in steps of 5,
starting from 5 up to 30. The looseness of the constraints is varied in steps of
0.01, starting from 0.01 up to 0.1. As we can see, AC-2001 is faster in problems
with small domain sizes. However, these problems are very easy and the differ-
ences are not important. PW-AC starts to outperform AC-2001 as the domain
size grows, and the problems become harder. The difference which reaches more
than one order of magnitude is more notable when the constraint looseness is
higher. This is expected, since as the number of allowed tuples in a constraint
grows, AC-2001 takes more and more time to find supports. In relation to the
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constraint graph density, note that the difference between PW-AC and AC-2001
becomes smaller as the problems become tighter. This is caused, partly by the
higher initialization times of PW-AC (since the number of group counters grows),
and mainly by the higher number of group counter updates that PW-AC per-
forms (lines 22–23 of the algorithm). Note that for dense CSPs, GAC-2001 in
the non-binary representation is much faster than both AC algorithms in the
DE, and it is unlikely that the DE will pay off, despite the higher consistency
level that it achieves.
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Having established that PW-AC is significantly more efficient than AC-2001,
we investigated whether the savings achieved can make the DE competitive
with the non-binary representation. From our experiments we conjecture that
this is the case for sparse problems, while for CSPs with medium and high
density the non-binary representation is preferable. To demonstrate the point
about sparse problems, Figure 6 gives average cpu times of GAC-2001 in the
non-binary representation, and AC-2001, PW-AC in the DE for problems with
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50 variables, domain size 10, and 0.003 graph density (58 3-ary constraints).
Figure 8 shows the percentage of instances that are GAC in the non-binary
representation and AC in the DE for the same class of problems. Similar plots
are repeated in Figures 7, 10, 11 where we give cpu times of GAC-2001, AC-
2001 and PW-AC for the same class of problems, in terms of number of variables
and graph density, and domain size 20, 30, and 40. Figures 9, 12, 13 give the
corresponding percentages of GAC and AC instances.
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First, note that the difference between PW-AC and AC-2001 constantly rises
as the looseness becomes higher. At the AC phase transition region (i.e. at
the point where around half instances are AC and the other half are not) the
difference is one order of magnitude. Beyond that point the difference reaches
up to three orders of magnitude.

Second, GAC-2001 is faster than PW-AC (up to one order of magnitude)
when the looseness in low, but the difference becomes smaller as the looseness
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grows. For constraints with many allowed tuples, PW-AC is actually faster than
GAC-2001. Also, as the domain size is increased the difference in favor of GAC-
2001 for tight constraints, becomes less notable. As we increase the domain size,
the differences in favor of PW-AC for looser constraints become more remarkable.
For example, in problems with 50 variables, domain size 100, graph density 0.003
and constraint looseness 0.005, the average run times of GAC-2001, AC-2001,
and PW-AC in msecs were 2250, 333641, and 78, respectively.

Third, from the figures showing percentages of GAC and AC we can see that
AC in the DE determines insolubility for problems in a large range of constraint
looseness that are GAC. Also, we noted that in many instances that are both
GAC and AC in the DE, the AC algorithms in the DE pruned a significantly
greater number of values than GAC in the non-binary representation. These
are effects of the higher consistency level achieved by AC in the DE. If we use
algorithm AC-2001 to apply AC in the DE we cannot exploit this advantage of
the DE because of the very high run times. However, using algorithm PW-AC we
can exploit the higher consistency level achieved in the DE by paying a run time
penalty for tight constraints, and actually winning in both consistency level and
run times for looser constraints. We repeat that this is the case only for sparse
problems.

4.1 Maintaining Arc Consistency

We also evaluated the effect that algorithm PW-AC has when maintaining arc
consistency during search (MAC algorithm [12]). We compared three algorithms;
MAC in the DE that maintains AC using AC-2001 (MAC-2001), MAC in the
DE that maintains AC using PW-AC (MAC-PW-AC), and MAC in the non-
binary representation that maintains MGAC using GAC-2001 (MGAC). For
this comparison we used benchmark crossword puzzle generation problems.

Crossword puzzle generation problems have been used before for the evalua-
tion of binary encodings of non-binary problems [1, 14]. In these problems we try
to construct puzzles for a given number of words and a given grid which has to
be filled in with words. This problem can be represented as either a non-binary
or a binary CSP in a straightforward way. In the non-binary representation there
is a variable for each letter to be filled in and a non-binary constraint for each
set of k variables that form a word in the puzzle. The domain of each variable
consists of the low case letters in the English alphabet giving a domain size of
26. The allowed tuples of such a constraint are all the words with k letters in the
dictionary used. These are very few compared to the 26k possible combinations
of letters, which means that the constraints are very tight. In the dual encoding
there is a variable for each word of length k in the puzzle and the possible values
of such a variable are all the words with k letters in the dictionary. This gives
variables with large domains (up to 4072 values for the Unix dictionary that
we use in the experiments). There are binary constraints between variables that
intersect (i.e. they have a common letter).



90 Karagiannis et al.

Table 1 compares the cpu times of the two MAC algorithms in the DE and
MGAC in the non-binary representation on various crossword puzzles taken from
[3]. All algorithms use the dom/deg heuristic for variable ordering [4].

puzzle n m MGAC MAC-2001 MAC-PW-AC

15.01 78 189 1.32 (574) 69.67 (770) 4.43

15.02 80 191 3.70 (1312) 154.82 (1822) 13.15

15.03 78 189 0.64 (338) 21.70 (128) 1.06

15.04* 76 193 39.65 (19677) — —

15.05 78 181 0.46 (286) 14.56 (195) 1.20

15.07 74 193 95.12 (12733) — —

15.08 84 186 0.43 (247) 20.23 (222) 1.57

15.09 82 187 0.40 (251) — —

19.05** 126 291 0.04 (0) 9.84 (0) 0.04

19.06 128 287 4.07 (375) 23.78 (171) 4.03

19.07 134 291 4.18 (305) 19.34 (152) 4.08

19.08 134 291 — 38.51 (610) 12.09

19.09 130 295 1.45 (308) 21.45 (192) 3.81

19.10** 128 291 0.04 (0) 9.71 (0) 0.04

21.02 130 295 2.14 (637) 76.92 (452) 10.81

21.03 130 295 351.93 (78146) 269.13 (3012) 35.76

puzzle20 80 187 0.4 (216) 15.54 (122) 0.91

6×6 12 36 8.92 (2263) 95.46 (2198) 5.93

9×9* 18 81 49.71 (4972) 3382.82 (9580) 117.48

10×10* 20 100 11.81 (1027) 474.54 (1409) 22.78

Table 1. Comparison (in cpu time) between MAC algorithms for the DE and MGAC
for the non-binary representation of crossword puzzles. In brackets we give the number
of node visits (MAC-2001 and MAC-PW-AC visit the same nodes). n is the number
of words and m is the number of blanks. An em-dash (—) is placed wherever the
algorithm did not manage to find a solution within 2 hours of cpu time. Problems
marked by (*) are insoluble. Problems marked by (**) are arc inconsistent.

From the data in Table 1 we can clearly see that MAC-PW-AC is significantly
faster than MAC-2001 on all instances. The speedup offered by the use of PW-AC
makes MAC in the DE competitive with MGAC in many cases where there was
a clear advantage in favor of MGAC. Also, in some instances (e.g. puzzle 21.03),
the use of PW-AC makes MAC in the DE considerably faster than MGAC.
However, there are still some instances where MGAC finds a solution (or proves
insolubility) fast, while MAC in the DE thrashes.

5 Conclusion

In this paper we described an AC algorithm for the dual encoding of an arbi-
trary non-binary CSP with O(e3dk) worst-case time complexity. This offers a
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significant improvement compared to the O(e2d2k) complexity of a generic op-
timal AC algorithm. Also the complexity of the proposed algorithm is close to
the O(ekdk) worst-case complexity of an optimal GAC algorithm for the non-
binary representation. The O(e3dk) bound is achieved by taking advantage of the
fact that constraints in the dual encoding are piecewise functional. Experimen-
tal results with randomly generated problems and benchmark crossword puzzles
demonstrated that applying AC using the proposed algorithm can offer a very
significant speed-up compared to a generic AC algorithm. As a result, applying
AC in the dual encoding can be competitive and potentially more effective that
GAC in the non-binary representation and AC in the hidden variable encod-
ing, considering that it achieves a stronger level of consistency. This opens some
interesting directions for future work in non-binary CSP solving. We intend to
investigate the possibility of using the dual encoding to propagate non-binary
constraints to take advantage of stronger filtering, while instantiating the original
variables during search to take advantage of variable ordering heuristics.
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Abstract. AC refers to algorithms that enforce arc consistency on a
constraint network while MAC refers to a backtracking search scheme
where after each instantiation of a variable, arc consistency is main-
tained (or enforced) on the new network. In this paper, we use mac to
denote maintaining arc consistency in MAC. In all existing studies, mac
is simply taken as an associate of an AC algorithm. In this paper, we
argue that it is worth taking mac as an entity separated from AC. Based
on an observation that mac is invoked many times during a search, we
propose three schemes to improve the efficiency of mac. First, the results
of constraint checks are cached. Second, values remained in the auxiliary
data structures used by sophisticated AC algorithms are better exploited.
Third, we adopt a non-invariant ordering on domain values. Algorithms
are also presented for these schemes. Their performances are discussed
in terms of time complexity, space complexity, number of checks, and
running time. In our experimental setting, we find that it is possible to
design a mac algorithm which is simple to implement and runs faster as
well as uses less space.

1 Introduction

AC refers to algorithms that enforce arc consistency on a constraint network
while MAC refers to a backtracking search scheme where after each instantiation
of a variable, arc consistency is maintained (or enforced) on the new network.
MAC is regarded as one of the best search schemes not only by the researchers
in the community, but also by the practitioners in the industry. It has been
employed by many constraint solvers, for instance ILOG solver and CHOCO.

We will use mac to denote the maintaining arc consistency component of
a MAC algorithm. It is taken for granted that to improve the efficiency of a
MAC algorithm, one needs to focus on the AC algorithm employed by MAC;
conversely, the effectiveness of AC algorithm is usually shown in the context of
MAC. This reasoning works well and produces significant insight on the effi-
ciency of AC algorithms. Unfortunately as a result, the larger context of MAC is
completely ignored. In other words, AC is simply equated to mac . In this paper
we argue that although mac is similar to AC, it deserves separate treatment.
? This work has received support from Science Foundation Ireland under Grant

00/PI.1/C075.
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A number of AC algorithms have been designed since Waltz first proposed a
scene filtering algorithm in [9]. Fundamentally, they fall into two classes: coarse-
grained (e.g. AC3 [5], AC3.1 [10] and AC2001 [2]) and fine-grained (e.g. AC6
[1]). When a value is removed from a domain, algorithms in the former class
will revise any affected domain with respect to the corresponding constraint,
whereas algorithms in the latter class will revise only the affected values. There
are algorithms in both classes which have optimal worst-case time complexity
and perform well in empirical studies. Sabin and Freuder [7] proposed MAC in
1994 and it becomes so well accepted in the last decade by the community that
to show the efficiency of a new AC algorithm, one has to test it in MAC. It has
been shown that most efficiency improvements of AC algorithms could also lead
to the improvements of MAC.

The most obvious difference between AC and mac is that an AC algorithm is
executed only once, but due to backtracking and failed assignment of a variable,
a mac algorithm may be executed many times (tens of thousands of times in a
difficult random problem instance with 150 constraints and 50 variables, each of
which has a domain with 30 values). Taking this massive number of executions
into account, we propose three improvements for mac .

The fist idea involves caching the results of constraint checks. Unlike AC, for
mac the same constraint checks may be repeated enormous amount times (in
one of our experiments, for a problem that can be solved in 10 to 20 minutes, mac
needs billions of checks whereas AC uses only millions.) Therefore, not only is it
sensible to memorize the results for future use, it is essential for hard problems
or the problems in which the cost of constraint checks is high.

Indeed, the number of constraint checks alone cannot be used to determine
precisely the empirical performance of an algorithms due to the uncertainty on
the cost of a constraint check. By using cache, we are able to deal with this
uncertainty better in mac , making the impact of the cost of constraint checks
more controllable. In our experiments, the performance of mac3 is significantly
improved by using cache, even under reasonably cheap constraint checks. More
details will be presented in Section 3.

The second idea involves passing information from one execution of mac
to another. Most AC algorithms uses auxiliary data structures to speed up the
execution time in standalone preprocessing but they cannot be used effectively in
mac . The main problem lies in the rigid invariant associated with this structure
and the total ordering of variable domains, which require expensive maintenance
when backtrack. In section 4, we will present a method that relax the invariant
and better exploit this auxiliary data structures. This also lead to the third idea
which involves adaptive domain ordering, to be presented in Section 5. Section 6
describes related works. The paper is concluded in Section 7.

These issues will be studied using coarse-grained algorithms, specifically AC3
and AC3.1. The reason lies in their simplicity, and in the case of AC3.1, its
optimal worst-case time complexity. Both algorithm are also empirically efficient.
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2 Preliminaries

In this section we review AC3, AC3.1, and MAC. We introduce mac and exper-
imental settings used in next few sections.

Definition 1 (Binary Constraint Network) A binary constraint network is
a triplet (V,D, C) where V is a finite set of variables, D = {DV | V ∈ V} where
DV is a finite set of possible values for V , and C is a finite set of constraints
such that each CXY ∈C is a subset of DX×DY indicating the compatible pairs
of values for X and Y , where X 6=Y . Deciding whether (a, b) ∈ CXY is called a
constraint check ; this is sometimes written as a boolean function CXY(a, b). If
CXY ∈C, then CYX = {(y, x) | (x, y) ∈ CXY } is also in C.

For (a, b) ∈ CXY , b is called a support of a in Y . If a value a ∈ DX has
no support in Y where CXY ∈ C then a is invalid. A constraint CXY is arc
consistent if every value a ∈ DX has a support in DY . A constraint network is
arc consistent if all constraints are arc consistent. If a constraint network is not
arc consistent, it can be made so by removing invalid values. Such an algorithm
is called Arc Consistency (AC) algorithm.

Throughout this paper, we use n, e, and d to denote the number of variables,
the number of constraints, and the maximum domain size in the network. We
use D0

V to distinguish the original domain of V , while DV denotes the current
domain, which may change in the course of search. Deciding whether a value is
in the current domain is called a domain check. A value in D0

V is alive if it is in
DV ; otherwise it is said to be pruned.

Function succ(b, DY ) is a successor function defined in the usual sense.
head and tail denote the start and the end of a domain, of which they are not
members. succ(head) gives the first value while succ of the last value returns
tail; if the domain is empty then succ(head) = tail. Function cirSucc (“circular
successor”) is defined as follows: cirSucc(x) = head if succ(x) = tail; otherwise
cirSucc(x) = succ(x)

2.1 AC3 and AC3.1

AC3 and AC3.1 are two representatives of coarse-grained algorithms. A basic
operation a constraint revision, that is, removing invalid values in order to make
the network arc consistent. The results are then propagated to other connecting
variables, entailing more revisions. The generic algorithm AC() for coarse-grained
algorithms is listed below. We also list AC3 and AC3.1 whose pseudo-code in-
clude only procedures different from the generic algorithm. In both algorithms,
we assume a total ordering on each domain.

The difference between AC3 and AC3.1 lies in the routine hasSupport. AC3
finds a support from scratch while AC3.1 finds it by using the support found in
the previous revision as a starting point. AC3.1 uses a data structure last(X, a, Y )
to remember the last support of a in DY , where a ∈ DX .
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AC

AC()
1 ACInitialize()
2 Q ← {(X,Y ) | CXY ∈ C}
3 return propagate(Q)

propagate(Q)
4 while Q 6= ∅ do
5 select and delete an arc (X,Y ) from Q
6 if revise(X,Y ) then
7 if DX = ∅ then return failure
8 Q ← Q ∪ {(W,X) | CWX ∈ C,W 6= Y }

9 return success

revise(X,Y )
10 delete ← false
11 foreach a ∈ DX do
12 if not hasSupport(X, a, Y ) then
13 remove a from DX
14 delete ← true

15 return delete

hasSupport(X, a, Y ) {}
ACInitialize() {}

AC3

hasSupport(X, a, Y )
1 b ← head
2 while b ← succ(b,DY ) and b 6= tail do
3 if CXY(a, b) then return true

4 return false

AC3.1

ACInitialize()
1 foreach CXY ∈ C and a ∈ DX do last(X, a, Y ) ← head

hasSupport(X, a, Y )
2 b ← last(X, a, Y )
3 if b ∈ DY then return true
4 while b ← succ(b,DY ) and b 6= tail do
5 if CXY(a, b) then
6 last(X, a, Y ) ← b
7 return true

8 return false
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The worst-case time complexity of AC3 is O(ed3) [5], while the worst-case
complexity of AC3.1 is optimal at O(ed2). AC3 does not use any auxiliary data
structure, whereas the space complexity of the auxiliary data structure of AC3.1
is O(ed).

One way to evaluate the empirical performance of the AC algorithms is to
count the number of constraint checks they conduct. However, an algorithm
that has fewer number of constraint checks may consume more CPU time than
another one with more checks. In our experiment, we also count the number of
domain checks whose cost become more significant as the cost of a constraint
check goes down.

2.2 MAC

MAC [7] is a backtracking search scheme (see Fig. 1) for finding a solution of a
constraint network. Under this scheme, the network is preprocessed by an AC
algorithm. During search, arc consistency is maintained (or enforced) after each
instantiation of a variable in order to prune the search space. This process of
maintaining arc consistency is denoted by mac ; in the figure, V denotes the
most recent assigned variable. Obviously, a key component of mac is AC, i.e.
mac subsumes AC. In this paper, mac based on AC3 is called mac3, and mac
based on AC3.1 called mac3.1. A generic pseudo-code for mac is listed below.

search

backtracker

domain wipeout

failure

success

preprocessing()

mac(V)

no unassigned variable

nothing left to try

Fig. 1. MAC schema

The main difference between mac and AC is that AC is executed only once,
but mac is executed whenever a variable is instantiated or when backtracking
occurs. Given an AC algorithm, it is easy to design a mac algorithm based on
it. For instance, mac3 is derived from AC3 and functions exactly like AC3. In
the following sections we will add more functionalities that take advantage of
the MAC environment.
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mac

mac(V )
1 macInitialize()
2 Q ← {(U, V ) | CUV ∈ C}
3 return propagate(Q)

macInitialize() {}

2.3 Repeated Constraint Checks

During search in MAC, some constraint checked may be repeated even though
an individual run of mac is optimal. We identify the following types of repeated
constraint check during search:

– positive repeat A constraint check between a and b is performed, and as a
result b supports a. Later in the search, during which period a and b remain
in their respective domains at all time, (a, b) is checked again.

– negative repeat A constraint check between a and b is performed, and
as a result b does not support a. Later in the search, during which period a
and b remain in their respective domains at all time, (a, b) is checked again.

2.4 Experimental Settings

We use a backtracking algorithm that dynamically picks a variable with mini-
mum domain to be instantiated first. Since both AC and mac involve frequent
operations on a variable domain, we design a domain as a random-accessed dou-
bly linked-list. Under this implementation, the following operations take constant
time: (1) deleting a value, (2) checking whether a value is in the current domain
(3) given a value, returning the next value in the current domain.

In the experiments reported in this paper we compare a number of algorithms
against AC3, so to be fair we try to reduce as much as possible the amount of time
needed to perform constraint checks, which dominates the overall running time
of AC3. To this end, we use explicit constraint storage in our implementation.
However, given wide-ranging applications of CSPs, it is better to make use of a
function call that determines whether a given tuple is allowed by a constraint.
As a result, the total cost of a constraint check in our implementation is the
overhead of a function call plus the cost for memory lookup.

We use random problems to compare the experimental performance of our
proposals, based on model B [3]. It is parameterized as (n, d, e, tightness) where
tightness is the number of tuples disallowed by a constraint. We control the dif-
ficulty of the generated instances by varying the tightness. Results are averaged
over 10 different instances. Since we observed a large variance on easy problems,
all statistic on easy problems are averaged over three batches of executions, each
containing 10 instances.

The algorithms are written in C++ and compiled with g++. Running time
of specific routines are profiled using gprof. The experimental platform is Linux



Arc Consistency in MAC: A New Perspective 99

2.4.20 running on a Dell PowerEdge 4600 which has two Intel Xeon 2.80GHz
CPU’s and 4GB of RAM.

3 Caching Constraint Checks

Our proposal relies the fact that mac will be called many times and thus the
consistency of the same tuple may be checked repeatedly. Given the uncertainty
of the cost of constraint checks, it is worth recording the result so that the next
time the same check is requested it will be answered with little cost.

For simplicity, we cache the result of every possible constraint check. In a
binary constraint network, the size of the cache is O(ed2) because there are e
constraints and for each constraint there are at most d2 tuples.

An immediate consequence of this approach is that the performance of mac
with cache would be significantly improved even if each constraint check is mod-
erately expensive. Another benefit of this approach is that we can now assume
the constraint check is reasonably cheap because the cost of the management of
the cache and the cost of the initial O(ed2) raw constraint checks are amortized
over a large amount of repeated checks.

The cache idea is tested by using AC3. The reason for this choice of algorithm
is that the physical CPU time of AC3 is good but the number of its constraint
checks is usually several times of those of more sophisticated algorithms. Using
cache may benefit AC3 the most. The new algorithm is named mac3cache and
listed below.

mac3cache

preprocessing()
1 AC3()

ACInitialize()
2 foreach CXY ∈ C and a ∈ DX and b ∈ DY do cache(CXY, a, b) ← nil

hasSupport(X, a, Y )
3 b ← head
4 while b ← succ(b,DY ) and b 6= tail do
5 if cache(CXY, a, b) = nil then
6 cache(CXY, a, b) ← CXY(a, b)

7 if cache(CXY, a, b) then return true

8 return false

We design the following experiments in order to benchmark mac3 and mac3cache.
The main purpose is to test how the cache performs in the case where a con-
straint check is extremely cheap (whose cost is the cost of function call + the
cost of memory lookup, as mentioned in Section 2.4).

In implementing the cache, we try to make its access as fast as possible.
When a constraint CXY is revised, we first locate the cache area for CXY , and
before looking for a support for a ∈ DX , we locate the cache area that stores the



100 Likitvivatanavong et al.

relationship between a and values in DY . In this way, when checking a against
a value b ∈ DY , the value of b is used directly as an index to the cached content.

mac3 mac3cache MAC3 MAC3cache

P1 (easy problems) 0.56s 0.38s 0.62s 0.48s

P2 (hard problems) 382s 293s 474s 396s

Table 1. mac3 vs mac3cache. P1=(50, 30, 150, 560). P2=(50, 30, 150, 580). The number
of constraint checks for P1 and P2 are 11.0M and 5.35B respectively.

From the experiment, we see that, although the constraint check is very cheap
already, by using cache we are able to speed up mac3 by 30% for hard problems.
This result implies that mac3 is very sensitive to the cost of constraint checks.

The idea of caching results of constraint checks is applicable to mac derived
from most AC algorithms, with the exception of AC4, which builds complex data
structures during its initialization phase and does not need to do more constraint
checks afterward.

4 Exploiting the Residues

AC3 is one of the algorithms that simply revise a constraint without using any
historical memory. Getting mac3 from from AC3 is straightforward. For algo-
rithms that use auxiliary data structures however, there are two conventional
methods. In this section we focus only on AC3.1.

The first approach involves re-initializing the structure and establishing sup-
ports from scratch every time the algorithm is invoked, in the same fashion as
mac3. Even though the value remained in the auxiliary structure is not exploited
to its full potential, this approache is widely used due to its simplicity and low
overhead.

The second approach takes advantage of the value in the last structure carried
over from the previous execution. Since the search for support proceeds only in
one direction, in order for the algorithm to be correct we need to record all
the past supports during search, so that we can start from the exact same state
when backtrack. We will call this algorithm mac3.1. It is observed that the worst-
case space complexity is not the same as AC3.1, which is O(ed2), but a larger
O(edmin(n, d) [8]. A trace of the algorithm is given in the following example; it
shows that mac3.1 cannot avoid both positive and negative repeat.

Example 1. Assume there are two neighboring variables X and Y , where a ∈
DX , DY = {x, y, z, u, v} ordered from left to right, and CXY = {(a, y), (a, u)}.
During an execution of mac3.1 (a, y) is checked and last(X,a,Y ) becomes [y]
(the structure last is a now stack in which the top is the left-most value). Later,
suppose that y is removed from DY ; thus a new support for a must be found.
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Consequently, (a, z) and (a, u) are checked and last(X,a,Y ) becomes [u, y]. Now
suppose that backtracking occurs and y is restored. As a result last(X,a,Y ) is
rolled back to its previous state of [y]. Suppose the process repeats: y is again
removed and a new support for a must be found. (a, z) and (a, u) would be
checked more than once.

4.1 Flexible Domain Search

The major problem with mac3.1 lie in its overhead in maintaining the auxiliary
structure. This is necessary because the search always proceeds from the last
support found. We can avoid this cost simply by restarting the search from
the beginning again; however, this comes at the expense of optimality, since
a constraint may be revised many times. We call this algorithm mac3.1residue.
Note that in the pseudo-code we change the term from last to support to indicate
that no invariant on its position is assumed.

Figure 2(i) shows the search for support from Example 1: suppose that the
last support of a is y and that it is no longer available. The search would restart
from the beginning until the next support (u) is reached. If u is later deleted then
the entire domain must be searched. Note that this is conceptually the same as
having a circular domain, although in practice it is easier to restart the search
and have a normal domain.

mac3.1residue takes O(ed3) constraint checks in the worst-case while occu-
pying O(ed) space. It can avoid positive repeat but not negative repeat.

1

2

2

zx y u v

a

1

(i)

1

2

2

zx y u v

a

1

(ii)

Fig. 2. Searching for support of a.

4.2 Optimal Worst-Case Flexible Domain Search

To make mac3.1residue optimal in the worst-case, we mark the first value that
is checked when the constraint is revised for the first time in order to tell the
search to stop as soon as this point is reached. This value, called start in the
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mac3.1residue

preprocessing()
1 AC3.1()

hasSupport(X, a, Y )
2 b ← support(X, a, Y )
3 if b ∈ DY then return true
4 b ← head
5 while b ← succ(b,DY ) and b 6= tail do
6 if CXY(a, b) then
7 support(X, a, Y ) ← b
8 return true

9 return false

pseudo-code, is initialized each time mac is called and it does not need to be
reset when backtrack.

Figure 2(ii) shows how the search for support progresses. As in the case of
mac3.1residue, we can implement this as a circular domain or starting out from
the beginning, as shown in the bottom of Figure 2(ii). We choose the circular
domain implementation because the supports found are more robust. Indeed,
during search, the deeper the level in which a support is found, the more robust
it is (also observed in [4].) This is due to fact a support found at a deeper level
usually stays on in the current domain even after backtrack.

We call this algorithm mac3.1resOpt. It uses O(ed) space in the worst-case.
Like mac3.1residue, it can avoid positive repeat but not negative repeat.

mac3.1resOpt

preprocessing()
1 AC3.1()

macInitialization()
2 foreach CXY ∈ C and a ∈ DX and b ∈ DY do start(X, a, Y ) ← support(X, a, Y )

hasSupport(X, a, Y )
3 b ← support(X, a, Y )
4 if b ∈ DY then return true
5 while b ← cirSucc(b,D0

Y ) and b ∈ DY and b 6= start(X, a, Y ) do
6 if CXY(a, b) then
7 support(X, a, Y ) ← b
8 return true

9 return false

The pseudo-code for mac3.1resOpt is presented in such a way that the idea
is made as clear as possible; this should not be taken as the real implementation,
especially the routine macInitialization(), in which each component of the
structure start is reset. In fact we initialize start in a lazy way. Moreover, we only
iterate through values in the current domain, rather than the original domain
shown in line 6 of hasSupport. Using current domain involves more complex
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terminating condition since value of start(X, a, Y ) may not be in the current
domain, thus rendering the condition b 6= start(X, a, Y ) incorrect.

4.3 Experimental Results

The empirical performance of mac3.1, mac3.1residue, and mac3.1resOpt are
shown in the following table. The running time for MAC includes that of its
corresponding mac , e.g. for P1 the running time for MAC3.1 = 0.75s, 0.66s of
which is the time taken up by mac3.1. There are no extra checks in MAC beyond
mac .

P1 (easy problems) P2(hard problems) P3(over-constrained)
#checks time #checks time #checks time

mac3 11.0M 0.56s 5.35B 398s 10.36B 713s

mac3.1 7.3M 0.66s 3.46B 519s 6.38B 1185s

mac3.1resOpt 2.9M 0.55s 1.43B 472s 2.69B 668s

mac3.1residue 7.1M 0.46s 3.30B 310s 6.14B 465s

MAC3 - 0.62s - 493s - 848s

MAC3.1 - 0.75s - 615s - 1314s

MAC3.1resOpt - 0.65s - 561s - 796s

MAC3.1residue - 0.56s - 400s - 590s

Table 2. Performance of various algorithms. #checks = #constraint checks + #do-
main checks. P1 = (50, 30, 150, 560). P2 = (50, 30, 150, 580). The time for mac3.1 in-
cludes that for restoring the auxiliary data structure last.

From the table, it is not surprising to see both mac3.1residue and mac3.1resOpt
do better than mac3.1 in all three categories, due to the absence of overhead in
maintaining the auxiliary data structure. However, we observe two unexpected
results. The first is that the non-optimal algorithm mac3.1residue conducts even
fewer checks than the optimal mac3.1; it is worth emphasizing that optimality is
a property of a single execution of arc consistency algorithm, whereas the data
gathered in this experiments is accumulated over the entire course of solving
a problem. The other is that mac3.1resOpt uses less than half the number of
checks performed by mac3.1. This can be explained by the robustness of the
residue.

mac3.1 is the slowest algorithm in the table. There are a few possible reasons.
One is that the most frequent operations like value accessing and constraint
checks are reasonably cheap (and thus the saving on checks does not compensate
the cost). Another is that when we maintain its auxiliary data structures, we use
a library class stack. The implementation could be made more efficient. There
may exist more efficient ways to maintain support incrementally. However, the
running time is very unlikely to be lower than those of macusing residues because
of the larger number of checks.
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mac3.1resOpt runs much slower than mac3.1residue although it conducts
significantly less number of checks. The code at the innermost loop of our imple-
mentation of mac3.1resOpt is several times longer than that of mac3.1residue as
a result of complex terminating condition remarked previously. The experiments
show that the saving of checks does not compensate for the cost of the extra
instructions in mac3.1resOpt. On the other hand, mac3.1residue is faster than
mac3 because it takes advantage of the last residue without incurring the heavy
overhead associated with mac3.1. In fact, the code of routine hasSupport for
mac3.1residue is only a few more instructions than that of mac3.

5 Adaptive Domain Ordering

Some AC algorithms like AC3.1 demand an ordering on the values of the domains
of variables. The key idea behind is to find a support of a value a of DX with
respect to a constraint CXY by going through the values of the domain DY only
once. For this purpose, an ordering of the values is needed so that we never
make the same constraint check twice when looking for a support for a during
the execution of AC3.1. One implementation of AC3.1 in mac could assume a
total ordering on the values of the domain of variables during the whole search
procedure. Since the values in a domain are removed in an arbitrary order, it
may be time-consuming to keep to the order when these values are restored.

As mentioned before, we implement a domain as a doubly linked list. When
we put back a removed value back to a domain, to keep the correct ordering of
the values, we need to go through the list and insert it in the correct position.

In this section, we use mac3.1resOpt as the basic algorithm. Our observation
is that to keep the optimality of mac3.1resOpt, it is only necessary to guarantee
the ordering of values in a domain in a single execution of mac . It implies that
when we restore a domain at backtracking or failure of assignment, we can simply
append the pruned values to the linked list. The additional benefit is that all
negative repeat can be avoided.

We test the idea on random problems. In the following table, mac-order is
mac3.1resOpt where the ordering of values are kept during the whole search
process by using restoreDomain-order, and mac-tail is mac3.1resOpt in which
pruned values are appended to the end of the domains by restoreDomain-tail.

Even though appending the removed values to the end of a domain is 20%
better in term of runing time than inserting the removed values to a domain
according to the ordering, the performance of mac-tail is, surprisingly, inferior
to that of mac-order. One explanation is that mac-order is optimized over the
entire period of search, which can not be done for mac-tail since the ordering on
domain values is different from one execution to another.

6 Related Works

In boolean satisfiability problem, the time needed to find the clause suitable for
unit propagation is recognized to be the most expensive part. In [6] the authors
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P1 (easy problems) P2(hard problems)

#checks time #checks time

restoreDomain-order - 0.10s - 92s

restoreDomain-tail - 0.06s - 77s

mac-order 2.88M 0.55s 1.43B 494s

mac-tail 2.87M 0.70s 1.42B 525s

MAC-order - 0.65s - 588s

MAC-tail - 0.77s - 605s

Table 3. Performance of adaptive domain algorithm.

suggest that the solver keep track of two literals (called watched literals) so that
a single unvalued literal could be detected quickly.

Watched literals and the variants of mac presented here have some important
features in common. First, the search direction is not fixed. Second, nothing
needs to be restored upon backtracking.

7 Conclusions

In this paper we propose studying mac and AC algorithms separately. Given
the observation that mac will be executed many times, we have presented a few
strategies that improve the efficiency of mac algorithms. They are analyzed in
terms of time complexity, space complexity, number of checks (including con-
straint checks and domain checks), and running time.

First we study mac that caches the results of constraint checks. This proposal
applies to most mac except those derived from AC4. On the one hand, the
cache makes the cost of a constraint check almost constant over long period.
Space permitting, most mac algorithms could be equipped with a cache. This
would make the comparison of the performance of different mac algorithms more
meaningful. The space complexity of the cache is the same as that of mac derived
from an optimal AC algorithm. One the other hand, the cache also speeds up the
running time of mac . In our experiment on hard problems, mac3cache saves 20%
to 30% running time even under cheap constraint checks. On hard problems,
mac3cache is the fastest among all algorithms reported in this paper. Given
sufficient RAM, mac3cache is a good choice given its efficiency and simplicity.

For mac based on AC algorithms that use auxiliary data structures, we
propose two schemes that reuse the residual value from previous execution:
one keeps the worst-case running time optimal while the other concerns only
about simplicity. Specifically, we present algorithm mac3.1resOpt using the for-
mer scheme and mac3.1residue using the latter. The conventional mac based on
AC3.1 takes O(edmin(n, d)) worst-case space complexity while mac3.1resOpt
and mac3.1residue takes only O(ed). Moreover, both algorithms do not main-
tain the last structure, thus avoiding the costly overhead suffered by mac3.1. An
unexpected discovery through our experiment is that the robustness of residue



106 Likitvivatanavong et al.

play a major role in the efficiency of mac . The number of checks performed by
mac3.1residue and mac3.1resOpt are significantly lower than those of mac3 and
mac3.1 respectively (mac3.1residue performs even fewer checks than mac3.1).
It is worth emphasizing that although mac3.1residue has a worst-case complex-
ity of O(ed3), it is the fastest among mac algorithms that have O(ed) space
complexity. Moreover, mac3.1residue is just as easy to implement as mac3. In
retrospect, mac3.1residue can also be understood as a mac algorithm that uses a
much smaller cache, recording only a single support for each value with respect
to affiliated constraints.

We could apply the same idea to non-binary constraint networks. AC3.2
[4] generalizes AC3.1 to address non-binary constraints and takes advantage of
positive multi-directionality by setting the current support found, which is a
tuple for non-binary CSPs, as an external support for all other values in that
tuple. This requires an extra storage apart from last because if it were to be used
for this purpose then some values could be overlooked due to the fixed direction
and range for support search. By using circular domain last can be used to store
external support as well. It remains to be seen how this approach compares to
AC3.2 and AC3.3, which counts all external supports and requires maintenance.

Finally we introduce adaptive domain ordering for mac , which in theory can
avoid all negative repeat. In practice however, our experiment shows that mac
that uses adaptive domain is worse off than that one that uses ordinary domain.

The lesson learned here is that consistency processing in the context of search
deserved to be studied separately from its standalone version.
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Two New Lightweight Arc Consistency Algorithms
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Abstract. Coarse-grained arc consistency algorithms like AC-3, AC-3d, and
AC-2001, are efficient when it comes to transforming a Constraint Satisfac-
tion Problem (CSP) to its arc consistent equivalent. These algorithms repeatedly
carry out revisions to remove unsupported values from the domains of the vari-
ables. The order of these revisions is determined by so-calledrevision ordering
heuristics. In this paper, we classify revision ordering heuristics into three dif-
ferent categories:arc based, variable based, andreverse variable basedrevision
ordering heuristics. We point out advantages of using reverse variable based re-
vision ordering heuristics and propose two new lightweight arc consistency algo-
rithms AC-3dl and AC-3ds, which exploit these advantages. Both algorithms are
equipped with domain heuristics which are inspired by AC-3d’s double support
heuristic. AC-3dl uses a lazy version of a double support heuristic while AC-3ds

uses AC-3d’s double support heuristic with a minor change. We experimentally
compare MAC-3, MAC-3d, MAC-3dl and MAC-3ds. MAC-3ds is the best in
saving checks. MAC-3dl is good in saving time and checks on average. Experi-
mental results demonstrate that lightweight algorithms based on reverse variable
based revision ordering heuristics are good in saving checks as well as time.

1 Introduction

Arc consistency algorithms are widely used to prune the search space of Constraint
Satisfaction Problems (CSPs). They use support checks to reduce the search space of
CSPs. Many arc consistency algorithms have been proposed. On one side there are
heavyweight arc consistency algorithms such as AC-4 [11], AC-2001 [3], AC-3.1
[18], AC-6 [1], and AC-7 [2] that use additional data structures to avoid repeating their
support checks. All these algorithms have an optimal worst case time complexity of
O(e d2) wheree is the number of constraints andd is the maximum domain size of
the variables. On the other side there are lightweight arc consistency algorithms such
as AC-3 [8], AC-3d [13], and AC-3p [15] which do not use additional data structures.
These algorithms repeat their support checks and have a non-optimal bound ofO(e d3)
for their worst case time complexity. However, despite the fact that these algorithms
do not have an optimal worst case time complexity, experimental evaluation of these
algorithms has demonstrated that they are efficient on average [15, 16].

Since the introduction of AC-4, most research in arc consistency algorithms is to
avoid repeating checks by using additional data structures. The belief is that reducing
checks helps solving problems more quickly. However, there are many instances where
? This work has received support from Science Foundation Ireland under Grant 00/PI.1/C075.
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checks are cheap and allowing algorithms to repeat their checks relieves them from
the burden of maintaining a large additional bookkeeping and this may save time [15,
16]. Reducing support checksalonedoes not always help in reducing the solution time.
Queue maintenance, revision ordering heuristics and domain heuristics also play an
important part in reducing the time for problem solving.

In this paper, we classify revision ordering heuristics intoarc based, variable based,
and reverse variable basedrevision ordering heuristics. Algorithms based on reverse
variable based revision ordering heuristics are good in saving checks as well as time. We
only consider lightweight arc consistency algorithms. We propose two new competitive
lightweight arc consistency algorithms AC-3dl and AC-3ds which use reverse variable
based revision ordering heuristics for selecting a collection of arcs that determine the
revision of the domain of the same variable. AC-3dl uses alazy version of a double
support heuristic [13] while AC-3ds uses astrongdouble support heuristic as used by
AC-3d with a small change. For real world problems MAC-3dl becomes the quickest
solver on average. For random problems MAC-3 equipped with variable based heuristic
is the fastest. MAC-3ds is the best in saving checks.

The remainder of paper is organised as follows. Section 2 is a brief introduction
to constraints. Section 3 discusses related work, classifies revision ordering heuristics
and presents a reverse variable based version of AC-3. Section 4 describes the new
arc consistency algorithms. Section 5 presents experimental results. Conclusions are
presented in Section 6.

2 Constraint Satisfaction

A Constraint Satisfaction Problemis defined as a setV of n variables, a non-empty
domainD(v) for each variablev ∈ V and a set ofe constraints among subsets of
variables ofV . A binary constraintCvw between variablesv andw is a subset of the
Cartesian product ofD(v) andD(w) that specifies the allowed pairs of values forv and
w. We only consider CSPs whose constraints are binary. With each binary constraint
between variablesv andw we associate two arcs(v, w) and(w, v). We callv thefirst
variableof the arc(v, w) andw thesecond variableof the arc(v, w).

A value y ∈ D(w) is called asupport for x ∈ D(v) if the pair (x, y) ∈ Cvw.
Similarly x ∈ D(v) is called a support fory ∈ D(w) if the pair (x, y) ∈ Cvw. A
support check(consistency check) is a test to find if two values support each other. A
valuex ∈ D(v) is viable if for every variablew such thatCvw existsx is supported by
at least one value inD(w). A CSP is calledarc consistentif for every variablev ∈ V ,
each valuex ∈ D(v) is viable.

The tightnessof the constraintCvw is defined as1− |Cvw |/|D(v)×D(w) |. The
densityof a CSP is defined as2 e/(n2 − n). Thedegreeof a variable is the number of
constraints involving that variable. MAC [12] is a backtrack algorithm that maintains
arc consistency during search. MAC-X uses AC-X for maintaining arc consistency
during search.
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3 Related Literature

3.1 Introduction

As mentioned in Section 1, we only consider lightweight arc consistency algorithms.
Coarse-grained lightweight arc consistency algorithms such as AC-3 [8] and AC-3d

[13] have been developed, the principle of which is to apply successiverevisionsof the
domains of the variables until the problem is made arc consistent or the domain of a
variable is wiped out. Here a revision of the domain ofv using the constraint between
v andw means to remove the values fromD(v) that are not supported byw. AC-3
has aO(e d3) bound for its worst case time complexity [9] and aO(e + nd) space
complexity. AC-3 cannot remember all of its support checks.

Lightweight arc consistency algorithms such as AC-3 and AC-3d use revision or-
dering heuristics to select an arc(v, w) for the next revision. The arc(v, w) represents
the fact thatD(v) will be revised againstD(w). A revision is calledeffectiveif it re-
sults in a reduction of the domain ofv. Besides revision ordering heuristics there are
also domain heuristics. Given the arc determining the next revision, they determine the
values to be used for the next support check.

AC-3d [13] is a cross-breed between AC-3 [8] and DEE [5]. AC-3d’s revision
ordering heuristic selects an arc(v, w) for the next revision. If the arc(w, v) is also
present in the queue then AC-3d simultaneously revises the domains ofv andw using
the double support domain heuristicD described in [13]. If(w, v) is not present in the
queue then it proceeds like AC-3 by using Mackworth’srevise to relaxv againstw.

The double support domain heuristicD prefers checks between two values whose
support statuses are both unknown. InD the row support are the values inD(v) that are
supported byw and the column support are the values inD(w) that are supported by
v. If AC-3d simultaneously revises two domains then after computing the row support,
column support is computed only for those values ofw which have not provided support
for values inD(v) while computing the row support. AC-3d inherits its time complexity
and space complexity from AC-3.

3.2 Revision Ordering Heuristics

Revision ordering heuristics determine the next revision. Wallace and Freuder [17]
pointed out that these heuristics can influence the efficiency of arc consistency algo-
rithms. They can be classified into three categories:arc based, variable based, and
reverse variable basedrevision ordering heuristics. The differences between arc based,
variable based, and reverse variable based heuristics are as follows.

Arc based revision ordering heuristicsare the most commonly presented. Given
some selection criterion they select an arc(v, w) for the next revision. For this class
of heuristics candidate arcs are stored in a data structure called aqueue, which usually
corresponds to a set or a list. Selecting the best arc from the queue can be expensive
because of the following reasons. Selecting the best arc from a set or a list based queue
requiresO(e) time. However, [16] describes selection criteria for which the queue can
be represented by more efficient data structures facilitating a more efficientO(n) selec-
tion. Second, each selected arc corresponds to exactly one revision. Since there may be
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many revisions there may be many selections. However in some cases like in AC-3d or
in AC-3p when the reverse arc is present in the queue it allows for two simultaneous
revisions. Arc based revision ordering heuristics update a queue after every effective
revision, and many updates can be an overhead too.

Variable based heuristics[10] always select a variablev and repeatedly use arcs of
the form(w, v) for revision until no more such arcs exist or someD(w) becomes empty.
Variable based heuristics may be regarded aspropagation based heuristicsbecause they
propagate the consequences of the removal of one or more values from the domain of
v. For the most commonly occurring variable based heuristics the time complexity of
picking the most promising candidatev is onlyO(n) and for these heuristics the queue
can be implemented as a set of variables. If variablev is selected the domain of all its
neighbours in the constraint graph will be revised against the domain ofv. In this setting
the number of selections from the queue is usually less than the number of selections
of arcs from an arc based queue. In general more checks will be required but time can
be saved because the queue needs fewer selections. Here too every effective revision
results in updating the queue.

Reverse variable based heuristicsalways select a variablev and repeatedly revise
using arcs of the form(v, w) until there are no more such arcs orD(v) becomes empty.
Reverse variable based heuristics may be regarded assupport based heuristicsbecause
for one variablev at a time, they seek support for each value inD(v) with respect to all
of its neighbours for which it is currently unknown whether such support exists. It was
shown in [16] that for certain classes of heuristics a proper representation for the queue
facilitatesO(n) selection for the most promising variablev. Using this representation,
the overhead of selecting the next arc(v, w) for revision isO(1) or O(n) depending
upon the criterion for selectingw. When a variablev is selected a number of revisions
is performed which is between1 and the number of arcs of the form(v, w) currently
present in the queue. Therefore, the number of selections (ofv), and the overhead of
queue management, is usually less than for arc based heuristics. Unlike arc based and
variable based heuristics, the queue is less likely to be updated after every effective
revision as will be shown further in this section and empirically in Section 5.

We shall use the notation proposed in [15] for describing and composing heuristics
for selecting variables and arcs. Letδo(v) be the original degree ofv, let δc(v) be the
current degree ofv, let #(v) be a unique number forv, let s(v) be the current domain
size ofv, and letδcn(v) be the number of current neighboursw of v such that(v, w)
currently present in the queue. Finally, letπi((v1, . . . , vn)) = vi denote thei-th pro-
jection operator. Thecompositionof order�2 and linear quasi-order�1 is denoted by
�2•�1. Selection is done using�1 and ties are broken using�2. Composition asso-
ciates to the left. The result oflifting linear quasi-order� and functionf is denoted⊗f�.

It is the linear quasi-order such thatv ⊗f� w if and only if f(v) � f(w). For example,
using this notation the dom/deg variable ordering heuristic with a lexicographical tie
breaker can be described as⊗#

≤ • ⊗
f
≤, wheref(v) = s(v)/δc(v). The lexicographical

arc selection heuristic can be described as⊗#◦π2
≤ • ⊗#◦π1

≥ . The reader is referred to
[15] for more examples and further details.
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3.3 AC-3 with Reverse Variable based Revision Ordering Heuristics

Selecting a variablev and relaxing it against all of its neighboursw such that(v, w) is
currently present in the queue we call acomplete relaxationof v. Complete relaxation
can be achieved efficiently using reverse variable based heuristics. Pseudo-code for a
reverse variable based implementation of AC-3 is depicted in Figure 1. Pseudo-code
for the functionrevise [8] upon which AC-3 relies is depicted in Figure 2.

function AC-3: Boolean;
begin
Q := { (v, w) ∈ G : v andw are neighbours};
whileQ not emptydo begin

select anyv from {v : (v, w) ∈ Q };
effective revisions := 0;
for eachw such that(v, w) ∈ Q do begin

remove(v, w) fromQ;
revise(v, w, changev);
if D(v) = ∅ then

return False;
else ifchangev then

effective revisions := effective revisions + 1;
u := w;

fi;
end;
if effective revisions = 1 then
Q := Q ∪ { (w′, v) : w′ 6= u,w′ is a neighbour ofv } ;

else ifeffective revisions > 1 then
Q := Q ∪ { (w′, v) : w′ is a neighbour ofv };

fi;
end;
return True;

end;

Fig. 1.The AC-3 version with reverse variable based revision ordering heuristics

It is argued in [17] that if a value is deleted fromD(v) whenv is relaxed against
w then less work needs to be done if other arcs that involvev as a second variable are
revised after the revision of(v, w). We argue that even less work in terms of support
checks needs to be done if other arcs that involvev as a second variable are revised
after completelyrelaxingv. It will be shown further in this paper that certain classes
of reverse variable based revision ordering heuristics allow the saving of checks when
compared to the best known arc and variable based heuristics.

In Figure 1, ifD(v) was changed after completely relaxingD(v) and if this was
the result ofonly oneeffective revision (effective revisions = 1), which happened to
be againstD(u), then all the arcs{ (w′, v) ∈ G } are added to the queue,except for
(u, v), whereG is the constraint graph. However, ifD(v) was changed as the result of
more than oneeffective revision (effective revisions > 1) thenall the arcs{ (w′, v) ∈
G } are added to the queue. Modulo constraint propagation effects this saves work for
maintaining the queue compared to the original AC-3.
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function revise(v, w, varchangev): Boolean;
begin

changev := False ;
for eachr ∈ D(v) do begin

if@c ∈ D(w) such thatc supportsr then
D(v) := D(v)\{r} ;
changev := True ;

fi;
return D(v) 6= ∅;

end;

Fig. 2.Algorithm revise

4 Description of the AC-3dl and AC-3ds Algorithms

4.1 Introduction

We describe two new lightweight arc consistency algorithms which are inspired by
reverse variable based heuristics and AC-3d’s double support heuristic [13]. Here, a
double support heuristic prefers checks between two values each of whose support sta-
tuses are unknown. It is recalled that a reverse variable based heuristic selects a variable
v and repeatedly select an arc of the form(v, w) for the next revision until no more such
arc exists. If during this processD(v) becomes empty then the process is aborted.

function AC-3d∗: Boolean;
begin
Q := { (v, w) ∈ G : v andw are neighbours};
whileQ 6= ∅ do begin

select anyv from {v : (v, w) ∈ Q };
effective revisions := 0;
\∗ compute row support∗\
for eachw such that(v, w) ∈ Q do begin

remove(v, w) fromQ;
compute row support(v, w, changev);
if D(v) = ∅ then

return False;
else ifchangev then

effective revisions := effective revisions + 1;
u := w;

fi;
end;
if effective revisions = 1 then
Q := Q ∪ { (w′, v) : w′ 6= u,w′ is a neighbour ofv } ;

else ifeffective revisions > 1 then
Q := Q ∪ { (w′, v) : w′ is a neighbour ofv };

fi;
\∗ compute column support∗\
for eachw such that row-support of(v, w) is computed and(w, v) ∈ Q do begin

remove(w, v) fromQ;
compute column support(w, v, changew);
if changew then
Q := Q ∪ {(v′, w) : v′ 6= v , v′ is a neighbour ofw };

fi;
end;

end;
return True;

end;

Fig. 3.AC-3dl / AC-3ds Algorithm
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Pseudo-code for AC-3dl and AC-3ds is depicted in Figure 3. The difference be-
tween them is their domain heuristic: the way they compute therow supportand the
column support. For each individual arc(v, w) the row supportare the values inD(v)
that are supported by the values inD(w) and thecolumn supportare the values in
D(w) that are supported by the values inD(v). AC-3dl uses a lazy version of AC-3d’s
double support heuristic while AC-3ds uses AC-3d’s double support heuristic with a
small change. AC-3dl’s (AC-3ds’s) algorithm for computing row support and column
support are depicted in Figures 4 and 5 (Figures 6 and 7).

After selecting a variablev the procedure as shown in Figure 3 is divided into two
phases. The first phase computes the row support for all arcs of the form(v, w) that are
in the queue. The second phase computes the column support for the arcs(v, w) whose
row support has just been computed and for which the reverse arc(w, v) is also in the
queue. Only row support computations can lead to a wipe out. This is why column
support computations are postponed: they cannot result in wipeouts.

The main difference between AC-3d and the new algorithms is that if the selected
arc (v, w) and the reverse arc(w, v) are present in the queue then the new algorithms
do not always compute the row support and the column support one after another as in
AC-3d. In AC-3d double support heuristic is only used when both the arc(v, w) and
the reverse arc(w, v) are in the queue. In AC-3dl and in AC-3ds irrespective of whether
the reverse arc is present or not, they always use their own version of double support
domain heuristic to compute the row support. The advantage is that if in the process of
completely relaxingv the domain ofv changes then arcs of the form(w, v) are added
in the queue. This allows to compute the column support efficiently for arcs of the form
(v, w) when reverse arcs of the form(w, v) are put in the queueafter, relaxingD(v)
againstD(w), but were not in the queue when theD(v) was relaxed againstD(w).

The only constant used by AC-3dl is unsupported . AC-3ds uses constantssingle,
double, unsupported , andsupport deleted . All the constants are smaller than the val-
ues in the domains of the variables and are pairwise different. Both algorithms use two
temporary arraysrsupp[ · ][ · ] andcsupp[ · ][ · ] whose first dimension is bounded byn,
and whose second dimension is bounded byd. For each arc(v, w), for each valuer ∈
D(v), rsupp[w ][ r ] records the valuec ∈ D(w) that provides support forr and simi-
larly csupp[w ][ c ] records the valuer ∈D(v) that provides support forc. AC-3ds uses
one more two dimensional arrayrkind[ · ][ · ] which is used to remember what kind of
support check resulted in a row support for the values inD(v). The space complexity of
all three data structures isO(nd). Both algorithms inheritO(e+nd) space complexity
andO(e d3) time complexity from AC-3.

4.2 AC-3dl

AC-3dl’s algorithm for computing row support is shown in Figure 4. For a given arc
(v, w), it tries to find a support for each valuer ∈ D(v) in D(w) in a lexicographical
order. For eachr ∈ D(v), rsupp[w ][ r ] records the first known valuec ∈ D(w) such
that c supportsr. Here a double-support check occurs if the support status of the first
such valuec ∈ D(w) supportingr is unknown. In this casecsupp[w ][ c ] is set tor. If
the support status ofc is already known then a single support-check occurs. Ifr fails to
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find a support inD(w) then the valuec of each previous neighbourw already known to
support this deleted valuer in D(v) is markedunsupported .

function compute row support(v, w,varchangev):
begin

changev := False;
for eachc ∈ D(w) do begin

csupp[w ][ c ] := unsupported ;
end;
for eachr ∈ D(v) do begin

if ∃c ∈ D(w) s.t.c supportsr then
rsupp[w ][ r ] := first such valuec;
if csupp[w ][ c ] = unsupported then

csupp[w ][ c ] := r;
fi;

else
D(x) := D(x)\{ r };
changev := true;
for eachk such that row support of(v, k) is already computeddo begin

if csupp[ k ][ rsupp[ k ][ r ] ] = r then
csupp[ k ][ rsupp[ k ][ r ] ] := unsupported ;

fi;
end;

fi;
end;

end;

Fig. 4.Row support for AC-3dl
function compute column support(w, v,varchangew):
begin

changew := False;
for eachc ∈ D(w) do begin

if csupp[w ][ c ] = unsupported then
if @r ∈ D(v) s.t.rsupp[w ][ r ] = c or rsupp[w ][ r ] < c andr supportsc then
D(w) := D(w)\{c};
changew := True;

fi;
fi;

end;
end;

Fig. 5.Column support for AC-3dl

AC-3dl’s algorithm for computing column support is shown in Figure 5. In AC-3dl

column support is computed only for those values ofw that did not provide support
for values inD(v) or values whose support was deleted while computing the row
support for other arcs of the form(v, w). As shown in the algorithm, for eachc ∈
D(w) whose support status isunsupported, it tries to find a supportr ∈D(v) such that
rsupp[w ][ r ] = c or rsupp[w ][ r ] < c andr supportsc.

4.3 AC-3ds

AC-3ds’s algorithm for computing row support is shown in Figure 6. It tries to find a
support for each valuer ∈D(v) inD(w) in a lexicographical order. When it tries to find
a support forr it first uses double support checks and then single support checks until
the support status ofr is known. If it fails to find a support forr then the valuec of each



Lightweight Arc Consistency Algorithms 117

function compute row support(v, w,varchangev):
begin

changev := False;
for eachc ∈ D(w) do begin

csupp[w ][ c ] := unsupported ;
end;
for eachr ∈ D(v) do begin

if ∃c ∈ D(w) s.t.csupp[w ][ c ] = unsupported andc supportsr then
rsupp[w ][ r ] := first such valuec;
csupp[w ][ rsupp[w ][ r ] ] := r;
rkind[w ][ r ] := double;

else if∃c ∈ D(w) s.t.csupp[w ][ c ] 6= unsupported andc supportsr then
rsupp[w ][ r ] := first such valuec;
rkind[w ][ r ] := single;

else
D(x) := D(x)\{r};
changev := True;
for eachk such that row support of(v, k) is already computeddo begin

if rkind[ k ][ r ] = double then
csupp[ k ][ rsupp[ k ][ r ] ] := support deleted ;

fi;
end;

fi;
end;

end;

Fig. 6.Row support for AC-3ds

previous neighbourw (such that row support(v, w) is already computed) supporting
this deleted valuer in D(v) is markedsupport deleted .

AC-3ds’s algorithm for computing column support is depicted in Figure 7. In AC-3ds

column support is computed only for those values ofw that did not provide support for
values inD(v) or values whose support was deleted while computing the row support
for other arcs of the form(v, w). As shown in the algorithm column support is computed
only for those values ofw whose support status isunsupported or support deleted .

For each valuec ∈ D(w) whose support status isunsupported , the algorithm tries
to seek support inD(v) in exactly the same fashion as in AC-3d while computing the
column support. For each valuec ∈ D(w) whose support status issupport deleted , it
tries to seek a support inr ∈ D(w) such thatrsupp[w ][ r ] = c or r supportsc.

5 Experimental Results

5.1 Introduction

In this section we will compare AC-3, AC-3d, AC-3dl, and AC-3ds. We will measure
their performance in terms of the CPU time in seconds, the number of support checks
(checks), the number of times a revision ordering heuristic selects an element from the
queue (selections), and the number of times a queue is updated (updates). As pointed
out earlier, our goal is not to compare against optimal arc consistency algorithms. All
algorithms were implemented in C. The experiments were carried out on a PC Pentium
III having 256 MB of RAM running at 2.266 GHz processor with linux. Previously,
statistical analysis of experimental data indicated that there is a significant and almost
perfect linear relationship between the solution times (as well as checks) of any two arc
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function compute column support(w, v,varchangew):
begin

changew := False;
for eachc ∈ D(w) do begin

if csupp[w ][ c ] = unsupported then
if @r ∈ D(v) s.t.rsupp[w ][ r ] < c andrkind[w ][ r ] = double andr supportsc then
D(w) := D(w)\{c};
changew := True;

fi;
else ifcsupp[w ][ c ] = support deleted then

if @r ∈ D(v) s.t.rsupp[w ][ r ] = c or r supportsc then
D(w) := D(w)\{c};
changew := True;

fi;
fi;

end;
end;

Fig. 7.Column support for AC-3ds

consistency algorithms under consideration [14]. This justifies our decision to average
the results for a particular class of problems over50 runs.

For all the tables shown in this section, the column labelled asheuristic lists the
revision ordering heuristics. [16] presents an implementation for reverse variable based
heuristics facilitatingO(n) selection for the optimal arc. All reverse variable based
heuristics we consider in this section were implemented using that technique. Letcomp
be the variable selection order⊗#

≤ • ⊗
δc
≥ • ⊗s≤, and letcomp2 be the variable selection

order⊗#
≤ •⊗

δcn
≥ •⊗s≤, whereδcn(v) is the number of arcs of the form(v, w) currently

present in the queue. The arc based heuristicarc:comp is given by⊗π2
comp • ⊗π1

comp , the

variable based heuristicvar:comp is given by⊗#◦π1
≤ •⊗π2

comp , the reverse variable based
heuristicrev:comp is given by⊗π2

comp •⊗π1
comp , and the reverse variable based heuristic

rev :comp2 is given by⊗#◦π2
≤ • ⊗s◦π2

≤ • ⊗π1
comp2

. For algorithms such as MAC-3d,
MAC-3dl and MAC-3ds the order of processing reverse arcs is not important because
they can not lead to a wipe out.

5.2 Stand-alone Arc Consistency

For stand alone arc consistency we experimented with random problems. They were
generated by Frostet al.’s model B generator [7], which may be downloaded from
http://www.lirmm.fr/˜bessiere/generator.html . In this model a ran-
dom CSP instance is characterised by(n, d, e, t) wheren is the number of variables,
d the uniform domain size,e the number of constraints, andt the number of no-
goods. The problem classes we consider areP3 = 〈150, 50, 500, 2296〉, andP4 =
〈50, 50, 1225, 2188〉, which were also studied in [2, 3, 18]. Both classes correspond to
problems in the phase transition [6].P3 correspond to sparse andP4 correspond to
dense problems. For random problems checks are implemented as cheap lookup opera-
tions. Tables 1 and 2 present the results for the before mentioned random problems.

Note that for a variable based heuristic, the number of selections of an element
from the queue is very low. This is because when a variable is selected from the queue
it allows to perform a number of revisions which is between1 and the current degree



Lightweight Arc Consistency Algorithms 119

of the variable. On the other side for an arc based heuristic, the number of selections of
an element from the queue is high. The reason is that each arc that is selected from the
queue corresponds to exactly one revision. However for AC-3d it is somewhat reduced
because sometimes AC-3d performs two revisions per selection.

Table 1.Average results for random problems P3

algorithm heuristic checks cpu-time selections updates
AC-3 arc:comp 2,449,084 0.033 5,956 1,353
AC-3 var:comp 3,885,849 0.047 1,123 1,891
AC-3 rev:comp 1,940,496 0.028 4,762 842
AC-3d arc:comp 1,888,750 0.032 4,628 1,415
AC-3d rev:comp 1,728,286 0.031 4,203 1,207
AC-3dl rev:comp 1,762,433 0.029 3,855 1,157
AC-3dl rev:comp2 1,749,674 0.028 3,817 1,152
AC-3ds rev:comp 1,557,343 0.041 3,855 1,157
AC-3ds rev:comp2 1,544,129 0.040 3,817 1,152

Table 2.Average results for random problems P4

algorithm heuristic checks cpu-time selections updates
AC-3 arc:comp 5,454,546 0.076 16,318 573
AC-3 var:comp 6,139,919 0.080 375 1,009
AC-3 rev:comp 4,122,512 0.059 12,385 378
AC-3d arc:comp 3,609,732 0.070 10,777 575
AC-3d rev:comp 3,393,907 0.068 10,097 487
AC-3dl rev:comp 3,760,588 0.061 9,556 494
AC-3dl rev:comp2 3,647,776 0.059 9,194 493
AC-3ds rev:comp 3,227,043 0.091 9,556 494
AC-3ds rev:comp2 3,109,337 0.088 9,194 493

Remember that for a reverse variable based heuristic, if a variablev is selected from
the queue it allows to perform revisions related to the number of arcs of the form(v, w)
currently present in the queue. It is interesting to note that algorithms based on reverse
variable based heuristics do not update their queue as frequently as variable based and
arc based heuristics do. Notice that for both random problems, AC-3 withrev :comp
requires fewer checks and less time than it does for AC-3 witharc:comp.

We observe that AC-3 withrev :comp and AC-3dl with rev :comp andrev :comp2

appear to be faster in terms of the CPU time. We also observe that AC-3ds despite
of spending fewer support checks takes more time. This is probably because its do-
main heuristic is more expensive when compared to AC-3d and AC-3dl. It is not a
coincidence that AC-3dl and AC-3ds when equipped with the same revision ordering
heuristic always results in the same number of selections and updates. The reason is
that the only difference between them is their domain heuristic.



120 D. Mehta and M.R.C. van Dongen

5.3 Maintaining Arc Consistency during Search

In this section we will focus on the performance of the arc consistency algorithms dur-
ing search (MAC [12]). Here we experimentally compare MAC-3, MAC-3d, MAC-3dl,
and MAC-3ds for solving random and real-world problems. During search all MACs
visited the same nodes in the search tree. They were equipped with adom/degvariable
ordering heuristic with a lexicographical tie breaker wheredomis the domain size and
degis the original degree of a variable.

Table 3.Average Results for random problems of size 25

algorithm heuristic checks cpu-time selections updates
MAC-3 arc:comp 8,699,550 0.617 1,409,820 150,198
MAC-3 var:comp 8,316,780 0.304 79,539 241,948
MAC-3 rev:comp 7,704,453 0.499 1,192,148 109,258
MAC-3d arc:comp 5,747,741 0.526 848,161 151,270
MAC-3d rev:comp 5,549,216 0.453 803,162 108,209
MAC-3dl rev:comp 6,668,505 0.503 779,265 111,696
MAC-3dl rev:comp2 6,614,958 0.493 768,942 109,983
MAC-3ds rev:comp 5,599,575 0.557 779,265 111,696
MAC-3ds rev:comp2 5,546,977 0.546 768,942 109,983

Problems were generated for sizen ∈ {15,20,25}, n values per domain(n = d).
The problems were generated as follows. Both tightness T and density C vary from
5% to 95% in 5% steps. For each combination of (C,T) 50 random problems were
generated. The results for the average number of checks, the average solution time, the
average number of selections and the average number of queue updates for a particular
combination of algorithm and revision ordering heuristic for the problem size 25 is
shown in Table 3.

MAC-3’s checks forarc:comp andvar:comp are about equal but it requires about
2.02 times less time forvar :comp than it does forarc:comp. MAC-3 with rev :comp
requires about 1.23 times less time than MAC-3 witharc :comp. It is interesting to
note that MAC-3 withvar : comp requires about 17.02 times fewer selections and
only 1.61 times more updates than MAC-3 witharc : comp. This may explain why
MAC-3 with var:comp is better when it comes to saving time. Again MAC-3ds is the
best among all lightweight arc consistency algorithms that we have considered when
it comes to saving checks. The next best combination of algorithm and heuristic that
saves time after MAC-3 withvar:comp is MAC-3d with rev:comp.

Finally we present results for real world problems which came from the CELAR
suite [4]. We did not consider optimisation but satisfiability only. Tables 4, 5 and 6 cor-
respond to the results of RLFAP#5, RLFAP#11 and GRAPH#14 respectively. Checks
were implemented as function calls for the real world problems.

The results in Tables 4, 5 and 6 show that again MAC-3ds is the best when it comes
to saving checks. Though MAC-3ds spends fewer checks it does not always save time.
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Table 4.Average results for real-world problem RLFAP 5

algorithm heuristic checks cpu-time selections updates
MAC-3 arc:comp 5,567,209 0.935 1,292,826 530,589
MAC-3 var:comp 12,380,945 0.893 554,962 794,521
MAC-3 rev:comp 5,408,523 0.840 1,281,564 367,382
MAC-3d arc:comp 4,827,174 0.934 1,196,801 530,505
MAC-3d rev:comp 4,817,309 0.929 1,192,162 368,052
MAC-3dl rev:comp 4,817,750 0.849 1,148,423 367,981
MAC-3dl rev:comp2 4,750,955 0.832 1,131,353 364,957
MAC-3ds rev:comp 4,489,648 0.869 1,148,423 367,981
MAC-3ds rev:comp2 4,421,066 0.853 1,131,353 364,957

For RLFAP 5 and 11 MAC-3dl with rev :comp2 recorded the smallest solution time.
For GRAPH 14 MAC-3d with rev:comp recorded the smallest solution time. MAC-3dl

and MAC-3ds with rev :comp2 perform better in terms of support checks, cpu-time,
selections, and updates when compared to the same algorithms withrev:comp. Due to
space restriction results for MAC-3 and MAC-3d with rev :comp2 are not shown but
on averagerev:comp2 saves checks and (little) time when compared torev:comp.

Despite using a lazy double support heuristic which does not always prefers dou-
ble support checks, MAC-3dl works well when compared to MAC-3d whose double
support domain heuristicD always prefers double support checks. As mentioned be-
fore it is not a coincidence that MAC-3dl and MAC-3ds when equipped with the same
revision ordering heuristic always have the same number of selections and updates.

The results in Tables 4, 5, and 6 confirm that reverse variable based revision ordering
heuristics save checks when compared to arc based and variable based revision ordering
heuristics for a given algorithm. The results also confirm that they do not result in as
many updates of the queue as with variable based and arc based heuristics. Also the
number of selections is always less than arc based heuristics. This may be the reason
why they always save time when compared to arc based heuristics.

Table 5.Average results for real-world problem RLFAP 11

algorithm heuristic checks cpu-time selections updates
MAC-3 arc:comp 56,431,728 2.282 2,154,081 248,714
MAC-3 var:comp 52,510,653 1.641 151,358 539,820
MAC-3 rev:comp 43,957,986 1.590 1,654,675 163,826
MAC-3d arc:comp 30,810,434 1.685 1,168,121 248,999
MAC-3d rev:comp 30,801,235 1.642 1,163,567 161,758
MAC-3dl rev:comp 36,243,961 1.508 1,065,987 162,920
MAC-3dl rev:comp2 35,575,214 1.494 1,084,724 150,947
MAC-3ds rev:comp 30,688,893 2.099 1,065,987 162,920
MAC-3ds rev:comp2 29,995,844 2.093 1,084,724 150,947
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Variable based heuristics require fewer selections than reverse variable and arc
based heuristics. The overhead of selecting the best variable is limited for both vari-
able and reverse variable based heuristics when compared to arc based heuristics.

Table 6.Average results for real-world problem GRAPH 14

algorithm heuristic checks cpu-time selections updates
MAC-3 arc:comp 3,404,174 0.138 37,332 5,010
MAC-3 var:comp 3,399,796 0.112 4,493 4,922
MAC-3 rev:comp 3,051,426 0.106 32,942 3,470
MAC-3d arc:comp 1,744,372 0.106 25,704 4,984
MAC-3d rev:comp 1,723,346 0.089 25,223 3,487
MAC-3dl rev:comp 2,316,204 0.106 24,441 3,472
MAC-3dl rev:comp2 2,309,559 0.102 24,269 3,470
MAC-3ds rev:comp 1,492,024 0.140 24,441 3,472
MAC-3ds rev:comp2 1,484,398 0.139 24,269 3,470

6 Conclusion

We have classified revision ordering heuristics for arc consistency algorithms in three
different categories: arc based, variable based, and reverse variable based heuristics. We
pointed out advantages of using reverse variable based heuristics in terms of updating a
queue and selecting an element from the queue. Experimental results demonstrate that
algorithms using these heuristics are good in saving checks as well as time. Reverse
variable based version of AC-3 was also discussed.

We presented two new lightweight arc consistency algorithms AC-3dl and AC-3ds.
Both algorithms use reverse variable based heuristics. They only differ by their domain
heuristic. Overall MAC-3dl was good in saving time despite of using a lazy double
support domain heuristic which does not always prefer double support checks. For all
the real world problems and the random problems that we have considered AC-3ds

is the best when it comes to saving checks. But it is not always that good in saving
time. This is probably because of its domain heuristic, which is more expensive when
compared to the domain heuristics of AC-3d and AC-3dl.

There is no single winner when it comes to save time. For stand alone arc consis-
tency, AC-3 withrev:comp is good in saving checks and time when compared to AC-3
with var:comp andarc:comp. For search, MAC-3 withvar:comp becomes the fastest
solver for random problems. For real world problems that we considered, MAC-3dl

with rev : comp2 is the quickest solver. In [16] we have shown that reverse variable
based heuristics also save checks and time when used with coarse-grained heavyweight
arc consistency algorithms such as AC-2001. MAC-3 withvar :comp is the worst in
saving checks while MAC-3ds with rev:comp2 is the best. On average MAC-3ds saves
50% support checks when compared to MAC-3 withvar:comp.
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1995. Morgan Kaufmann Publishers.
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Maintaining Arc Consistency Algorithms During
the Search with an Optimal Time and Space

Complexity
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Abstract. In this paper, we present in detail the versions of the arc
consistency algorithms for binary constraints based on list of supports
and last value when they are maintained during the search for solutions.
In other words, we give the explicit codes of MAC-6 and MAC-7 algo-
rithms. Moreover, we present an original way to restore the last values
of AC-6 and AC-7 algorithms in order to obtain a MAC version of these
algorithms whose space complexity remains in O(ed) while keeping the
O(ed2) time complexity on any branch of the tree search. This result
outperforms all previous studies.

1 Introduction

In this paper we focus our attention on binary constraints. For more than twenty
years, a lot of algorithms establishing arc consistency (AC algorithms) have been
proposed: AC-3 [6], AC-4 [7], AC-5 [12], AC-6 [1], AC-7, AC-Inference, AC-
Identical [2], AC-8 [4], AC-2000: [3], AC-2001 (also denoted by AC-3.1 [13]) [3],
AC-3d [11], AC-3.2 and AC-3.3 [5].

The MAC version of an AC algorithm, is the maintain of the algorithm during
the search for a solution.

Some MAC versions of AC algorithms are easy, like AC-3 or AC-2000. Some
others AC algorithms are much more complex to be maintained during the
search. This is mainly the case for algorithms based on the notion of list of
support (S-list) and on the notion of last support (last value). These algorithms,
like AC-6, AC-7, AC-2001, AC-Inference, involve some data structures that need
to be restored after a backtrack. Currently, there is no MAC version of these
algorithms capable to keep the optimal time complexity on every branch of the
tree search (O(d2) per constraint, where d is the size of the largest domain),
without sacrificing the space complexity. More precisely, the algorithms AC-6,
AC-7 and AC-2001 involve data structures that lead to a space complexity of
O(d) per constraint, but the MAC versions of these algorithms require to save
some modifications of these data structures in order to restart the computations
after a backtrack in a way similar as if this backtrack did not happen, and so
they keep the same time complexity for any branch of the tree search as for
one establishment of arc consistency. These savings have a cost which depends
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on the depth of the tree search and that are bounded by d. Therefore for these
reasons some authors have proposed algorithms having a O(dmin(n, d)) space
complexity per constraint [8–10], thus the nice space complexity of these AC
algorithms is lost for their MAC versions.

In this paper, we propose an original MAC version of the algorithms involving
S-list and last data with a space complexity in O(d) per constraint while keeping
the optimal time complexity (O(d2)) for any branch of the tree search.

At this moment, our goal is not to propose an algorithm that outperforms
MAC-6, MAC-7 or MAC-2001, but to solve an open question. The capability to
avoid to need some extra data can also be quite important, for embedded systems
for instance, where all the possible memory requirements must be precomputed
and reserved.

This paper is organized as follows. First, we recall some definitions of CP
and we give a classical backtrack algorithm associated with a propagation mech-
anism. Then, we give a classical AC algorithm using the S-List and last data
structures. Next, we identify the problems of the MAC version of this algorithm,
and we propose a new MAC version optimal in time and in space. At last, we
conclude.

2 Preliminaries

A finite constraint networkN is defined as a set of n variablesX = {x1, . . . , xn},
a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set
of possible values for variable xi, and a set C of constraints between variables.
We introduce the particular notation D0 = {D0(x1), . . . , D0(xn)} to represent
the set of definition domains of N . Indeed, we consider that any constraint net-
work N can be associated with an initial domain D0 (containing D), on which
constraint definitions were stated.

A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir ) is
a subset T (C) of the Cartesian product D0(xi1) × · · · × D0(xir ) that specifies
the allowed combinations of values for the variables xi1 , . . . , xir . An element of
T (C) is called a tuple on X(C) and r is the arity of C and τ [x] denotes the
value of the variable x in the tuple τ .

A value a for a variable x is often denoted by (x, a). Then, (x, a) is valid if
a ∈ D(x), and a tuple is valid if all the values it contains are valid. Let C be a
constraint. C is consistent iff there exists a tuple τ of T (C) which is valid. A
value a ∈ D(x) is consistent with C iff x 6∈ X(C) or there exists a valid tuple
τ of T (C) with a = τ [x] (τ is the called a support for (x, a) on C.) A constraint
is arc consistent iff ∀xi ∈ X(C), D(xi) 6= ∅ and ∀a ∈ D(xi), a is consistent
with C.

A filtering algorithm associated with a constraint C is an algorithm which
may remove some values that are inconsistent with C; and that does not remove
any consistent values. If the filtering algorithm removes all the values inconsistent
with C we say that it establishes the arc consistency of C.
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Propagation is the mechanism that consists of calling the filtering algorithm
associated with the constraints involving a variable x each time the domain of
this variable is modified. Note that if the domains of the variables are finite, then
this process terminates because a domain can be modified only a finite number
of times. The set of values that have been removed from the domain of a variable
x is called the delta domain of x. This set is denoted by ∆(x) [12].

Algorithm 1: function searchForSolution

propagation()
while ∃y such that ∆(y) 6= ∅ do

pick y with ∆(y) 6= ∅
for each constraint C involving y do

if ¬ filter(C, x, y,∆(y)) then return false

reset(∆(y))

return true

searchForSolution(x, a)
addConstraint(x = a)
if all variables are instantiated then printSolution()
else

if propagation() then
do

y ← selectVariable()
b← selectValue(y)
searchForSolution(y, b)
removeFromDomain(y, b)

while D(y) 6= ∅ and propagation()

restoreCN()

Function propagation of Algorithm 1 is a possible implementation of this
mechanism. The filtering algorithm associated with the constraint C defined on
x and y corresponds to Function filter(C, x, y,∆(y)). This function removes
the values of D(x) that are not consistent with the constraint in regards to
∆(y). For a constraint C this function will also be called with the parameters
(C, y, x,∆(x)). We also assume that function reset(∆(y)) is available. This
function sets ∆(y) to the empty set. The algorithm we propose is given as exam-
ple, and some other could be designed. For our purpose, we only suppose that
the delta domain is available.

Algorithm 1 also contains a classical search procedure (a backtrack algorithm)
which selects a variable, then a value for this variable and call the propagation
mechanism. Note that at the end of the recursive function searchForSolu-

tion, Function restoreCN is called. This function restores the data struc-
tures used by the constraint when a backtrack occurs. We assume that Function
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searchForSolution is called first with a dummy variable x and a dummy
value a such that the constraint x = a has no effect.

3 Arc consistency algorithms

Consider a constraint C defined on x and y for which we study the consequences
of the modifications of the domain of y.

Algorithm 2: An AC algorithm
filter(in C, x, y,∆(y)): boolean

(x, a)← firstPendingValue(C, x, y,∆(y))
while (x, a) 6= nil do

if ¬ existValidSupport(C, x, a, y,get∆Value(C)) then
1 removeFromDomain(x, a)

if D(x) = ∅ then return false

(x, a)← nextPendingValue(C, x, y,∆(y), a)
return true

Definition 1 We call pending values w.r.t. the variable y the set of valid
values of a variable x for which a support is sought by an AC algorithm when
the consequences of the deletion of the values of a variable y are studied.

Thanks to this definition, the principles of AC algorithms can be easily expressed:
Check whether there exists a support for every pending value and
remove those that have none.
Algorithm 2 is a possible implementation of this principle.

We can now give the principles of Functions firstPendingValue, nextPend-

ingValue and of Function existValidSupport for AC-6 and AC-7 algorithm.
Since we consider a constraint C involving x and y and that y is modified, then
the pending values belong only to x.

AC-6: AC-6 was a major step in the understanding of the AC-algorithm
principles. AC-6 mixes some principles of AC-3 with some ideas of AC-4. AC-6
can be viewed as a lazy computation of supports. AC-6 introduces the S-list
data structure: for every value (y, b), the S-list associated with (y, b), denoted by
S-list[(y, b)], is the list of values that are currently supported by (y, b). In AC-6
the knowledge of only one support is enough, then a value (x, a) is supported by
only one value of D(y), so there is only value of D(y) that contains (x, a) in
its S-list. Then, the pending values are the valid values contained in the S-lists
of the values in ∆(y). Function existValidSupport is an improvement of the
AC-3’s one, because the checks in the domains are made w.r.t an ordering and
are started from the support that just has been lost, which is the delta value
containing the current value in its S-list. The space complexity of AC-6 is in
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O(d) and its time complexity is in O(d2).
AC-7: This is an improvement of AC-6. AC-7 exploits the fact that if (x, a) is
supported by (y, b) then (y, b) is also supported by (x, a). Thus, when search-
ing for a support for (x, a), AC-7 proposes, first, to search for a valid value in
S-list[(x, a)], and every non valid value which is reached is removed from the
S-list. We say that the support is sought by inference. This idea contradicts
an invariant of AC-6: a support found by inference is no longer necessarily the
latest checked value in D(y). Therefore, AC-7 introduces explicitly the notion
of latest checked value by the data last associated with every value. AC-7
ensures the property: If last[(x, a)] = (y, b) then there is no support (y, a) in
D(y) with a < b. If no support is found by inference, then AC-7 uses an im-
provement of the AC-6’s method to find a support in D(y). When we want to
know whether (y, b) is a support of (x, a), we can immediately give a negative
answer if last[(y, b)] > (x, a), because in this case we know that (x, a) is a not
a support of (y, b) and so that (y, b) is not a support for (x, a). The properties
on which AC-7 is based are often called bidirectionnalities. Hence, AC-7 is able
to save some checks in the domain in regards to AC-6, while keeping the same
space and time complexity.

The MAC version of AC-6 needs an explicit representation of the lastest
checked value, thus the AC-6 and AC-7 algorithms use the following data struc-
tures:
Last: the last value of (x, a) for a constraint C is represented by last[(x, a)]
which is equals to a value of y or nil.
S-List: these are classical list data structures.

Algorithm 3: Pending values computation.
firstPendingValue(C, x, y,∆(y)): value

b←first(∆(y))
return traverseS-list(C, x, y,∆(y))

nextPendingValue(C, x, y,∆(y), a): value
return traverseS-list(C, x, y,∆(y))

traverseS-list(C, x, y,∆(y)): value
while (y, b) 6= nil do

(x, a)←seekValidSupportedValue(C, y, b)
if (x, a) 6= nil then return (x, a)
b←next(∆(y), b)

return nil

get∆Value(C, x, y,∆(y)): return b

We can give a MAC version of AC-6 and AC-7 :
Algorithm 3 is a possible implementation of the computation of pending

values. Note that some functions require ”internal data” (a data whose value
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is stored). We assume thatfirst(D(x)) returns the first value of D(x) and
next(D(x), a) returns the first value of D(x) strictly greater than a.

Function seekValidSupportedValue(C, x, a) returns a valid supported
value belonging to the S-list[(y, b)] (see Algorithm 6.)

Algorithm 4: Function existValidSupport

existValidSupport(C, x, a, y, δy): boolean
if last[(x, a)] ∈ D(y) then (y, b)← last[(x, a)])
if AC-7 and (y, b) = nil then

(y, b)← seekValidSupportedValue(C, x, a)

if (y, b) = nil then (y, b)← seekSupport(C, x, a, y)
updateS-list(C, x, a, y, δy, b)
return ((y, b) 6= nil)

Algorithm 5: Functions seeking for a valid support
seekSupport(C, x, a, y) : value

b←next(D(y),last[(x, a)])
while b 6= nil do

if last[(y, b)] ≤ (x, a) and ((x, a), (y, b)) ∈ T (C) then
last[(x, a)]← (y, b)
return (y, b)

b←next(D(y), b)

return nil

Algorithm 4 is a possible implementation of Function existValidSupport

and Algorithm 5 is a possible implementation of Function seekSupport.
The S-list representation will be detailed in a specific section, notably because

it has been careful designed in order to be maintained during the search.

4 Maintain during the search

The management of the AC algorithms has been studied in detail in [8].
Two types of data structures can be identified for a filtering algorithm (like

an AC algorithm for instance) :
• the external data structures. These are the data structures from which

the constraint of the filtering algorithm is stated, for instance the variables on
which the constraint is defined or the list of allowed combinations by the con-
straint.

• the internal data structures. These are the data structures needed by
the filtering algorithm. The space complexity of the filtering algorithm is usu-
ally based on these data structures. For instance, AC-6 and AC-7 require data
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structures in O(d).

We will say that the space complexity of a MAC version of an AC algorithm
is optimal if it is the same as the space complexity of the AC algorithm.

In this section, we propose a MAC version of an AC algorithm using S-list
and/or last value having an optimal space and time complexity.

There is no particular problem when we go down to the search tree, because
the instantiation of new variable leads only to the deletion of values. The main
difficulty is to manage the data structures when a failure occurs, that is when
there is a backtrack.

Consider that n is the current node of the search. The data structures asso-
ciated with an AC algorithm contain certain values. These values are called the
state of the data structures. Then, assume that the search is continued from n
and then backtracked to n. In this case, two possibilities have been identified [8]:

– the state of the data structure at the node n is exactly restored
– an equivalent state is restored.

4.1 Exact restoration of the state

This method saves the modifications of the state of an AC algorithm in order to
restore exactly this state after a backtrack. In other word, every data contains
the same value as it had when n was the current node. This implies that every
modification of the value of a data has to saved in order to be restored after a
backtrack. Every S-list and every last value can be modified d times per con-
straint during the search. Thus, the space complexity is multiplied by a factor
of d. So, this possibility cannot lead to a MAC version with an optimal space
complexity.

4.2 Restoration of an equivalent state

This is another notion which is based on the properties that have to be satisfied
by the data structures. The algorithms have an optimal time complexity when
some properties are satisfied. What is important is not the way they are satisfied,
but only the fact that they are satisfied. For some data structures it is not
necessary to restore exactly the values it contains before. For instance, if (y, b)
was the current support of (x, a) for the node n and if this support changes
to become (y, c) then (y, c) can be the current support of (x, a) when all the
nodes following n are backtracked. This means that there is no need to change
the elements in the S-list, no deletion is needed. It is only required to add some
values that have been removed.

This method is much more interesting than the restoration of the exact state.
We choose to use it and propose to study how we have to design and how we
can manage the S-Lists and the last values in order to restore only an equivalent
state, while keeping the optimal time complexity.
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5 S-list management

If an equivalent state is accepted after backtracking, then when a support is
modified there is no need to save it, because it does not need to be restored.
However, in order to keep an optimal time complexity for every branch of the
tree search, the MAC version of AC-6 and AC-7 algorithms needs to remove
from S-lists the reached values that are not valid. In fact, it is necessary to avoid
to consider them several times.

This is Function seekValidSupportedValue that manages this deletion.
So, this function deserves a particular attention.

This function is called during the computation of the pending values or when
a support is sought by inference (AC-7). When it is called for a value (x, a)
it traverses the S-list of (x, a) until a valid value is found and removes from
this S-list the value that are reached and not valid. In the MAC version, a
restoration of the S-list is obviously needed. More precisely, if (y, b) is reached
when traversing S-list[(x, a)] this means that (x, a) is the current support of (y, b)
for this constraint. Thus, if (y, b) is no longer valid when it is reached, then (y, b)
is removed from S-list[(x, a)], but after backtracking the node of the tree search
that led to the deletion of (y, b) it is necessary to restore (y, b) in S-list[(x, a)],
because at this moment (y, b) will be valid and (y, b) needs to have a support.
Therefore, when an element is removed from the S-list when traversing it, it is
necessary to save this information in order to restore it later.

In order to avoid unnecessary memory consumption we propose to represent
the S-list as follows :

– The first element of an S-list of a value (y, b) is denoted by firstS[C, (y, b)]
which is equals to a value of x or nil.

– The S-lists exploit the fact that for a constraint, each value (x, a) can
be in at most one S-list. So, every value (x, a) is associated with a data
nextInS[C, (x, a)] which is the next element in the S-list of the support of
(x, a). For instance, S-list[C, (y, b)] = ((x, a), (x, d), (x, e)) will be represented
by : firstS[C, (y, b)] = (x, a); nextInS[C, (x, a)] = (x, d); nextInS[C, (x, d)] =
(x, e); nextInS[C, (x, e)] = nil. The nextInS data are systematically associ-
ated with every value so they are preallocated.

The saving/restoration of a support by MAC, can be easily done by adding a
data to every value (x, a): restoreSupport[C, (x, a)]. This data contains the sup-
port of (x, a) if (x, a) has been removed from the S-list of its support; otherwise
it contains nil. This data will be used to restore (x, a) in the S-list of its support
when (x, a) will be restored in its domain. More precisely, assume that (y, b)
is the support of (x, a) and that (x, a) has been removed from S-list[C, (y, b)]
when searching for a valid support of (y, b) by inference. In this case, the data
restoreSupport[C, (x, a)] will be set to (y, b). And, when (x, a) will be restored in
the domain of its variable after backtracking, then (x, a) will be added to the S-
list of restoreSupport[C, (x, a)]. Of course, if restoreSupport[C, (x, a)] is nil then
nothing happens.
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This mechanism of restoration implies that a solver has the capability to
perform some operations when a value is restored in its domain. This is not a
strong assumption and can be made with all existing solvers.

Another point must also be considered. Function existValidSupport calls
Function updateS-list in order to update the S-list when a new valid support is
found. Conceptually there is no problem, if a new valid support (y, b) is found for
a value (x, a) then (x, a) is added to S-list[(y, b)]. However, before being added
to the S-list (x, a) must be removed from the S-list of its current support. This
deletion causes some problems of implementation because the S-lists are simple
lists and to perform a deletion it is necessary to know the previous element. In
order to avoid this problem, we have decided to systematically remove all the
reached elements from the S-list. Thus, every element which is considered is the
first element of the list and so there is no longer any problem to remove it. If
a new support is found then the element can be safely added to a new S-list. If
there is no valid support then it will be necessary to restore (x, a) in the S-list of
its support. this result can be easily obtained by using the previous mechanism of
saving/restoration. Function updateS-list implements that idea. Algorithm

Algorithm 6: Management of Supported Values Lists
seekValidSupportedValue(C, x, a) : value

while firstS[C, (x, a)] 6= nil do
(y, b)← firstS[C, (x, a)]
if b ∈ D(y) then return (y, b)
firstS[C, (x, a)]← nextInS[C, (y, b)]
restoreSupport[C, (y, b)]← (x, a)

return nil

updateS-list(C, x, a, y, δy, b)
firstS[C, (y, δy)]← nextInS[C, (x, a)]
if (y, b) = nil then restoreSupport[C, (x, a)]← (y, δy)
else

nextInS[C, (x, a)]← firstS[C, (y, b)]
firstS[C, (y, b)]← (x, a)

restoreSupports(C, (x, a))
// the value a is restored in D(x)
(y, b)← restoreSupport[C, (x, a)]
if restoreSupport[C, (x, a)] 6= nil then

// (x, a) is added to the S-list of its support (y, b)
nextInS[C, (x, a)]← firstS[C, (y, b)]
firstS[C, (y, b)]← (x, a)
restoreSupport[C, (x, a)]← nil

6 gives a possible implementation of the management of S-lists.
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6 Last management

The notion of latest checked value (last value) is necessary for AC-6 and AC-7
algorithms to have an O(d2) time complexity per constraint.

The last value satisfies two properties :

Property 2 Let (y, b) =last[C, (x, a)] then
∀c ∈ D(y), c < b⇒ ((x, a), (y, c)) 6∈ T (C).

This first property ensures that there is no reason to consider again the values
that are less than the last value.

Property 3 Let (y, b) =last[C, (x, a)] then
Function seekSupport has never checked the compatibility between (x, a) and
any element d ∈ D(y) with d > b.

This property ensures that no compatibility check has been performed for the
values of y greater than the last value.

These two properties ensures that the compatibility between two values will
never be checked twice (if the bidirectionnality is not taken into account).

If the last are not restored after backtracking then the time complexity of AC-
6 and AC-7 algorithms is in O(d3). We can prove that claim with the following
example. Consider a value (x, a) that has exactly ten supports among the 100
values of y: (y, 91), (y, 92)..., (y, 100); and a node n of the tree search for which
the support of (x, a) is (y, 91). If the last value is not restored after a backtrack
then there are two possibilities to define a new last value:

1. the new last value is recomputed from the first value of the domain
2. the new last value is defined from the current last value, but the domains

are considered as circular domains: the next value of the maximum value is
the minimum value.

For the first case, it is clear that all the values strictly less than (y, 91) will have
to be reconsidered after every backtrack for computing a valid support.
For the second possibility, we can imagine an example for which before back-
tracking (y, 100) is the current support; then after the backtrack and since the
domains are considered as circular domains it will be necessary to reconsidered
again all the values that are strictly less than (y, 91).

Note also, that if the last value is not correctly restored it is no longer possible
to totally exploit the bidirectionnality. So, it is necessary to correctly restored
the last value.

6.1 Saving-Restoration of Last

The simplest way is to save the current value of last each time it is modified and
then to restore these values after a backtrack. This method can be improved by
remarking that it is sufficient to save only the first modification of the last value
for a given node of the tree search. In this case, the space complexity of AC-6
and AC-7 algorithms is multiplied by min(n, d) where n is the maximum of the
tree search depth [8–10].



Optimal MAC Algorithm 135

6.2 Recomputation of last

First, with the restoration of an equivalent state, it is necessary to slightly modify
the algorithm. The last value of (x, a) can indeed be valid and not be the current
support of (x, a), because the current support has been found by inference and
no support is restored. Thus, it is necessary to check the validity of the last value
in the MAC version of an AC algorithm.

Now, we propose an original method to restore the correct last value. Instead
of being based on savings this method is based on recomputation.

The idea of this algorithm is quite simple. Assume that we backtrack from
a node n, and consider a variable x. We will denote by DR(y) the values of the
variable y that have to be restored during this backtrack. Then, we have the
following proposition on which our algorithm is based:

Proposition 4 Let (x, a) be a value, and T (C, (x, a), DR(y)) be the set of values
of DR(y) that are compatible with (x, a) w.r.t C. Then
min(last[C, (x, a)],min(T (C, (x, a), DR(y)))) is a possible value of last[C, (x, a)].

proof: To prove this proposition we need to prove that
min(last[C, (x, a)],min(T (C, (x, a), DR(y)))) satisfies both Property 2 and Prop-
erty 3:

• Property 2:
Let DA(y) be the domain of the variable y after the backtrack, and DB(y) be the
domain of the variable y before the backtrack. Since the algorithm systematically
checked if the last value is valid, then after the backtrack the last value of
(x, a) will be the minimum between its current value and the value b ∈ DA(y)
such that (x, a) and (y, b) are compatible and there is no value c ∈ DA(y)
with c < b that is compatible with (x, a). We have DA(y) = DB(y) ∪ DR(y).
Then before the restoration either last[C, (x, a)] ∈ DB(y) or last[C, (x, a)] ∈
DR(y) or last[C, (x, a)] 6∈ DA(y). Moreover, if last[C, (x, a)] ∈ DB(y) before the
restoration, then it does not exist another value c ∈ DB(y) compatible with (x, a)
and such that (y, c) < last[C, (x, a)] by definition of last. Hence, to compute the
minimum, it is enough to compare last[C, (x, a)] with only the compatible values
of DR(y), and Property 2 is satisfied.

• Property 3:
The last value of (x, a) can only be equal to either nil or a value of y which is com-
patible with (x, a), by definition. Then, min(last[C, (x, a)],min(T (C, (x, a), DR(y))))
is either equal to last[C, (x, a)] or equal to min(T (C, (x, a), DR(y))). The first case
means that the last value has not been modified after node n then Property 2
is satisfied from the branch of the tree search going from the root to the node n
after the backtrack to node n. The second case means that the smallest compat-
ible value b of D(y) after the backtrack to node n is the new last value. Suppose
that Function seekSupport has reached a value c of y when seeking for a new
support for the value (x, a) in the branch of the tree search going from the root
to node n. At the node n the value a belongs to the domain of y, so it means
that a support d greater than c has been found by Function seekSupport and
that a last value greater than c exists. Since b = min(T (C, (x, a), DR(y))) is
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the smallest valid value of y compatible with (x, a), the value d with d > b can-
not be a last value, so it is impossible to find such a value and Property 3 holds. �

Only the values of D(x) ∪DR(x) needs to have their last value restored. So,
we obtain the new algorithm (see Algorithm 7.) Function recomputeLast is
called for every variable of every constraint after every backtrack.

Algorithm 7: Restoration of last by recomputation
recomputeLast(C, x)
for each a ∈ (D(x) ∪DR(x)) do

for each b ∈ DR(y) do
if ((x, a), (y, b)) ∈ T (C) then

last[C, (x, a)]← min(last[C, (x, a)], (y, b))

It is important to note that it is possible to recompute a value of last which
is greater than the last value that would had been restored by using the sav-
ing/restoration mecanism. So, during the backtrack to the node n we can benefit
from the computations that have been made after the node n.

Let us study the time complexity for any branch of the tree search, that is
when we backtrack from a leaf to the root.
For one restoration and for one variable of a constraint the time complexity of
Function recomputeLast is in O(|D(x)| × |DR(y)|).
For one branch of the tree search the time complexity of the calls of Function
7 is in O(

∑
DRi
|D0(x)| × |DRi(y)|) = O(|D0(x)| ×

∑
DRi
|DRi(y)|). Moreover,

the set DRi(y) are pairwise disjoint for one branch of the tree search and their
union is included in D(y). Therefore we have

∑
DRi
|DRi(y)| ≤ |D0(y)| and the

time complexity is in O(|D0(x)| × |D0(y)|) = O(d2) per constraint. So, we have
the same time complexity as for AC-6 or AC-7 algorithms.

It is possible to give some improvements of the previous algorithm :
First, if the values of DR(y) are ordered then the number of tests can be

limited, because the first compatible value which is less that the last value
will become the new last value. If the complexity of one sort is in d log(d)
then the time complexity of all the sorts for one branch of the tree search
will be depends on

∑
i=k..1 |DRi(y)| log(|DRi(y)|) ≤

∑
i=k..1 |DRi(y)| log(d) ≤

log(d)
∑
i=k..1 |DRi(y)| ≤ d log(d). This number is less than d2.

Then, we can separate the study of the values of x. There are several possi-
bilities (note that D(x) and DR(x) are disjoint) :

– (x, a) ∈ DR(x). It is possible to use a new data that stores the first value of
a last for the current node (that is only one data is introduced per value).
This new data saves the last value that have to be restored for the values
that are removed by the current node. So, the last of these values can be
restored in O(1) per value.
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– (x, a) ∈ D(x). In this case there are two possible cases :
• last[C, (x, a)] 6∈ D(y) and last[C, (x, a)] 6∈ DR(y). In this case the last is

correct and no restoration is needed.
• last[C, (x, a)] ∈ D(y) or last[(x, a)] ∈ DR(y). There is no specific im-

provement : the systematic checks seem to be needed.

7 Conclusion

In this paper we have presented MAC versions of AC-6 and AC-7 algorithms.
We have also given a way to restore the latest checked value that lead to MAC-6
and MAC-7 algorithms having the same space complexity as AC-6 and AC-7.
This result improves all the previous studies.
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Abstract. In this paper, we present CAC, a new configurable, generic
and adaptive algorithm for establishing arc consistency for binary con-
straints. CAC is configurable, that is by combining some parameters
CAC corresponds to any existing AC algorithm: AC-3, AC-4, AC-6,
AC-7, AC-2000, AC-2001, AC-8, AC-3d, AC-3.2 and AC-3.3. CAC is
generic, like AC-5, because it may takes into account the structure of
the constraints. CAC is adaptive because the underlined algorithm can
be changed during the computation in order to use the most efficient
one. This new algorithm leads to a new nomenclature of the AC algo-
rithms which is based on the different features used by the algorithm like
the values that are reconsidered when a domain is modified, or the fact
that bidirectionnality is taken into account, or the way a new support
is sought. This new nomenclature shows that several new possible com-
binations are now possible. In other words, we can easily combine some
ideas of AC-3 with some ideas of AC-7 and some ideas of AC-2001 with
some ideas of AC-6. Some experimental results highlight the advantages
of our approach.

1 Introduction

In this paper we focus our attention on binary constraints. For more than twenty
years, a lot of algorithms establishing arc consistency (AC algorithms) have
been proposed: AC-3 [6], AC-4 [7], AC-5 [9], AC-6 [1], AC-7, AC-Inference, AC-
Identical [2], AC-8 [4], AC-2000: [3], AC-2001 (also denoted by AC-3.1 [10]) [3],
AC-3d [8], AC-3.2 and AC-3.3 [5]. Unfortunately, these algorithms are differently
described and their comparison is not easy. Thus, we propose a configurable,
generic and adaptive AC algorithm, called CAC.

Configurable means that the previous existing algorithms can be represented
by setting some predefined parameters. This has some advantages:

• this unique algorithm can represent all known algorithms.
• it clearly shows the differences between all the algorithms. This extends

the discussion started in [3].
• some new arc consistency algorithms can be easily and quickly derived

from CAC, because some combinations of parameters have never been tested.
• CAC leads to a new nomenclature which is much more explicit than the

current one (”AC-” followed by a number.), because algorithms are now ex-
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pressed by combinations of predefined parameters. For instance, AC-3 is re-
named: CAC-pvD-sD and AC-6 becomes CAC-pv∆s-last-sD.

Generic means that CAC is also a framework that can be derived to take into
account some specificity of some binary constraints. In other word, dedicated al-
gorithms can be written, for functional constraints for instance. This corresponds
to a part of the generic aspects of AC-5. In our case, the incremental behavior
of the AC-5 is generalized.

Adaptive means that CAC is able to use different algorithms successively as
suggested in [3]. For instance, AC-2001 can be used then AC-7 and then AC-
2001 depending on which one seems to be the best for the current configuration
of domains and delta domains. We think, indeed, that CP will be strongly
improved if a filtering algorithm is in itself capable to select at each
time its best version, instead of asking the user to do it a priori.

AC-algorithms work in two steps. First, an initialization step is called. This
step consists of finding a support (i.e. a compatible value) for each value. If a
value has no support then it is removed from its domain. Then, in the second
step the consequences of the deletion of a value are studied, that is a new support
is sought for some values. In this paper, we will consider only the second step
which is the most important.

This paper is organized as follows. First, we recall some definitions of CP.
Then, we study all the existing algorithms, and we identify different concepts
of the AC algorithms and detail CAC algorithm. A new nomenclature is pro-
posed. Then, the adaptive behavior of CAC algorithm is considered. At last,
after studying some experiments, we conclude.

2 Preliminaries

A finite constraint networkN is defined as a set of n variablesX = {x1, . . . , xn},
a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set
of possible values for variable xi, and a set C of constraints between vari-
ables. A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir )
is a subset T (C) of the Cartesian product D(xi1) × · · · × D(xir ) that specifies
the allowed combinations of values for the variables xi1 , . . . , xir . An element of
T (C) is called a tuple on X(C) and τ [x] denotes the value of the variable x in
the tuple τ . A value a for a variable x is often denoted by (x, a). (x, a) is valid
if a ∈ D(x), and a tuple is valid if all the values it contains are valid. Let C be
a constraint. C is consistent iff there exists a tuple τ of T (C) which is valid. A
value a ∈ D(x) is consistent with C iff x 6∈ X(C) or there exists a valid tuple
τ of T (C) with a τ [x]. A constraint is arc consistent iff ∀xi ∈ X(C), D(xi) 6= ∅
and ∀a ∈ D(xi), a is consistent with C.

A filtering algorithm associated with a constraint C is an algorithm which
may remove some values that are inconsistent with C; and that does not remove
any consistent values. If the filtering algorithm removes all the values inconsistent
with C we say that it establishes the arc consistency of C. Propagation is
the mechanism that consists of calling the filtering algorithm associated with
the constraints involving a variable x each time the domain of this variable
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is modified. The set of values that have been removed from the domain of a
variable x is called the delta domain of x. This set is denoted by ∆(x). More
information about delta domains can be found in [9]. Function propagation

of Algorithm 1 is a possible implementation of this mechanism. The filtering
algorithm associated with the constraint C defined on x and y corresponds to
Function filter(C, x, y,∆(y)). This function removes the values of D(x) that
are not consistent with the constraint in regards to ∆(y). For a constraint C this
function will also be called with the parameters (C, y, x,∆(x)). We also assume
that function reset(∆(y)) is available. This function sets ∆(y) to the empty
set. The algorithm we propose is given as example, and some others could be
designed.

Algorithm 1: function propagation

propagation()
while ∃y such that ∆(y) 6= ∅ do

pick y with ∆(y) 6= ∅
for each constraint C involving y do

if ¬ filter(C, x, y,∆(y)) then return false

reset(∆(y))

return true

3 Arc consistency algorithms

Consider a constraint C defined on x and y for which we study the consequences
of the modification of the domain of y.

Algorithm 2: CAC filtering algorithm
filter(in C, x, y,∆(y)): boolean

get the parameters of C
pvMode← selectPendingValueMode(C, x, y,∆(y), pvMode)
sMode← selectExistSupportMode(C, x, y,∆(y), sMode)
(x, a)← pvMode.firstPendingValue(C, x, y,∆(y))
while (x, a) 6= nil do

if ¬ existValidSupport(C, x, a, y, sMode) then
1 removeFromDomain(x, a)

if D(x) = ∅ then return false

(x, a)← pvMode.nextPendingValue(C, x, y,∆(y), a)
return true

Definition 1 We call pending values w.r.t. a variable y, the set of valid
values of a variable x for which a support is sought by an AC algorithm when
the consequences of the deletion of the values of the variable y are studied.
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Thanks to this definition, the principles of AC algorithms can be easily expressed:
Check whether there exists a support for every pending value and re-
move those that have none.
Algorithm 2 is a possible implementation of this principle. This is also the core
of the generic CAC algorithm. Functions selectPendingValueMode and se-

lectExistSupportMode can be ignored at this point. They will be detailed
later.

We can now give the principles of Functions firstPendingValue, nextPend-

ingValue and of Function existValidSupport for each existing algorithm. We
will consider a constraint C involving x and y and that y is modified. Therefore,
the pending values belong only to x.
AC-3: The pending values are the values of D(x), and ∆(y) is not used at
all. All the values of D(x) are considered and the search for a valid support is
done by checking in D(y) if there is a support for a value of D(x). There is no
memorization of the previous computations, so the same computations can be
done several times and the time complexity for one constraint is in O(d3)1. The
advantage of this approach is that the space complexity is null.
AC-4: In AC-4 the tuple set is pre-computed and store in a structure that we
call a table. This table contains for every value (x, a) a pointer to the next
tuple involving (x, a). Therefore, the space complexity of AC-4 is in O(d2). The
pending values are for each (y, b) ∈ ∆(y) all the valid values (x, a) such that
((x, a)(y, b)) ∈ T (C). Note that a value (x, a) can be considered several times as
a pending value. The search for a support is immediate because Function ex-

istValidSupport can be implemented in O(1) by associated with every value
(x, a) a counter which counts the number of time (x, a) has a support in D(y).
Then, each time this function is called the counter is decremented (because (x, a)
lost a valid support) and if the counter is equals to zero then there is no sup-
port. AC-4 was the first algorithm reaching an O(d2) time complexity, because
no computation is made twice. However, a lot of computations are systematically
done.
AC-5: This algorithm is mainly a generic algorithm. It has been designed in
order to be able to take into account the specificity or the structure of the
considered constraints. In other words, Function existValidSupport can be
specialized by the user in order to benefit from the exploitation of the structure
of the constraint. For instance, functional constraints are more much simple and
arc consistency for these constraints can be achieved in O(d) per constraint.
Function filter and the propagation mechanism we gave are close to AC-5
ideas.
AC-6: AC-6 was a major step in the understanding of the AC-algorithm prin-
ciples. AC-6 mixes some principles of AC-3 with some ideas of AC-4. AC-6 uses
the idea of AC-4 to determine the pending values, but instead of considering all

1 In this paper, we will always express the complexities per constraint, because a con-
straint network can involved several types of constraints. The usual way to express
complexities can be obtained by multiplying the complexity we give by the number
of binary constraints of the network.
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the values supported by the values in ∆(y), it exploits the fact that the knowl-
edge of one support is enough. AC-6 can be viewed as a lazy computation of
supports. AC-6 introduces another data structure which is a variation of the ta-
ble: the S-list: for every value (y, b), the S-list associated with (y, b), denoted by
S-list[(y, b)], is the list of values that are currently supported by (y, b). Contrary
to AC-4, in AC-6 the knowledge of only one support is enough, then a value
(x, a) is supported by only one value of D(y), so there is only value of D(y)
that contains (x, a) in its S-list. Then, the pending values are the valid values
contained in the S-lists of the values in ∆(y), and, for a given ∆(y), a value (x, a)
can be considered only once as a pending value. Function existValidSupport

is an improvement of the AC-3’s one, because the checks in the domains are
made w.r.t an ordering and are started from the support that just has been
lost, which is the delta value containing the current value in its S-list. The space
complexity of AC-6 is in O(d) and its time complexity is in O(d2).
AC-7: This is an improvement of AC-6. AC-7 exploits the fact that if (x, a) is
supported by (y, b) then (y, b) is also supported by (x, a). Thus, when search-
ing for a support for (x, a), AC-7 proposes, first, to search for a valid value in
S-list[(x, a)], and every non valid value which is reached is removed from the
S-list. We say that the support is sought by inference. This idea contradicts
an invariant of AC-6: a support found by inference is no longer necessarily the
latest checked value in D(y). Therefore, AC-7 introduces explicitly the notion
of latest check value by the data last associated with every value. AC-7 en-
sures the property: If last[(x, a)] = (y, b) then there is no support (y, a) in D(y)
with a < b. If no support is found by inference, then AC-7 uses an improve-
ment of the AC-6’s method to find a support in D(y). When we want to know
whether (y, b) is a support of (x, a), we can immediately give a negative answer
if last[(y, b)] > (x, a), because in this case we know that (x, a) is a not a support
of (y, b) and so that (y, b) is not a support for (x, a). The properties on which
AC-7 is based are often called bidirectionnalities. Hence, AC-7 is able to save
some checks in the domain in regards to AC-6, while keeping the same space
and time complexity.
AC-Inference: This algorithm uses the S-lists of AC-6 to determine in the same
way the values for which a support must be sought, but the search for a new
support is different from the AC-6’s method. For every value (x, a), two lists
of values are used: P-list[(x, a)] and U-list[(x, a)]. P-list[(x, a)] contains some
supports of (x, a), where as U-list[(x, a)] contains the values for which their com-
patibility with (x, a) has never been tested. When a support is sought for (x, a),
it checks first if there is a valid value in P-list[(x, a)], and every non valid value
that is reached is removed from the P-list. If there is no valid value is found in
the P-list, then the values of U-list[(x, a)] are successively considered until a valid
support is found. Every value of the U-list[(x, a)] which is checked is removed
from the U-list. When a new support is found, then some inference rules can be
applied to deduce new supports and the U-list and P-list are accordingly mod-
ified. For instance if (x, a) is found to be a support for (y, b) then it is inferred
that (y, b) is a support for (x, a). Some other inference rules can be used like
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commutativity or reflexivity (see in [2].) The space and time complexities are in
O(d2) per constraint.
AC-Identical: This is an extension of AC-Inference which exploits the fact that
the same constraint can be defined on different variables. In this case, any knowl-
edge obtain from one constraint is inferred for the other similar constraints.
AC-2000: This is a modification of AC-3. The pending values are the values
of D(x) that have a support in ∆(y). No extra data is used, so it is costly to
compute the pending values. Thus, AC-2000 proposes to use this set of pend-
ing values only if |∆(y)| < 0.2|D(x)|; otherwise D(x) is considered as in AC-3.
Therefore, AC-2000 is the first adaptive AC algorithm.
AC-2001: This algorithm is based on AC-3 and uses the last data of AC-6.
That is, the pending values are the same as for AC-3 and function existValid-

Support is similar as the AC-6’one, except that it is checked if the last value
is valid. This algorithm inherits of the space complexity of AC-6, without using
the S-lists. Note also that this presentation of AC-2001 is original and simpler
than the one given in [3].
AC-3.3: AC-3.3 is an improvement of AC-2001 which associates with every
value (x, a) a counter corresponding to a lower bound of the size of S-list[(x, a)].
The algorithm does not use any S-list, but counters instead. When a support
is sought for, the counter of (x, a) is first tested, if it is strictly greater than 0
then we know that a valid support exists. This support cannot be identified but
we know that there is one. If (y, b) is deleted then the counters of all the values
supported by (y, b) are decremented.

We will not consider AC-8 [4], AC-3d [8], and AC-3.2 [5], because they mainly
improve AC-3 by proposing to propagate the constraint in regards to specific
orderings, and this is not our purpose.

The AC algorithms may use the following data structures:
Support: the current support of (x, a) is denoted by support[(x, a)].
Last: the last value of (x, a) for a constraint C is represented by last[(x, a)]
which is equals to a value of y or nil.
S-List, P-List, U-list: these are classical list data structures. For any list L we
will consider that functions add(L, (x, a)) and remove(L, (x, a)) are available.
These functions respectively add (x, a) to L, and remove (x, a) from L. We will
also assume that these function and the size of a list can be computed in O(1).
Tuple counters: there are represented by counter[(x, a)] which counts the num-
ber of tuples in T (C) containing (x, a) that are valid.
Table: A table is the set of tuples T (C) associated with two functions:
firstTuple(C, y, b) which returns the first tuple of T (C) containing (y, b)
nextTuple(C, x, y, b, a)) which returns the first tuple of T (C) containing (y, b)
and following the tuple ((x, a), (y, b). These functions return nil when no such
specified tuple exists.

Now, we propose to identify the different concepts used by the existing algo-
rithms instead of having one function per algorithm and one parameter corre-
sponding to each specific algorithm.
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Algorithm 3: Pending values selection depending on pvMode (b is a local
data.)

pvMode =pvD

firstPendingValue(C, x, y,∆(y)): return first(D(x))
nextPendingValue(C, x, y,∆(y), a): return next(D(x), a)

pvMode =pv∆s

firstPendingValue(C, x, y,∆(y)): value
b←first(∆(y))
return traverseS-list(C, x, y,∆(y))

nextPendingValue(C, x, y,∆(y), a): value
return traverseS-list(C, x, y,∆(y))

traverseS-list(C, x, y,∆(y)): value
while (y, b) 6= nil do

(x, a)←seekValidSupportedValue(C, y, b)
if (x, a) 6= nil then return (x, a)
b←next(∆(y), b)

return nil

pvMode =pv∆t

firstPendingValue(C, x, y,∆(y)): value
b←first(∆(y))
(x, a)←firstTuple(C, y, b)
return traverseTuple(C, x, y,∆(y), a)

nextPendingValue(C, x, y,∆(y), a): value
a←nextTuple(C, y, b, a)
return traverseTuple(C, x, y,∆(y), a)

traverseTuple(C, x, y,∆(y), a): C-value
while (y, b) 6= nil do

while (x, a) 6= nil do
if a ∈ D(x) then return (x, a)
(x, a)←nextTuple(C, x, y, b, a)

b←next(∆(y), δa)
(x, a)←firstTuple(C, x, y, δa)

return nil

pvMode =pv∆c

firstPendingValue(C, y,∆(y)): value
a←first(D(x))
return seekCompatible(C, x, y,∆(y), a)

nextPendingValue(C, y,∆(y), a): value
a←next(D(x), a)
return seekCompatible(C, x, y,∆(y), a)

seekCompatible(C, x, y,∆(y), a): value
while (x, a) 6= nil do

for each b ∈ ∆(y) do
if ((x, a), (y, b)) ∈ T (C) then return (x, a)

(x, a)←next(D(x), a)

return nil

pvMode =pvG: example of generic function: < constraint
firstPendingValue(C, y,∆(y)): value

return next(D(x),max(D(y))− 1)

nextPendingValue(C, y,∆(y), a): return next(D(x), a)
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Thus, we will have a configurable algorithm from which every AC algorithm
could be obtain by combining some parameters, each of them corresponding to
a concept.

4 Pending values

Finding efficiently a small set of pending values is difficult because pending values
sets deal with two different notions at the same time: validity and support. Thus,
several set of pending values have been considered. We identify four sets:

1. The values of D(x) (like in AC-3, AC-2001, AC-3.3). This set is denoted by
pvD.

2. The valid values currently supported by the values of ∆(y), that is the valid
values in the S-lists of ∆(y). This set is used by AC-6, AC-7, AC-Inference,
AC-Identical. It is denoted by pv∆s.

3. The values that belong to a tuple containing a value of ∆(y). A value is
pending as many times as it is contained in such a tuple. AC-4 uses this set,
and it is denoted by pv∆t.

4. The values of D(x) compatible with at least one value of ∆(y), as in AC-2000.
This set is denoted by pv∆c.

Since we aim to have a generic algorithm, we propose to define a fifth type: pvG

which represents any function given by the user. For instance, for x < y only the
modifications of the maximum value of D(y) can lead to new deletions. Thus,
the pending values are the values of D(x) that are greater than the maximum
value of D(y).

Algorithm 3 is a possible implementation of the computation of pending
values. Depending on the set of pending values, the algorithm traverses a par-
ticular set. Note that some functions require ”internal data” (a data whose
value is stored). We assume thatfirst(D(x)) returns the first value of D(x) and
next(D(x), a) returns the first value of D(x) strictly greater than a. Function
seekValidSupportedValue(C, x, a) returns a valid supported value belonging
to the S-list[(y, b)].

Algorithm 4: Function seekValidSupportedValue

seekValidSupportedValue(C, x, a) : value
for each value (y, b) ∈ S-list[(x, a)] do

if b ∈ D(y) then return (y, b)
remove(S-list[(x, a)], y, b)

return nil



A Configurable, Generic and Adaptive Arc Consistency Algorithm 147

Algorithm 5: Function existValidSupport

existValidSupport(C, x, a, y, sMode): boolean
if slist then remove(S-list[support[(x, a)]], (x, a))
(y, b)← nil
if last then if last[(x, a)] ∈ D(y) then (y, b)← last[(x, a)])
if inf and (y, b) = nil then

(y, b)← seekValidSupportedValue(C, x, a)

if (y, b) = nil then (y, b)← sMode.seekSupport(C, x, a, y)
if slist then if (y, b) 6= nil then add(S-list[(y, b)], (x, a))
if (y, b) 6= nil then support[(x, a)]← (y, b)
return ((y, b) 6= nil)

5 Existence of a valid support

This function also differentiates the existing algorithms. Almost each algorithm
uses a different method. We can identify eight ways to determine whether a
support exists for (x, a):

1. Check in the domain from scratch (AC-3, AC-2000.)
2. Check if the last value is still valid and if not check in the domain from

the last value (AC-2001.)
3. Check in the domain from the last value (AC-6.)
4. Test if a support can be found in S-list[(x, a)], then check in the domain

from the last value. Wen searching in the domain uses the fact that last values
are available to avoid explicit compatibility checks (AC-7.)

5. Check if there is a valid support in P-list[(x, a)], if there is none check
the compatibility with the valid values of U-list[(x, a)]. When some compatibility
checks are made, then deduce the results of some other compatibility checks and
update accordingly some U-lists and P-lists (AC-Inference, AC-identical.)

6. Decrement the counter storing the number of valid supports and test if
is strictly greater than 0 (AC-4.)

7. A specific function dedicated to the constraint is used.
8. Use of counters storing a lower bound of the size of the S-list of (x, a),

and check in the domain from the last value (AC-3.3.)
The last point deserves a particular attention. The time complexity of using

a counter of the number of elements in a list is the same as the management of
the list. Moreover, AC-3.3 implies that the counters are immediately updated
when a value is removed, which is not the case with AC-7, and the lazy approach
used by AC-7 to maintain the consistency of the S-list has been proved more
efficient. Therefore, we will prefer the explicit use of S-lists to the use of a lower
bound of the size of the S-lists of AC-3.3.

We propose to consider the following parameters:
• last: the search for a valid support is restarting from the last value. The

last value is also used to avoid some negative checks (AC-6, AC-7, AC-Inference,
AC-Identical, AC-2001, AC-3.3.)
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Algorithm 6: Functions seeking for a valid support
sMode =sD

seekSupport(C, x, a, y) : value
b← first(D(y))
if last then

b←next(D(y),last[(x, a)])
while b 6= nil do

if last[(y, b)] ≤ (x, a) and ((x, a), (y, b)) ∈ T (C) then
last[(x, a)]← (y, b)
return (y, b)

b←next(D(y), b)

else
while b 6= nil do

if ((x, a), (y, b)) ∈ T (C) then return (y, b)
b←next(D(y), b)

return nil

sMode =sC

seekSupport(C, x, a, y) : value
counter[(x, a)]← counter[(x, a)]− 1
if counter[(x, a)] = 0 then return nil
else return (y,first(D(y)))

sMode =sT

seekSupport(C, x, a, y) : value
for each (y, b) ∈ P-list[(x, a)] do

remove(P-list[(x, a)], (y, b))
if b ∈ D(y) then return (y, b)

for each (y, b) ∈ U-list[(x, a)] do
remove(U-list[(x, a)], (y, b))
remove(U-list[(y, b)], (x, a))
if ((x, a), (y, b)) ∈ T (C) then

add(P-list[(y, b)], (x, a))
if b ∈ D(y) then return (y, b)

return nil

sMode =sGen example of generic function: < constraint
seekSupport(C, x, a, y) : return false
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• inf: the search for a valid support is first done by searching for a valid
supported value in the S-list (AC-7, AC-3.3.)

• slist: this parameter means that the S-lists are used. It is implies by inf and
pv∆s (AC-6, AC-7, AC-Inference, AC-Identical, AC-3.3.)

• sD: the search for a support is made by testing the compatibility between
(x, a) and the values in D(y) (AC-3, AC-6, AC-7, AC-2000, AC-2001, AC-3.3.)

• sC: the search for a valid support consists of decrementing the counter of
valid tuples and checking if it is > 0 (AC-4.)

• sT: the search for a valid support is made by testing the validity of the
values of P-list[(x, a)] and by checking if there is a value in U-list[(x, a)] which
is valid and compatible with (x, a) (AC-Inference, AC-Identical.)

• sGen: the search for a valid support is defined by a function provided by
the user and dedicated to the constraint. We present an example for the < con-
straint.
From these parameters we can now propose a possible code for Function exist-

ValidSupport of CAC algorithm (see Algorithm 5.) Possible instantiations of
Function seekSupport are given by Algorithm 6. An example is also given for
constraint <.

6 Analysis of different methods

The main issue of AC algorithms is to deal with two different notions: support
and validity. It is difficult to handle these two notions at the same time. Thus,
the algorithms usually privilegiate one notion:

• When constructing the pending values set, pvD algorithms totally ignores
the notion of support. The other algorithms try to combine the two notions: pvDc

algorithms consider first the validity, whereas pv∆t algorithms deal first with all
supports. And, pv∆s algorithms traverse the current supported values and check
the validity.

• When searching for a new support, sD algorithms consider the valid values,
and the check if there are support, whereas sT algorithms traverse the supports
and check for their validity.

7 Nomenclature

From the different concepts we have identified we can propose a new nomencla-
ture for the AC algorithms. Until now, the naming used the prefix ”AC-” followed
by a number or date. Excepted AC-Inference or AC-Identical which have tried
to express a little bit some ideas of the algorithms, it is clearly impossible to
understand the specificity of each algorithm from their name.

The nomenclature we propose uses CAC as prefix which stands for Config-
urable Arc Consistency algorithm. Then the combinations of parameters cor-
responding to the AC algorithm are added to the CAC prefix. For instance,
CAC-pvD-sD means that the pending values are the values of D(x) and that a
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new support is sought in the domain by checking the compatibilities between
values. This is exactly the description of AC-3. For adaptive algorithm a ”/” is
used to differentiate the possibilities: AC-2000 is renamed CAC-pv∆c/pvD-sD.
We can describe all the existing algorithms:

name new name
AC-3 CAC-pvD-sD
AC-4 CAC-pv∆t-sC
AC-6 CAC-pv∆s-last-sD
AC-7 CAC-pv∆s-last-inf-sD
AC-Inference or AC-Identical CAC-pv∆s-sT
AC-2000 CAC-pv∆c/pvD-sD
AC-2001 CAC-pvD-last-sD
AC-3.3 CAC-pvD-last-inf-sD

Note that CAC-pv∆s-last-sD is a slight improvement of AC-6, because some neg-

ative checks are avoided.

8 Adaptive algorithm

The advantage of adaptive algorithm is to avoid some pathological cases of each
algorithm. A property which exactly differentiates AC-2001 and AC-6 in regards
to the number of operations they need to establish arc consistency has been given
in [3]:

Property 2 The number of values that are considered to find the pending values
in:

• a pvD oriented algorithm is #(pvD) = |D(x)|.
• a pv∆s oriented algorithm is

#(pv∆s) = |∆(y)|+
∑
b∈∆(y) |S-list[(y, b)]|

These two numbers are sufficient to differentiate AC-2001 and AC-6 because
they use both the same algorithm to find a support for a value. This is clearly
shown by their new names that are respectively CAC-pvD-last-sD and CAC-
pv∆s-last-sD. So, by considering the method to find the pending values that
studies the smallest number of values we can define an algorithm which is better
than any of two previous ones. We can use first a pv∆s oriented algorithm and
then switch to a pvD one and conversely.

Unfortunately, it is difficult to quickly compute #(pv∆s). The sum, indeed,
needs to consider every value of the delta domain independently. However, we
immediately have: #(pv∆s) ≥ 2|∆(y)|, and |∆(y)| can be incrementally main-
tained, thus we can consider that we know its value in O(1). Algorithm 7 is a
possible implementation of the functions selecting sMode and pvMode that is
used by Algorithm 2 (AC-2000 is taken into account in this function.) Switch-
ing from a type of algorithm to another one can also cause some other problems,
because the different types of algorithms do not use the same data structures.
When switching from an algorithm using a data structure to an algorithm that
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Algorithm 7: Selection of pvMode and sMode
selectPendingValueMode(C,x,y,∆(y),pvMode):pvMode

if pvMode=pv∆c/pvD then
if |∆(y)| < 0.2|D(x)| then return pv∆c

return pvD

if pvMode=pvD/pv∆s then
if |D(x)| < 2.|∆(y)| then return pvD

if |D(x)|<|∆(y)|+
∑

b∈∆(y)
|S-list[(y, b)]| then return pvD

return pv∆s

return pvMode

selectExistSupportMode(C, x, a, sMode) : sMode
if sMode=sD/sT then

if |D(x)| < |P-list[(x, a)]| then return sD

return sT

return sMode

does not use that data structure we have two possibilities: either the data struc-
ture is updated after switching, or it is systematically updated even if it is not
used. For the S-lists, the cost to maintain them is O(1) per deletion or addition
therefore the second solution is simpler. For the U-lists and the P-lists there is
no problem because they do not need to be updated.

We have seen that it is possible to change the way the pending values are
computed. Two other possibilities are: use ot not the inf parameter, and switch
from sD and sT and conversely. However, it is much more complicated to find
a good criteria of selection, because the lists are modified when using inf or sT.
Thus, at a given moment the size of the list can be not in favor of one method
but becomes strongly in favor of this method after its application. After some
experiments it appears that the switch from inf to no inf does not change anything,
and it appears that it is interesting to switch from sD to sT and conversely. If the
size of the domain is smaller than the size of the P-list then sD is selected, else
sT is selected. (see Algorithm 7.)

9 Experiments

We propose a comparisons of the MAC version of the algorithms on the well-
known RLFAPs benchmarks. We give the results only for instances SCEN#1,
SCEN#11, SCEN#8 because the results are quite representative (and also due
to the lack of space). No specific ordering are consider for the constraints (all
the algorithms consider the same ordering). For each algorithm we give the ratio
between the time needed by the algorithm to solve the problem over the time
needed by the best algorithm:
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pv∆t •
pv∆c •
pv∆s • • • • • • •
pvD • • • • • • • •
last • • • • • • • •
inf • • •
sD • • • • • • • • •
sC •
sT • • •

#1 19.4 4.2 3.7 2.8 2.4 3.7 3.7 3.2 3.2 1.5 1.1 1
#11 15 7 6.8 4 3.3 2.6 2.5 1.8 1.8 1.7 1.1 1
#8 59.3 68.2 67.3 50 48 21 19 4 3 4 1.1 1

This results show clearly that the adaptive algorithm performs better than
non adaptive and that the sT algorithms are better than the others.

10 Conclusion

We have presented CAC a new configurable, generic and adaptive algorithm,
which is able to represent all existing algorithms. We have clearly differentiate
all the existing algorithms thanks to the identification a the most important
concepts. We have proposed new combination of concepts that perform well in
practice as shown by the experimental results we gave.
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Abstract. The pioneering paper H. Schichl and A. Neumaier [1]
has founded the fundamentals of interval analysis on DAGs for global
optimization, including a fundamental of constraint propagation. In this
paper, we extend the constraint propagation technique for solving nu-
merical constraint satisfaction problems. In particular, we propose an
advanced constraint propagation technique, which makes the constraint
propagation practical and efficient, and a method to coordinate con-
straint propagation and exhaustive search, which uses a single DAG for
each problem. The experiments carried out on various problems show
that the new approach outperforms previously available propagation
techniques by an order of magnitude or more in speed, while being
roughly the same in quality measures.

1 Introduction

Many real-world problems require solving numerical constraint satisfaction prob-
lems (NCSPs). An NCSP is a triplet (V, C,D) which consists of a finite set V
of variables taking their values in domains D over the reals and subject to a
finite set C of numerical constraints. A tuple of values assigned to the variables
such that all the constraints are satisfied is called a solution. The set of all the
solutions is called the solution set. In practice, numerical constraints are often
equalities or inequalities expressed in factorable form, that is, they can be repre-
sented by elementary functions such as +, −, ×, ÷, log, exp, sin, cos,. . . In other
words, such an NCSP can be expressed as follows

F (x) ∈ b, x ∈ x (1)

where F : Rn → R
m is a factorable function, x is a vector of n real variables, x

and b are interval vectors of size n and m respectively.
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Many solution techniques have been proposed in Constraint Programming
and Mathematical Programming to solve NCSPs. To achieve full rigor when
dealing with floating-point numbers, most solution techniques have been based
on interval arithmetic or its variants. In the last ten years, there have been
elaborate uses of interval arithmetic to devise the notions of inclusion test and
contractor as described in the book Jaulin et al. [2]. An inclusion test is to
check the inclusion of variable domains in the solution set. A contractor, pos-
sible variants are narrowing operators [3, 4] and contracting operators [5–7], is
a method to narrow the variable domains such that no solution is lost. Vari-
ous basic inclusion tests and contractors have been described in [2]. Recently,
there has been a new approach, called interval constraint propagation, which
associates constraint propagation/local consistency techniques in artificial intel-
ligence with interval analytic methods to devise advanced contractors, e.g., the
so-called forward-backward contractor [4, 2]. A representation of the solutions can
be often computed by interleaving inclusion tests or contractors with exhaustive
search; the solution techniques often use bisection search to solve the problems
exhaustively. However, advanced search techniques (see Silaghi et al. [6] and
Vu et al. [7]) have also been proposed to improve the search performance for
problems with a continuum of solutions (e.g., inequalities), while maintaining
the same performance for problems with isolated solutions (e.g., equalities).

Most recently, a fundamental framework for interval analysis on DAGs has
been proposed by Schichl & Neumaier [1], which includes an extension of
forward-backward propagation for working on DAGs. In order to exploit the
framework and make it useful for more applications, in this paper we extend the
DAG-based constraint propagation technique for solving NCSPs. In Section 3,
we describe the DAG representation of problems and new extensions of the for-
ward evaluation and the backward propagation. In Section 4, we propose an
advanced constraint propagation technique, which makes the above framework
for constraint propagation efficient and practical, and a method to coordinate
constraint propagation and exhaustive search using a single DAG for each prob-
lem. Finally, as one can see in Section 5, the experiments carried out on various
problems show that the new approach outperforms previously available propaga-
tion techniques by an order of magnitude or more in speed, while being roughly
the same in quality measures.

2 Background

2.1 Interval Arithmetic

Interval arithmetic is an extension of real arithmetic defined on the set of real in-
tervals, rather than the set of real numbers. According to Kearfott [8], a form
of interval arithmetic perhaps first appeared in 1924 in Burkill [9]. Modern
development of interval arithmetic began with R. E. Moore’s dissertation [10].
Fundamentally, if x and y are two real intervals, then the four elementary op-
erations for idealized interval arithmetic obey the rule: x � y = {x � y | x ∈
x, y ∈ y},∀� ∈ {+,−,×,÷}. Thus, the ranges of the four elementary interval
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arithmetic operations are exactly the ranges of the their real-valued counter-
parts. Although this rule characterizes these operations mathematically, interval
arithmetic’s usefulness is due to the operational definitions based on interval
bounds [11]. For example, let x = [x, x] and y = [y, y], we define

x + y = [x+ y, x+ y]
x− y = [x− y, x− y]
x× y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]
x÷ y = x× 1/y if 0 /∈ y, where 1/y = [1/y, 1/y]

Moreover, if such operations are composed, bounds on the ranges of factorable
real functions can be obtained.

The finite nature of computers precludes an exact representation of the reals.
In practice, the real set, R, is approximated by a finite set F∞ = F∪{−∞,+∞},
where F is the set of floating-point numbers. The set of real intervals is then
approximated by the set I of intervals with bounds in F∞. The power of inter-
val arithmetic lies in its implementation on computers. In particular, outwardly
rounded interval arithmetic allows rigorous enclosures for the ranges of oper-
ations and functions. This makes a qualitative difference in scientific compu-
tations, since the results are now intervals in which the exact result must lie.
Readers are referred to [12, 11, 2] for more details on basic interval methods.

2.2 Interval Constraint Propagation

The tree representation of constraint systems has been proposed in Ben-

hamou et al. [4], therein each factorable constraint r(t1, . . . , tk) is represented by
an attribute tree whose root node represents the k-ary relation symbol r, and the
terms ti are composed of nodes representing either a variable, a constant, or an
elementary operation. Moreover, each node but the root is associated with two
intervals, one for forward evaluation and the other for backward propagation.

The constraint propagation algorithm HC4 in [4], also referred to as the
forward-backward contractor (see [2]), is based on the following two main pro-
cesses. The first one is the forward evaluation which is recursively performed by
a post-order traversal of the tree representation from leaves to roots in order
to evaluate the ranges of sub-expressions represented by the tree nodes using
natural interval extension. The second one is the backward propagation on the
tree representation which is recursively performed by a pre-order traversal of the
tree representation of each constraint from root to leaves in order to prune the
corresponding interval associated with each node of the tree using the projection
narrowing operator associated with the father of the node. Readers are referred
to [4] for more details.

3 Numerical Constraint Propagation on DAGs

We will consider a constraint system of the form (1); the constraints can be
equations or inequalities depending on whether the corresponding components
of b, called constraint ranges, are thin intervals (i.e. of the form [bi, bi]).
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Fig. 1. The DAG representation (a) before and (b) after performing node ordering and
recursive forward evaluation

Example 1. Consider the following parametric constraint system
√
x+ 2

√
xy + 2

√
y ≤ 7,

x2√y − 2xy + 3
√
y ∈ [p, q],

x ∈ [1, 16], y ∈ [1, 16].
(2)

The first constraint is an inequality with constraint range [−∞, 7]. The second
constraint can be either an equation or an inequality depending on the parame-
ters (p, q). For instance, the second constraint is an equation if (p, q) = (0, 0) and
an inequality if (p, q) = (0, 2). Throughout this paper, we will use (p, q) = (0, 2).

3.1 DAG Representation

We assume that readers are already familiar with fundamental concepts in graph
theory like directed acyclic graph/multigraph. In the representation of the NCSPs
we will use directed acyclic multigraph with ordered edges (for the definition
readers are referred to [1] and references therein); for short, this is a directed
acyclic multigraph, in which the incoming and outgoing edges at every node are
totally ordered.

Theorem 1. For every directed acyclic multigraph (V,E, f) there exists a total
order � on the vertices V such that ∀v ∈ V : if u is an ancestor of v, then v � u.

We use a directed acyclic multigraph, whose edges are totally ordered, to-
gether with an ordering on the vertices, as obtained in Theorem 1, to represent
the constraint system (1), for short we call it a Directed Acyclic Graph (DAG).
In that DAG representation, every node represents an elementary operation such
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as +, ×, ÷, log, exp, . . . and every edge represents the computational flow as-
sociated with a coefficient. In practice, we have to use multigraphs instead of
simple graphs for the representation because some special operations can take
the same input more than once, for example, when the expression xx is repre-
sented by the elementary power operation xy. The ordering of edges is needed
for non-commutative operations like the division, but not for commutative op-
erations. For convenience, a virtual ground node is added to the DAG to be the
parent of all the nodes representing the constraints. In fact, the ground node
can be interpreted as the logical ‘AND’ operation. Each node N in the DAG
is associated with an interval, denoted I(N), in which the exact range of the
corresponding sub-expression must lie.
Example 2. The DAG representation of (2) is depicted in Figure 1. The sequence
of nodes {N1,N2, . . . ,N10} is an ordering of the nodes that satisfies Theorem 1.

3.2 Forward Evaluation and Backward Propagation on DAGs

In practice, we often see functions of the form f : D → R
m, where D ⊂ Rn.

Quite often, in range analysis we need f to accept input from the domain Rn,
so we have to find a proper way to extend functions in a consistent way.

Definition 1 (Extended Function). Let f : D → R
m be a function, where

D ⊆ Rn, and S a subset of 2R, the power set of R. A function g : Rn → R
m∪Sm

is called an S-extended function of f if

g(x) =
{
f(x) if x ∈ D,
y ∈ Sm otherwise (3)

It is to easy see that there is only one S-extended function if S has only one
element, for instance, when S is either {∅} or {R}.
Example 3. The domain of the standard division x/y is D÷ = {(x, y) ∈ R2 | y 6=
0}. The unique {∅}-extended function of the standard division is defined by

x÷∅ y =
{
x/y if y 6= 0,
∅ otherwise (4)

The unique {R}-extended function of the standard division is defined by

x÷R y =
{
x/y if y 6= 0,
R otherwise (5)

The following is a {∅,R}-extended function of the standard division:

x÷? y =

x/y if y 6= 0,
∅ if x 6= 0, y = 0,
R otherwise

(6)

In the next definition, we extend the concept of inclusion function of [2].

Definition 2 (Inclusion Function). Let S be a subset of 2R, and f : Rn →
R
m ∪ Sm an S-extended function of a function ϕ : D → R

m, where D ⊆ Rn. A
function [f ] : In → I

m is called an inclusion function of f and of ϕ if ∀x ∈ In :
f(x) ⊆ [f ](x), where f(x) ≡ {f(x) | x ∈ x ∩D} ∪

⋃
x∈x\D f(x).3

3 The set union of vectors is performed in component-wise fashion.
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Example 4. Let x = [x, x],y = [y, y] . We give as example three natural inclusion
functions for the divisions defined by (4), (5) and (6) respectively.

x[÷∅]y =



∅ if y = [0, 0],
[0, 0] else if x = [0, 0],
x÷ y else if 0 /∈ y,
[x/y,+∞] else if x ≥ 0 ∧ y = 0,
[−∞, x/y] else if x ≥ 0 ∧ y = 0,
[−∞, x/y] else if x ≤ 0 ∧ y = 0,
[x/y,+∞] else if x ≤ 0 ∧ y = 0,
[−∞,+∞] otherwise

(7)

x[÷R]y =
{

x÷ y if 0 /∈ y,
[−∞,+∞] otherwise (8)

x[÷?]y =
{

x[÷∅]y else if 0 /∈ x ∨ 0 /∈ y,
[−∞,+∞] otherwise (9)

It is easy to see that ∀x,y ∈ I : x[÷∅]y ⊆ x[÷?]y ⊆ x[÷R]y. Unfortunately, some
interval implementations use the division [÷R], while it is safe to use the division
[÷∅] in some computations such as forward evaluation, as described hereafter.

The natural inclusion function of f (see [2]), denoted by f , is an example of
an inclusion function: in the factorable form of f each real variable is replaced
by an interval variable and each operation is replaced by its interval counterpart.

In the DAG representation of (1), let N be a node which is not the ground
node and has k children {Ci}ki=1. The elementary operation represented by N
is a function f : Df → R, where Df ⊆ Rk. Hence, the relationship between N
and its children can be written as N = f(C1, . . . ,Ck).4 Let [f ] be an inclusion
function of the {∅}-extended function of f . The forward evaluation at node N
using the inclusion function [f ] is defined as follows

FE(N, [f ]) ≡ {I(N) := I(N) ∩ [f ](I(C1), . . . , I(Ck))} (10)

The aim of forward evaluation is to evaluate the ranges of nodes based on their
children’s ranges.

The aim of the backward propagation is to prune the intervals associated with
children based on the constraint range of their parent. In other words, for each
child Ci the backward propagation evaluates the i-th projection of the relation
N = f(C1, . . . ,Ck) on the variable represented by Ci. It is then called the i-
th backward propagation at N and denoted by BP(N,Ci). For convenience, we
define the following sequence as the backward propagation at node N

BP(N) = {BP(N,Ci)}ki=1 (11)

Although the projection of relations is expensive in general, an evaluation
of the projection of elementary operations can be obtained at low cost. Indeed,
suppose that from the relation N = f(C1, . . . ,Ck) we can infer an equivalent
4 Where we abuse the notation of a node for the real variable represented by it.
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relation Ci = gi(N, {Cj}kj=1;j 6=i) for some i ∈ {1, . . . , k}, where gi is a func-
tion from R

k to R. Let [gi] be an inclusion function of gi. The i-th backward
propagation can then be obtained as follows

BP(N,Ci) ≡ {I(Ci) := I(Ci) ∩ [gi](I(N), {I(Cj)}kj=1;j 6=i)} (12)

In case that we cannot infer such a function gi, more complicated rules to
obtain the i-th projection of the relation N = f(C1, . . . ,Ck) have to be con-
structed if the cost is low, alternatively the relation can be ignored. Fortunately,
we can evaluate those projections for most elementary operations at low cost.

Definition 3. Let f be the elementary operation represented by N. We will use
the notation � to mean that either the division [÷?] or the division [÷R] can be
used at the place the notation � appears. The rules for the forward evaluation
and the backward propagation are given as follows:

– if f is a univariate function such as sqr, sqrt, exp, log,. . . we can define

FE(N, [f ]) ≡ {I(N) := I(N) ∩ [f ](I(C1))}
BP(N,C1) ≡ {I(C1) := I(C1) ∩ [f−1](I(N))} (f−1(.) is the pre-image)

– if f is defined by f(x1, . . . , xk) = α+
∑k
i=1 αixi, we define

FE(N, f) ≡ {I(N) := I(N) ∩ (α+
k∑
i=1

αiI(Ci))}

BP(N,Ci) ≡ {I(Ci) := I(Ci) ∩
1
αi

(I(N)− α−
k∑

j=1;j 6=i

αjI(Cj))} (i = 1, ..., k)

– if f is defined by f(x1, . . . , xk) = α
∏k
i=1 xi, we define

FE(N, f) ≡ {I(N) := I(N) ∩ α
k∏
i=1

I(Ci)}

BP(N,Ci) ≡ {I(Ci) := I(Ci) ∩ (I(N)� (α
k∏

j=1;j 6=i

I(Cj)))} (i = 1, . . . , k)

– if f is defined by f(x, y) = x/y, i.e. k = 2, we define

FE(N, f) ≡ {I(N) := I(N) ∩ f(I(C1), I(C2))}, where f ∈ {[÷∅], [÷?], [÷R]}
BP(N,C1) ≡ {I(C1) := I(C1) ∩ (I(N)× I(C2))}
BP(N,C2) ≡ {I(C2) := I(C2) ∩ (I(C1)� I(N))}

4 Coordinating Constraint Propagation and Search

We focus on solving techniques following the branch-and-prune framework, where
the solving process is performed by repeatedly interleaving pruning techniques,
which use local techniques such as constraint propagation to reduce the variable
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procedure NodeOccurrences(in : N; out : Voc)
for each child C of node N do

Voc[C] := Voc[C] + 1;
NodeOccurrences(C, Voc);

end-for
end

Fig. 2. If traversing all active constraints, the NodeOccurrences procedure counts the
number of occurrences of each node in the factorable form of the active constraints

domains, with branching techniques, which split a problem into subproblems.
Each subproblem constructed in the solving process usually consists of a subset
of constraints, hereafter called active constraints, which need to be satisfied, and
sub-domains of the initial variable domains. Therefore, solving techniques that
use the DAG representation need to create such a representation for each sub-
problem. The simplest way is to build a new DAG to represent each subproblem.
However, the total cost of creating such DAGs for the whole solving process is
probably high. As an alternative, we propose in Section 4.1 to modify a piece
of information attached to the initial DAG in order to make the initial DAG
interpreted as the DAG representation of a subproblem without the necessity of
creating new DAGs.

4.1 Partial Forward-Backward Propagation on DAGs

Partial DAG Representation. In order to represent the set of active con-
straints without having to create new DAGs, we use a vector, Voc, whose size is
equal to the number of nodes of the DAG representing the initial problem. For
each node N of the DAG, we use the entry Voc[N] to count the number of occur-
rences of N in the factorable form of the active constraints. In Figure 2, we give
a recursive procedure, called NodeOccurrences, to compute such a vector. It is
easy to see that Voc[N] = 0 if and only if N is not in the representation of the
active constraints. Therefore, by combining the initial DAG with the vector Voc,
we have a so-called partial DAG representation for each subproblem. In the lat-
ter computations, we can use the partial DAG representation in a way similar to
using the (full) DAG representation, except that we ignore all nodes correspond-
ing to zeros of the vector Voc. An example of the partial DAG representation for
the problem (2) is depicted in Figure 3.

Forward-Backward Propagation on DAGs. Inspired by the original for-
ward evaluation and backward propagation in [4], we devise a new algorithm for
numerical constraint propagation, that is based on partial DAG representation
instead of tree representation. We call the new algorithm “Forward-Backward
Propagation on a DAG” and denote it by FBPD. In Figure 4, we present the
main steps of FBPD. In the next paragraphs, we describe in detail the procedures
that are not made explicit in Figure 4.

Recursive Forward Evaluation. Similar to the HC4 algorithm, we perform a re-
cursive forward evaluation at the initialization phase (lines 01-08) to evaluate the
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Fig. 3. The partial DAG representation of the problem (2) when (a) the first constraint,
or (b) the second constraint is the unique active constraint. The grey nodes are not
counted, hence are ignored in computations. The dotted edges are redundant. The node
levels are not updated

ranges of the nodes in the partial DAG representation. In Figure 5, we give the
details of a procedure, named ForwardEvaluation, for such a recursive eval-
uation. The results of the recursive forward evaluation of (2) are depicted in
Figure 1b and Figure 3 for the case that both constraints are active and the case
that only one constraint is active, respectively.

Get the Next Node for Further Processing. Like with the HC4 algorithm [4], in
the main body of the FBPD algorithm there are two principal processes: forward
evaluation and backward propagation. However, unlike the HC4 algorithm, the
FBPD algorithm performs these processes for a single node instead of all the
nodes at once. Therefore, in the FBPD algorithm, the choice of the next node for
further processing can be made adaptively based on the results of the previous
processes. The algorithm uses two waiting lists to store the nodes waiting for fur-
ther processing. The first list, Lf , is a list of nodes that is scheduled for forward
evaluation, that is, for evaluating its range based on its children’s ranges. The
second list, Lb, is a list of nodes that is waiting for backward propagation, that
is, for pruning its children’s ranges based on its range. In general, when Lf con-
tains many nodes, the nodes should be sorted such that the forward evaluation
of a node is performed after the forward evaluation of its children. Analogously,
the nodes in Lb should be sorted such that the backward propagation at a node
is performed before the backward propagation at its children. The NodeLevel
procedure in Figure 6 assigns to each node a node level such that the node level
of an arbitrary node is smaller than the node levels of its descendants. We then
sort the nodes of Lb and Lf in ascending order and descending order of node
levels, respectively, to meet the above requirements. The getNextNode function
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/* D(G) : a DAG with the ground G; C : active constraints; D: variable domains */
algorithm FBPD(in : D(G), C; in/out : D)
01: Reset the node ranges of D(G) to the ranges in either D, C, or [−∞,+∞];
02: Lf := ∅; Lb := ∅; Voc := (0, . . . , 0); Vch := (0, . . . , 0);
03: Vlvl := (0, . . . , 0); /* this can be made optional together with line 06 */
04: for each node C representing an active constraint in C do
05: NodeOccurrences(C, Voc);
06: NodeLevel(C, Vlvl); /* this can be made optional */
07: ForwardEvaluation(C, Vch,Lb);
08: end-for
09: while Lb 6= ∅ ∨ Lf 6= ∅ do
10: N := getNextNode(Lb,Lf );
11: if I(N) was taken from Lb then
12: for each child C of N do
13: BP(N,C); /* see the description of (12) */
14: if I(C) = ∅ then return infeasible;
15: if I(C) changed enough for forward evaluation then
16: for each P ∈ parents(C) \ {N,G} do
17: if Voc[P] > 0 then put P into Lf ;
18: end-if
19: if I(C) changed enough for backward propagation then
20: Put C into Lb;
21: end-for
22: else /* N was taken from Lf */
23: FE(N, [f ]); /* f is the operator at N, see the description of (10) */
24: if I(N) = ∅ then return infeasible;
25: if I(N) changed enough for forward evaluation then
26: for each P ∈ parents(N) \ {G} do
27: if Voc[P] > 0 then put P into Lf ;
28: end-if
29: if I(N) changed enough for backward propagation then
30: Put N into Lb;
31: end-if
32: end-while
33: Update D with the ranges of the nodes representing the variables;
end

Fig. 4. The Partial Forward-Backward Propagation on a DAG (FBPD) algorithm

procedure ForwardEvaluation(in : N; in/out : Vch,Lb)
if N is a leaf or Vch[N] = 1 then return;
for each child C of node N do ForwardEvaluation(C, Vch,Lb);
if N = G then return;
FE(N, [f ]); /* f is the operator at N, similar to line 23 in Figure 4 */
Vch[N] := 1; /* the range of this node is cached */
if I(N) = ∅ then return infeasible;
if I(N) changed enough for backward propagation then put C into Lb;

end

Fig. 5. This is a procedure to do a recursive forward evaluation
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procedure NodeLevel(in : N; out : Vlvl)
for each child C of node N do

Vlvl[C] := max{Vlvl[C], Vlvl[N] + 1};
NodeLevel(C, Vlvl);

end-for
end

Fig. 6. This is a procedure assigning a node level to each node in a DAG.
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Fig. 7. The node levels are updated at each call to the FBPD algorithm

at line 10 in Figure 4 chooses one of the two nodes at the beginning of Lb and
Lf . The strategy that we use in our implementation is “backward propagation
first”, that is, taking the node at the beginning of Lb whenever it is available.

The call to the NodeLevel procedure at line 06 in Figure 4 can be made
optional as follows. The first option allows invoking NodeLevel only at the first
call to FBPD. The node levels of the initial DAG still meet the requirements on
the ordering of the waiting lists. The numbers in brackets next to the node names
in Figure 3 are the node levels computed for the initial DAG. Figure 7 illustrates
the second option that allows invoking NodeLevel at line 06 in Figure 4 every
time FBPD is invoked.

When Are the Changes of Node Ranges Enough? For simplicity, in Figure 4
(lines 15, 19, 25, 29) we only briefly present the procedures to check whether the
node ranges have been changed enough for further processing. Hereafter, we will
detail them. Let denote by M the node C at line 13 or the node N at line 23.
In Figure 4, the forward evaluation at line 23 and the backward propagation at
line 13 are of the form

I(M) := I(M) ∩ y (13)

where y is the interval computed by the forward evaluation or backward propa-
gation before intersecting with I(M).
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Let Wold and Wnew be the widths of I(M) and I(M) ∩ y, respectively. In
practice, the change of I(M) after performing (13) is considered enough for
doing the forward evaluation at its parents if the conditions Wnew < rfWold

and Wnew + df ≤ Wold hold, where rf is a real number in (0, 1) and df is
a small positive real number. The numbers rf and df can be predefined or
dynamically computed. Similarly, the change of I(M) after performing (13) is
considered enough for doing the backward propagation at M if the conditions
Wnew < rbWold and Wnew + db ≤Wold hold, where rb is a real number in (0, 1)
and db is a small positive real number. Moreover, if y is computed by the forward
evaluation (at line 23), the additional condition y * I(M) must also hold.

Proposition 1. We define a function F : In × 2R
n → I

n to represent the FBPD
algorithm. This function takes as input the variable domains (in the form of an
interval box B) and the exact solution set, S, of the input problem. The func-
tion F returns an interval box, denoted by F (B, S), that represents the variable
domains of the output of the FBPD algorithm. If the input problem contains only
the elementary operations f defined in Definition 3, then the FBPD algorithm
terminates at a finite number of iterations and the following properties hold:

(i) F (B, S) ⊆ B (Contractiveness)
(ii) F (B, S) ⊇ B ∩ S (Completeness)

Proof. The proof is easy, and is therefore omitted due to lack of space.

4.2 Combining Propagation and Search Using a DAG

The most common framework for solving NCSPs is the branch-and-prune frame-
work. The most common exhaustive search is the bisection. Bisection search is
suitable for problems with isolated solutions. However, it is often inefficient for
problems with a continuum of solutions. Therefore, for the problems with a con-
tinuum of solutions we need more advanced search techniques like UCA5, UCA6
and UCA6+ (see [6, 7]). They all can be seen as instances of the generic branch-
and-prune search described in Figure 8. In general, the search scheme produces
two lists. The first list, L∀, consists of feasible sub-domains. The second list,
Lε, consists of tuples of tiny sub-domains, that are smaller than the required
resolution ε, and the sets of constraints, that are still active in the sub-domains.

5 Experiments

We have carried out experiments on FBPD and two other recent interval propaga-
tion techniques. The first one is Box Consistency implemented in a commercial
product named ILOG Solver (v6.0, 11/2003), hereafter denoted by BOX. The
second one is called HC4 (Revised Hull Consistency) from [4]. The experiments
are carried out on 33 problems which are unbiasedly selected and divided into
5 test cases. The test case T1 consists of 8 problems with isolated solutions that
are solvable by all three propagators. The test case T2 consists of 4 problems
with isolated solutions that are solvable by only two propagators. The test case



Using DAGs to Coordinate Propagation and Search 165

algorithm BnPSearch(in : V, C,D; out : L∀,Lε)
Construct a DAG, D(G), for the initial problem (V, C,D);
FPBD(D(G), C,D); /* Prune the domains in D */
if infeasible is detected then return infeasible;
if domains in D are small enough then Lε := Lε ∪ {(C,D)}; return;
L := {(C,D)};
while L 6= ∅ do

Get a couple (C0,D0) from L;
Split the problem (V, C0,D0) into subproblems {(V, Ci,Di)}ki=1; where Ci ⊆ C0
for i := 1 to k do

FPBD(D(G), Ci,Di); /* Prune the domains in Di */
if infeasible is detected then continue for;
if Ci = ∅ then L∀ := L∀ ∪ {Di}; continue for;
if domains in Di are small enough then
Lε := Lε ∪ {(Ci,Di)}

else
L := L ∪ {(Ci,Di)};

end-if
end-for

end-while
end

Fig. 8. A generic branch-and-prune search using FPBD for pruning.

T3 consists of 8 problems with isolated solutions that cause at least two of three
techniques to stop due to timeout or due to running more than 106 iterations.
The test case T4 consists of 7 small problems with continuum of solutions that
are solvable at resolution 10−2. The test case T5 consists of 6 hard problems
with continuum of solutions that are solvable at resolution 10−1. The timeout
value is 2 hours for all the test cases, it will be used as the running time for
the techniques which are timeout in the next result analysis (i.e. we are in favor
of slow techniques). For the first three test cases, the resolution is 10−4 and
the search to be used is bisection. For the last two test cases, the search to be
used is a simple search technique, called UCA6, for inequalities (see [6, 7]). The
comparison of the interval propagation techniques is based on the measures of

1. The running time: The relative ratio of the running time of each propagator
to that of FBPD is called the relative time ratio.

2. The number of boxes: The relative ratio of that number of boxes in the
output of each propagator to that of FBPD is called the relative cluster ratio.

3. The number of iterations: the number of iterations in search needed to solve
the problems. The relative ratio of the number of iterations used by each
propagator to that of FBPD is called the relative iteration ratio.

4. The volume of boxes (only for T1, T2, T3): We consider the reduction per
dimension when replacing the set of output boxes by a volume-equivalent
hypercube. The relative ratio of the reduction gained by each propagator to
that of FBPD is called the relative reduction ratio.

5. The volume of inner boxes (only for T4, T5): The ratio of the volume of inner
boxes to the volume of all output boxes is called the inner volume ratio.
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Table 1. (a) The average of the relative time ratios is taken over all the problems in the
test cases T1, T2, T3; the averages of the other relative ratios are taken over the problems
in the test case T1, i.e. over the problems which are solvable by all the techniques. (b)
The averages of the relative ratios are taken over all the problems in the test cases
T4, T5. In general, the lower the relative ratio, the better the performance/quality; and
the higher the inner volume ratio, the better the quality.

(a) Isolated Solutions (b) Continuum of Solutions

Propagator
Relative

time
ratio

Relative
reduction

ratio

Relative
cluster
ratio

Relative
iteration

ratio

Relative
time
ratio

Inner
volume
ratio

Relative
cluster
ratio

Relative
iteration

ratio

FBPD 1.000 1.000 1.000 1.000 1.000 0.922 1.000 1.000
BOX 20.863 0.625 0.342 0.731 20.919 0.944 0.873 0.854
HC4 203.285 0.906 1.266 0.988 403.915 0.941 0.896 0.879

Table 2. This table contains the averages of the relative time ratios taken over the
problems in each test case.

(a) Isolated Solutions (b) Continuum of Solutions
Propagator Test case T1 Test case T2 Test case T3 Test case T4 Test case T5
FBPD 1.00 1.00 1.00 1.00 1.00
BOX 24.21 28.98 13.45 11.55 31.85
HC4 94.42 691.24 68.17 191.86 651.31

Table 3. This table contains the overrun ratios for the test case T1. An overrun ratio
greater than 1 would suffice for applications.

Problem → BIF-3 REI-3 WIN-3 ECO-5 ECO-6 NEU-6 ECO-7 ECO-8 Average
FBPD 1.626 1.360 2.075 1.711 1.676 3.198 1.513 1.455 1.880
BOX 2.957 1.974 3.080 1.579 1.660 6.748 1.521 1.485 2.625
HC4 2.229 1.914 1.492 1.647 1.679 4.949 1.488 1.449 2.106

The overviews of results in our experiments are given in Tables 1 and 2.
In Table 3, we give the overrun ratio of each propagator for the test case T1.
The overrun ratio is defined by ε/ d

√
V/N ; where ε is the required resolution,

d is the dimension of the problem, V is the total volume of the output boxes,
N is the number of output boxes. Clearly, FBPD outperforms both BOX and HC4
by an order of magnitude or more in speed, while being roughly the same in
the quality measures in case where the solution set to be enclosed by boxes of
macroscopic size (i.e. for continuum of solutions). For isolated solutions, very
narrow boxes are produced by any technique in comparison to the required
resolution. However, the new technique is 1.1–2.0 times less tight than the other
techniques in the measure on reduction per dimension (which hardly matters in
applications). In comparison with HC4, a constraint propagation technique that
is similar to FBPD but works on the tree representation instead of DAGs, FBPD
is clearly more suitable for applications.

6 Conclusion

We propose a constraint propagation technique, FBPD, which makes the funda-
mental framework for constraint propagation on DAGs [1] efficient and practical,
and a method to coordinate constraint propagation and exhaustive search using
a single DAG for each problem. The experiments carried out on various problems



Using DAGs to Coordinate Propagation and Search 167

show that the new approach outperforms previously available propagation tech-
niques by an order of magnitude or more in speed, while being roughly the same
quality w.r.t. enclosure properties. In other views, FBPD can be seen as a special
instance of a generic combination scheme, CIRD, proposed by Vu et al. [13]. More-
over, our experiments show that the strengths of FBPD and CIRD1 (an instance
of the CIRD scheme) are complementary, therefore, unifying their strengths is a
straightforward direction in the near future.
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Abstract. This paper proposes a novel generic scheme enabling the
combination of multiple inclusion representations to propagate numerical
constraints. The scheme allows bringing into the constraint propagation
framework the strength of inclusion techniques coming from different
areas such as interval arithmetic, affine arithmetic or mathematical pro-
gramming. The scheme is based on the DAG representation of the con-
straint system. This enables devising fine-grained combination strategies
involving any factorable constraint system. The paper presents several
possible combination strategies for creating practical instances of the
generic scheme. The experiments reported on a particular instance us-
ing interval propagation, interval arithmetic, affine arithmetic and linear
programming illustrate the flexibility and efficiency of the approach.

1 Introduction

Many real world applications involve the solving of problems modeled as nu-
merical constraints on variables with continuous domains. In practice, numerical
constraints can be equalities or inequalities of arbitrary type, usually expressed
in factorable form, that is, they can be represented by elementary functions such
as +, −, ×, ÷, log, exp, sin, cos, . . . Recently, many solution techniques have
been proposed in constraint programming to solve such constraint systems. Some
of them are based on interval (constraint) propagation and interval arithmetic
(e.g. the works in [1, 2] and references therein), while some of them are based
on linear relaxation and linear programming [3, 4]. There have also been mathe-
matical solving techniques [5, 6] that use G interval or affine arithmetic to solve
equation systems. Most of the solution techniques are interleaved with a bisec-
tion search to solve the problems exhaustively. Lately, there have been some
advanced search techniques [7, 8] that improve the search performance for prob-
lems with non-isolated solutions (e.g., inequalities) while maintaining the same
performance for problems with isolated solutions (e.g., equalities). In general,
different techniques have different strengths that are complementary. Therefore,
combining the strength of different solution techniques is the subject of many
intensive research efforts (see [2] and references therein).
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Our contributions will be described in Section 3 and Section 4. In Section 3,
we propose a novel generic scheme which allows devising new combination strate-
gies for numerical constraint propagation in a flexible way. The scheme enables
the propagation to be performed using different inclusion representations on a
directed acyclic graph (DAG) that represents the problem. The goal is to provide
a combination scheme that is efficient and flexible but still general enough to
bring the strength of different solution techniques coming from different areas
(e.g., constraint programming and mathematical programming) into the frame-
work of constraint propagation. In order to illustrate the flexibility and efficiency
of the proposed scheme, in Section 4 we propose improvements on affine arith-
metic and then devise from the scheme several new combination strategies which
are based on emerging techniques, namely interval constraint propagation, in-
terval arithmetic, affine arithmetic, and linear programming. In Section 5, our
experiments show that the devised technique is superior than the recent inter-
val propagation methods in performance and quality. It even outperforms some
very recent techniques in mathematical programming and constraint program-
ming which are specially designed to solve certain constraint systems. Finally,
the conclusion and future directions are given in Section 6.

2 Background

2.1 Interval Arithmetic and Affine Arithmetic

When using an interval [a, b] ⊆ R to represent a quantity x, we mean that

a ≤ x ≤ b (1)

Interval arithmetic is an arithmetic defined on the set of intervals, rather than
the set of real numbers. Modern interval arithmetic was originated independently
in late 1950s by several researchers; including M. Warmus (1956), T. Sunaga

(1958) and R. E. Moore (1959). We assume that readers are familiar with
interval arithmetic. Otherwise, we would recommend [9, 2] and references therein
for more details on interval arithmetic and basic interval methods.

Affine arithmetic [10] is an extension of interval arithmetic which keeps track
of correlations between computed and input quantities. A real quantity x is
represented by an affine form which is a first-degree polynomial of the form

x = x0 + x1ε1 + . . .+ xnεn (2)

where x0, . . . , xn are real coefficients and ε1, . . . , εn are noise variables (originally
called noise symbols) taking values in [−1, 1].

Similarly to interval arithmetic, affine arithmetic also allows to use rounded
floating-point arithmetic to construct rigorous enclosures for the ranges of opera-
tions and functions [11]. In affine arithmetic, affine operations such as αx+βy+γ
are obtained exactly, except the rounding errors, by the following formula:

αx+ βy + γ = (αx0 + βy0 + γ) +
n∑
i=1

(αxi + βyi)εi (3)

However, non-affine operations can only be computed by approximations. In
general, the exact result of a non-affine operation has form f∗(ε1, . . . , εn), where
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Fig. 1. The DAG representation (a) before and (b) after interval evaluations

f∗ is a non-linear function. In practice, this result is then approximated by an
affine function fa(ε1, . . . , εn) = z0 + z1ε1 + . . .+ znεn. A new term zkεk is used
to represent the difference between f∗ and fa, hence, the result becomes affine:

z = z0 + z1ε1 + . . .+ znεn + zkεk (4)
where the maximum absolute error zk ≥ sup{|f∗(ε1, . . . , εn) − fa(ε1, . . . , εn)| :
∀(ε1, . . . , εn) ∈ [−1, 1]k}. An important goal is to keep this maximum absolute
error as small as possible (see the Chebyshev approximation theory).

Ranges obtained with affine arithmetic may be more accurate than those
obtained with interval arithmetic. However, the operations of affine arithmetic
are often more expensive than those of interval arithmetic. Some comparisons
on interval and affine arithmetic methods can be found in [11–13].

2.2 Directed Acyclic Graph

We assume that readers are already familiar with fundamental concepts in
graph theory like directed multigraph with ordered edges and directed acyclic
graph/multigraph. Otherwise, readers are referred to [14].

Theorem 1. For every directed acyclic multigraph (V,E, f) there exists a total
order � on vertices V such that ∀v ∈ V : if u is an ancestor of v, then v � u.

Following the approach in [14], we use a directed acyclic multigraph, whose
edges are totally ordered and whose vertices are ordered by an order in Theo-
rem 1, to represent a constraint system, we therefore call it a directed acyclic
graph (DAG). In a DAG, every node represents a variable or an elementary oper-
ation such as +, ×, ÷, log, exp, . . . and every edge represents the computational
flow. The ordering of edges is needed for non-commutative operations like the
division, and not really necessary for commutative operations. For convenience,
a virtual ground node is added to a DAG to be the parent of all the nodes repre-
senting the constraints. For example, the DAG representation of the constraint
system {x2 − 2xy +

√
y = 0, 4x+ 3xy + 2

√
y ≤ 9 | x ∈ [1, 3], y ∈ [1, 9]} is given

in Figure 1, where {N1,N2,N3,N4,N5,N6,N7} is an ordering of the nodes.
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3 Combination Scheme for Constraint Propagation

3.1 Generalization of Inclusion Concepts

We generalize the concepts related to inclusion function as follows.

Definition 1 (Inclusion Representation). Given a set A. A couple I =
(R, µ), where R is a set of representing objects and µ is a function from R to
2A, is called an inclusion representation of A if there exists a surjective function
ρ : 2A → R such that ∀S ⊆ A : S ⊆ µ(ρ(S)). In this case, ρ is called the
representing function of I and µ is called the evaluating function of I.

Let I = (R, µ) be an inclusion representation of R. We call I a real inclusion
representation of R if each representing object T ∈ R is a tuple consisting of
real constants, and the evaluating function µ can be defined by

µ(T ) ≡ {fT (VT ) | VT ∈ DT } (5)
where fT is a real-valued function (with T as a tuple of parameters) and VT is a
finite sequence of variables taking values in real domains DT . The representation
(5) is called a real representation of µ.

It is easy to see that the interval form (1) is a real inclusion representation
of R, where each representing object T ∈ R is a couple of reals (a, b), VT = (x),
fT is an identity function, and µ is defined by

µ(T ) ≡ {x | x ∈ [a, b]} (6)
The affine form (2) is also a real inclusion representation of R, where each

representing object is a tuple T = (x0, . . . , xn, 1, . . . , n),1 and VT = (ε1, . . . , εn)
are the variables of the linear function fT (ε1, . . . , εn) = x0 + x1ε1 + . . .+ xnεn.
Hence, the real representation of the evaluating function is defined by

µ(T ) ≡ {x0 + x1ε1 + . . .+ xnεn | (ε1, . . . , εn) ∈ [−1, 1]n} (7)

Definition 2 (Inclusion Function). Given two sets X, Y and a function
f : X → Y . Let IX = (RX , µX) and IY = (RY , µY ) be two inclusion represen-
tations of X and Y , respectively. A function F : RX → RY is called an inclusion
function of f , if ∀S ⊆ X,∀T ∈ RX : S ⊆ µX(T )⇒ {f(x) | x ∈ S} ⊆ µY (F (T )).

Definition 3 (Inclusion Converter). Let I1 = (R1, µ1) and I2 = (R2, µ2) be
two inclusion representations of the same set. A function c : R1 → R2 is called
an inclusion converter from I1 to I2 if ∀S ∈ R1 : µ1(S) ⊆ µ2(c(S)).

Theorem 2. Let IX = (RX , µX), IY = (RY , µY ) and IZ = (RZ , µZ) be in-
clusion representations of three sets X, Y and Z, respectively. If F : RX → RY
and G : RY → RZ are inclusion functions of two functions f : X → Y and
g : Y → Z respectively, then the composite function G ◦ F is an inclusion func-
tion of the composite function g ◦ f .

Corollary 1. Let I = (R, µ) be an inclusion representation of R. If all elemen-
tary operations defined on R are inclusion functions of their counterparts on
R, then all factorable functions built on R are also inclusion functions of their
counterparts on R.
1 In implementation, only non-zero coefficients and their indices should be stored.
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The proof of Theorem 2 follows directly from Definition 1 and Definition 2.
Corollary 1 is a straightforward consequence of Theorem 2. The elementary op-
erations in interval arithmetic and affine arithmetic are inclusion functions of
their real-valued counterparts, therefore, as a result of Corollary 1, all the fac-
torable operations/functions defined in interval arithmetic (or affine arithmetic)
are also inclusion functions of their real-valued counterparts.

3.2 A General Combination Scheme

In this section, we describe a general combination scheme that combines the
strength of different real inclusion representations for constraint propagation. In
this scheme, the input constraint system is represented by a DAG as described
in Section 2.2. The data stored at each node, N, of the DAG consist of a rep-
resenting object for each real inclusion representation I = (R, µ) of R and a
constraint range τ(N) ⊆ R, i.e. the node range of a constraint, is an interval.
We denote by R(N) the representing object (in I) stored at N.

Definition 4 (Inclusion Constraint System, ICS). Let (R, µ) be a real in-
clusion representation of R defined by (5), N a node of a DAG representing
a constraint system. The inclusion constraint system induced by a representing
object T ≡ R(N) and a constraint domain D ⊆ R is defined by

ICS(T,D) ≡
{
{ϑN ∈ DT , ϑN ∈ D} (where VT ≡ {ϑN}) if fT is identity,
{fT (VT ) = ϑN, VT ∈ DT , ϑN ∈ D} otherwise;

where ϑN (i.e. the representing variable of N) and the variables in VT are the
variables of the constraint system.

Definition 5 (NEV, PCS). Let N be a node of a DAG representing a constraint
system, {Ci}ki=1 the children of N, f : Rk → R the elementary operation repre-
sented by N, S a finite set of real inclusion representations. The following con-
straint system is called the pruning constraint system in S at N: PCS(N,S) ≡
{
∧k
i=1 ICS(R(Ci), τ(Ci))} if N is ground,{
f(ϑC1 , . . . , ϑCk

) = ϑN ∧∧
(R,µ)∈S(ICS(R(N), τ(N)) ∧

∧k
i=1 ICS(R(Ci), τ(Ci)))

}
otherwise.

For each I = (R, µ) ∈ S, let fI : Rk → R be an inclusion function of f . The
following assignment is called the node evaluation in I at N (if N 6= ground):

NEV(N, I) ≡
{
R(N) := R(N) ∩ τ(N) ∩ fI(R(C1), . . . ,R(Ck));
τ(N) := τ(N) ∩ µ(R(N));

}
A technique is called a pruning technique for a real constraint system if it is

capable of reducing some domains of the variables in that system. Let G be a
DAG representing the input constraint system. The following algorithm scheme,
called CIRD, uses two waiting lists. The first waiting list stores the nodes waiting
for evaluation, denoted by Le. The second waiting list stores the nodes waiting
for node pruning, denoted by Lp. Note that each node can appear once at a time
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in a waiting list. The set of real inclusion representations for use in the scheme
is denoted by E . Each real inclusion representation in E provides the elementary
operations that are inclusion functions of their real-valued counterparts. The
following gives the main steps of the CIRD scheme. It is easy to see that the
contractor following the CIRD scheme terminates at a finite number of steps,
moreover, it is contractive and complete as expected.

A Scheme for Combining Inclusion Representations on DAG (CIRD)

1. Initialization Phase.

(a) Initial Node Evaluation. Select an algorithm for visiting DAGs in an order-
ing described in Theorem 1. When visiting a node N ∈ G, perform the node
evaluation NEV(N, I) for each I ∈ E .

(b) Initialize Waiting Lists. Set Le := ∅, Lp := {the list of all nodes representing
the active constraints together with all the real inclusion representations of E}.

2. Propagation Phase. Repeat this step until both Le and Lp become empty.

(a) Get the Next Node. Select a strategy for getting a node N (and the set S
of real inclusion representations associated with N in the corresponding list)
from the two waiting lists Le and Lp.

(b) Node Evaluation. Do this step only if N was taken from Le at Step 2a.
For each I = (R, µ) ∈ S do the following steps:2

i. Perform the node evaluation NEV(N, I).
ii. If the changes ofR(N) and τ(N) at Step 2(b)i are considered enough to re-

evaluate the parents of N, then put each node in parents(N) (associated
with I) into Le, if N is not the ground node, or into Lp otherwise.

iii. If the changes of R(N) and τ(N) at Step 2(b)i are considered enough to
do a node pruning at N again, then put (N, I) into Lp.

(c) Node Pruning. Do this step only if N was taken from Lp at Step 2a.

i. Select a subset T ⊆ S such that for each I ∈ T there are efficient pruning
techniques for the constraint system PCS(N, I).

ii. Partition T into subsets such that for each subset U of the partition there
is a pruning technique that may efficiently reduce the domains of the vari-
ables of the system (or a subsystem of) PCS(N,U). After that, apply the
associated pruning technique to each system (or a subsystem of) PCS(N,U)
in a certain order.

iii. Let K be the set of all the nodes whose evaluating functions in form (5)
contain some variables whose domains were reduced at Step 2(c)ii. Select
a subset H of K, for example, such that each node M in H is a descendant
of N. For each real inclusion representation I = (R, µ) ∈ H such that
the representation of µ(R(M)) in form (5) contains some variables whose
domains were reduced at Step 2(c)ii, update R(M) using those newly
reduced domains, then update τ(M) := τ(M) ∩ µ(R(M)).

A. If the changes ofR(M) and τ(M) are considered enough to re-evaluate
M’s parents, put each node in parents(M) associated with I into Le.

B. If the changes of R(M) and τ(M) are considered enough to do a node
pruning at M, put (M, I) into Lp.

2 Combining several inclusion representations for better evaluation by using inclusion
converters is also an option to try.
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4 Specific Combination Strategies as Instances of CIRD

In the rest of the paper, we denote by bEc (resp. dEe) some lower approximation
(reps. some upper approximation) in F of the expression E such that bEc ≤ E
(resp. E ≤ dEe). We use the notion E = 〈E〉± e to mean that 〈E〉 is an approx-
imation in F of E, and the corresponding bound on the absolute rounding error
is e, that is 〈E〉−e ≤ E ≤ 〈E〉+e. Readers are referred to [11] for some rounding
techniques in floating-point arithmetic on simple elementary operations.

4.1 Modifications To Affine Arithmetic

Revised Affine Form. One of the limits of the standard affine arithmetic is
that the number of noise symbols grows gradually during the computation and
the computation cost heavily depends on this number. Inspired by the ideas
in [12, 5, 6], we use a revised affine form similar to (4) but the new term zkεk
is replaced by a non-negative accumulative error [−ez, ez] which represents the
maximum absolute error zk of non-affine operations. In other words, the revised
affine form of a real-valued quantity x̂ is defined by

x̂ ≡ x0 + x1ε1 + . . .+ xnεn + ex[−1, 1] (8)
which consists of two separated parts: the standard affine part of length n,
and the interval part. Where the magnitude of the accumulative error, ex ≥ 0,
is represented by the interval part. That is, for each value x of the quantity
x̂ (say x ∈ x̂), there exist εx ∈ [−1, 1], εi ∈ [−1, 1] (i = 1, . . . , n) such that
x = x0 + x1ε1 + . . . + xnεn + exεx. We then say it is of length n. The affine
operations are now defined by

ẑ ≡ αx̂+βŷ+γ ≡ (αx0 +βy0 +γ)+
n∑
i=1

(αxi+βyi)εi+(|α|ex+ |β|ey)[−1, 1] (9)

Therefore, during the computation the length of revised affine forms will not
exceed the number of noise symbols at the beginning, i.e. the number of vari-
ables of the input constraint system. In rigorous computing, ez will be used to
accumulate the rounding errors in floating-point arithmetic, namely (9) can be
interpreted as follows

z0 = 〈αx0+βy0+γ〉±e0, zi = 〈αxi+βyi〉±ei, ez = d|α|ex+|β|ey+
n∑
i=0

eie (10)

Another limit of the standard affine form is that it is not capable of han-
dling half-lines of the form (−∞, a] and [a,+∞), while this is important for
many computation methods, especially constraint propagation and search tech-
niques. Hence, we propose to associate each quantity x̂ with a data field
x∞ ∈ {−1, 0,+1}. The revised affine form is then interpreted as follows:3

x̂ ≡


(−∞,+∞) if ex = +∞,
(−∞, x0] if x∞ = −1,
[x0,+∞) if x∞ = +1,
x0 + x1ε1 + . . .+ xnεn + ex[−1, 1] otherwise.

(11)

3 For simplicity, we allow zero coefficients in the formulae in the paper, however in
implementation one should keep only nonzero coefficients.
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Table 1. Examples of functions f ∈ C1([a, b]) satisfying the conditions of Theorem 3

f(x) [a, b] is a subset of f ′(x) f ′ g(α)√
x [0,+∞) 1/(2

√
x) ↓ 1/(4α) : α > 0

ex (−∞,+∞) ex ↑ α(1− logα) : α > 0
log x (0,+∞) 1/x ↓ −(1 + logα) : α > 0

xn : n ≥ 2 is even (−∞,+∞) nxn−1 ↑ (1− n) n−1
√

(α/n)n

xn : n ≥ 3 is odd (−∞, 0] nxn−1 ↓ (n− 1) n−1
√

(α/n)n : α ≥ 0

xn : n ≥ 3 is odd [0,+∞) nxn−1 ↑ (1− n) n−1
√

(α/n)n : α ≥ 0

1/xn : n ≥ 2 is even (−∞, 0); (0,+∞) −n/xn+1 ↑ (n+ 1) n+1
√

(−α/n)n

1/xn : n ≥ 1 is odd (−∞, 0) −n/xn+1 ↓ −(n+ 1) n+1
√

(−α/n)n : α < 0

1/xn : n ≥ 1 is odd (0,+∞) −n/xn+1 ↑ (n+ 1) n+1
√

(−α/n)n : α < 0

xr : r /∈ [0, 1] (0,+∞) rxr−1 ↑ (1− r)(α/r)(r/(r−1)) : αr > 0

xr : r ∈ (0, 1) (0,+∞) rxr−1 ↓ (1− r)(α/r)(r/(r−1)) : α > 0

In an operation, if the domain of a variable is unbounded, i.e. in the first
three cases of (11), the other variables are converted into interval forms for that
operation performed in interval arithmetic, then the result is converted back to
affine form. Therefore, in the rest of paper, we only need to discuss about the
last case of (11). The set of all objects in revised affine form is denoted by A.

Unary Operations. We give the following theorem as a basis for finding affine
approximations of elementary univariate functions in a rigorous manner.

Theorem 3 (Affine Approximation of Univariate Functions). Let f be
a differentiable function on [a, b], where a < b in R, and dα(x) ≡ f(x)− αx.

1. If ∀x ∈ [a, b] : α ≥ f ′(x), then ∀x ∈ [a, b] : αx+ dα(b) ≤ f(x) ≤ αx+ dα(a).
2. If f ′ is continuous and monotone increasing on [a, b], we have

(a) ∀α ∈ [f ′(a), f ′(b)],∃c ∈ [a, b] : f ′(c) = α.
(b) Let g : R→ R be a function such that g(α) = dα(c), then
∀x ∈ [a, b] : αx+ g(α) ≤ f(x) ≤ αx+ max{dα(a), dα(b)}.

3. If f ′ is continuous and monotone decreasing on [a, b], we have
(a) ∀α ∈ [f ′(b), f ′(a)],∃c ∈ [a, b] : f ′(c) = α.
(b) Let g : R→ R be a function such that g(α) = dα(c), then
∀x ∈ [a, b] : αx+ min{dα(a), dα(b)} ≤ f(x) ≤ αx+ g(α).

Proof. See the proof of Theorem 3 in [15].

To illustrate the usefulness of Theorem 3, we give the functions f ′ and g
for some elementary functions in Table 1. Figure 2 gives a procedure to find
Chebyshev affine approximation of a function f ∈ C1([a, b]) such that f ′ is
monotone, when given the function g satisfying the conditions in Theorem 3.
Noting that the exact value α∗ = f ′(c∗) = (f(b)−f(a))/(b−a) ≤ α = d(df(b)e−
bf(a)c)/(b− a)e for some c∗ ∈ [a, b], hence, α ≥ min{f ′(a), f ′(b)}; we then have
the proof of the procedure in Figure 2 follows Theorem 3 directly. Readers are
referred to [15] for more details on this discussion.

For affine approximations of non-differentiable functions, see Section 2 of [16].
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procedure AffineApproximation(in : x̂, f ∈ C1([a, b]), f ′, g; out : αx̂+ β + δ[−1, 1])
fa := bf(a)c; fb := df(b)e; α := d(fb − fa)/(b− a)e;
if f ′ is monotone increasing on [a, b] then

da := df(a)e − bαac;
if α > df ′(b)e then

dmin := bf(b)c − dαbe; dmax := da;
else

dmin := bg(α)c; dmax := max{da, fb − bαbc};
end-if

else-if f ′ is monotone decreasing on [a, b] then
db := bf(b)c − dαbe;
if α > df ′(a)e then

dmin := db; dmax := df(a)e − bαac;
else

dmin := min{fa − dαae, db}; dmax := dg(α)e;
end-if

end-if
β := midpoint([dmin, dmax]); δ := radius([dmin, dmax]); // basic interval concepts

end

Fig. 2. This is a procedure to find a Chebyshev affine approximation of a function
f ∈ C1([a, b]) such that f ′ is monotone, when given the function g in Theorem 3

Multiplication. Similar to the product of two G intervals in [5, 6], the product
of two revised affine forms x̂ and ŷ of length n is another revised affine form ẑ
of length n defined as follows

z0 = x0y0 + 0.5
n∑
i=1

xiyi, zi = x0yi + y0xi (i = 1, . . . , n) (12)

ez = exey + ey

n∑
i=0

|xi|+ ex

n∑
i=0

|yi|+
n∑
i=1

|xi|
n∑
i=1

|yi| − 0.5
n∑
i=1

|xiyi| (13)

This is similar to, but tighter than, the formula for multiplication in [6] when
exactly porting into revised affine form. The time complexity of (9) and (13) is
O(n). In rigorous computing, we use the following computations.

u = d
n∑
i=1

|xi|e, v = d
n∑
i=1

|yi|e (14)

z0 = 〈x0y0 + 0.5
n∑
i=1

xiyi〉 ± e0, zi = 〈x0yi + y0xi〉 ± ei (i = 1, . . . , n) (15)

ez = dexey + ey(|x0|+ u) + ex(|y0|+ v) + uv +
n∑
i=0

eie − b0.5
n∑
i=1

|xiyi|c (16)

The multiplication defined by {(12), (13)} or by {(14), (15), (16)} is an inclu-
sion function of the multiplication on R. The proof, which can be found in [15],
is based on the real expansion of xy following the definition, where x ∈ x̂, y ∈ ŷ.

Division. In our implementation, we compute the quotient ẑ = x̂/ŷ by rewriting
it as x̂ × (1/ŷ). However, in [6], the author has proposed a better solution for
division that has some interesting properties such as x̂/x̂ = 1.
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procedure NodeLevel(in : DAG)
Initialize the level of each node to zero.
for each visit in pre-order going from a parent P to its children N do

level(N) := max{level(N), level(P) + 1};
end

Fig. 3. This is a procedure assigning a node level to each node in a DAG.

4.2 New Combination Strategies for Constraint Propagation

In the rest, we will abuse the notions I and A to denote the real inclusion
representations, (I, µI) and (A, µA), defined on interval arithmetic and revised
affine arithmetic, respectively; where the function µI is defined by (6) and the
function µA follows (11). In general, the performance of a propagator following
the CIRD scheme depends on the design of each step in the scheme. In this section,
we propose some simple strategies for each step in the CIRD scheme using the
two inclusion representations, I and A. Combining different strategies at all the
steps makes different combination strategies for constraint propagation.

Step 1a: Initial Node Evaluation. A post-order visiting or a recursive eval-
uation starting from the ground node is an option for the visit at Step 1a.

Step 2a: Get the Next Node. At first, we assign a node level to each node in
the DAG representing the constraint system such that each ancestor has a lower
level than that of their descendants, hence, an ordering in Theorem 1 can be
obtained easily. Figure 3 gives a simple procedure for this purpose. Lp is sorted
in the ascending order of node levels. It is to maintain that ancestors being taken
into pruning processes before their descendants. Le is sorted in the descending
order of node levels. It is to sure that descendants being evaluated before their
ancestors. There are two simple strategies to get the next node from {Le,Lp}.
The first one is to get the next node from Lp whenever it is not empty. The
second one is to get the next node from one of the two waiting lists until it
becomes empty, then switch to the other list. In our implementation, we use the
first simple strategy. More complicated strategies for choosing the next node can
be used as alternatives, for example, based on the pruning efficiency of nodes.

Step 2b: Node Evaluation. For the node evaluation at each node N, we can
perform NEV(N,A) and NEV(N, I) in any order, if N is not the ground node. At
Step 2(b)ii, Step 2(b)iii and Step 2(c)iii, we only count on the changes of τ(N)
in our current implementation. A change of τ(N) is often considered enough if
the ratio of the new width to the old width is less than a number predefined
rw ∈ (0, 1) and the difference between the old width and the new width is greater
than a predefined number dw > 0 (see [1] for details). More complicated criteria
that have been used in constraint programming can be used as alternatives.

Step 2c: Node Pruning. The subset T at this step can be chosen as {I,A}. For
node pruning, we use PCS(N, {I}) and the following subsystem of PCS(N, {A}):

PCSL(N, {A}) ≡

{
{
∧k
i=1 ICS(A(Ci), τ(Ci))} if N is ground,

{ICS(A(N), τ(N)) ∧
∧k
i=1 ICS(A(Ci), τ(Ci))} otherwise,
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where ICS(A(M), D) ≡

xM,0 +
∑k
i=1 xM,iεi + eMεM = ϑM;

εi ∈ [−1, 1] (i = 1, . . . , n);
εM ∈ [−1, 1];ϑM ∈ D;


Example. We give the node levels for the example described in Section 2.2 in
brackets next to the node names in Figure 1b. At the beginning, we have

τ(N1) = I(N1) = [1, 3]; A(N1) = 2 + ε1

τ(N2) = I(N2) = [1, 9]; A(N2) = 5 + 4ε2

τ(Ni) = I(Ni) = A(Ni) = [−∞,+∞] (i = 3, 4, 5)
τ(N6) = I(N6) = [0, 0]; A(N6) = 0 ; τ(N7) = I(N7) = A(N7) = [−∞, 9]

After the initial node evaluation, we have the following changes:
τ(N3) = I(N3) = [1, 9]; A(N3) = 4.5 + 4ε1 + 0.5[−1, 1]
τ(N4) = I(N4) = [1, 27]; A(N4) = 10 + 5ε1 + 8ε2 + 4[−1, 1]
τ(N5) = I(N5) = [1, 3]; A(N5) = 2.125 + ε2 + 0.125[−1, 1]
τ(N6) = I(N6) = [0, 0]; A(N6) = −13.375− 6ε1 − 15ε2 + 8.625[−1, 1]
τ(N7) = I(N7) = [9, 9]; A(N7) = 42.25 + 19ε1 + 26ε2 + 12.25[−1, 1]

Denoting the variable ϑNi by vi, we have, for example, PCS(N6, {A}) ≡
PCS(N6, {I}) ∧ PCSL(N6, {A}), where PCSL(N6, {A}) ≡ {4.5 + 4ε1 + 0.5εN3 =
v3; 10 + 5ε1 + 8ε2 + 4εN4 = v4; 2.125 + ε2 + 0.125εN5 = v5; −13.375 − 6ε1 −
15ε2 + 8.625εN6 = v6 | (ε1, ε2, εN3 , εN4 , εN5 , εN6) ∈ [−1, 1]6; v3 ∈ [1, 9]; v4 ∈
[1, 27]; v5 ∈ [1, 3]; v6 ∈ [0, 0]}, and PCS(N6, {I}) ≡ {v3 − 2v4 + v5 = v6 | v3 ∈
[1, 9]; v4 ∈ [1, 27]; v5 ∈ [1, 3]; v6 ∈ [0, 0]}.

The combination of the following backward propagation and affine pruning
techniques makes different strategies for node pruning in the CIRD scheme.

Backward Propagation. If N is not the ground, the domains of the variables of
the constraint system PCS(N, {I}) can be pruned by a pruning technique which is
called backward propagation in [1, 14]. In brief, let f be the elementary operation
represented by a node N, we then have the relation ϑN = f({ϑCi

}ki=1). For each
i in {1, . . . , k}, the backward propagation computes a cheap evaluation of the
i-th projection of the relation ϑN = f({ϑCi}ki=1) onto ϑCi . In case there exist
a function gi : Rk → R such that we can write ϑCi = gi(ϑN, {ϑCj}kj=1;j 6=i). Let
Gi be an inclusion function of gi in I. The i-th backward propagation at N is
then defined by

I(Ci) := I(Ci) ∩Gi(I(N), {I(Cj)}kj=1;j 6=i) (i = 1, . . . , k) (17)

The other cases are described in detail in [1, 14]. After the backward propaga-
tion, at Step 2(c)iii we only need to consider k nodes H = {Ci | i = 1, . . . , k}
for update and for putting into the waiting lists Le and Lp.

Affine Pruning. In A, each variable of the input constraint system is associated
with one noise symbol εi (i = 1, . . . , n). The system PCSL(N, {A}) is a linear
constraint system, therefore, the domains of the variables of PCSL(N, {A}) can
be pruned by using a safe linear programming technique [17]. If the operation
represented by N is linear, we can apply a safe linear programming technique to
PCS(N, {A}), instead of PCSL(N, {A}), to get tighter bounds on the variables.
For efficiency, only the domains of the variables {ϑCi}ki=1 and/or {εi}ni=1 are
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needed to be pruned. We can devise three possible pruning strategies for Step
2(c)iii. The first strategy only requires to prune the domains of {ϑCi}ki=1, after
that, considers the update for H = {Ci}ki=1. The second strategy only requires
to prune the domains of {εi}ni=1. The third strategy is to prune the domains of
both {ϑCi

}ki=1 and {εi}ni=1. For the last two strategies, the set H can be chosen
as any subset of the set of N’s descendants whose noise variables in µA have just
been pruned. In our implementation, we use the second pruning strategy with
two options for H: the set of N’s descendants or the set of variables associated
with εi (i = 1, . . . , n). If for each i ∈ {1, . . . , n} the new domain of noise variable
εi is [ai, bi] ⊆ [−1, 1], then the range update at M ∈ H will be

τ(M) := τ(M) ∩ (xM,0 +
n∑
i=1

xM,i[ai, bi] + eM[−1, 1]) (18)

Remark 1. The cost of linear programming is high, therefore, we should use the
affine pruning technique only if the pruning ratio is high. We propose to use the
affine pruning technique only at low level nodes and only if the accumulative error
eM of each node M involving the above linear systems is small enough. That
is, the range of the operation at M lies in a thin slot between two hyperplanes
xM,0+

∑n
i=1 xM,iεi−eM and xM,0+

∑n
i=1 xM,iεi+eM in the space of (ε1, . . . , εn).

5 Experiments

Preliminary Comparisons with Linear Relaxation based Techniques.
We first compare the proposed technique with a recent mathematical solving
technique, called A2, in [6] which was specially designed to solve nonlinear equa-
tion systems. The A2 algorithm converts the equation system into separable form,
and then uses affine arithmetic to enclose the system by a linear relaxation sys-
tem {L(x, y) = Ax+ By + b, x ∈ x, y ∈ y}; where A and B are real matrices,
b is a real vector, and x and y are interval vectors. This technique has to as-
sume a posterior-condition that A is invertible in order to use the reduction rule.
No rigorous rounding technique is found in [6]. We take the example used for
illustrating the power of the A2 algorithm in [6] for the comparison:

((4x3 + 3x6)x3 + 2x5)x3 + x4 = 0, ((4x2 + 3x6)x2 + 2x5)x2 + x4 = 0
((4x1 + 3x6)x1 + 2x5)x1 + x4 = 0, x4 + x5 + x6 + 1 = 0
(((x2 + x6)x2 + x5)x2 + x4)x2 + (((x3 + x6)x3 + x5)x3 + x4)x3 = 0
(((x1 + x6)x1 + x5)x1 + x4)x1 + (((x2 + x6)x2 + x5)x2 + x4)x3 = 0
x1 ∈ [0.0333, 0.2173], x2 ∈ [0.4000, 0.6000], x3 ∈ [0.7826, 0.9666]
x4 ∈ [−0.3071,−0.1071], x5 ∈ [1.1071, 1.3071], x6 ∈ [−2.1000,−1.9000]

(19)

The system (19) is known to have an unique solution. To solve (19) on a 1.7 GHz
Pentium PC at the resolution 10−5 using a bisection search; A2 has to perform
917 splittings in 3.46 seconds to reduce the problem to 5 boxes (see [6]); while an
instance, called CIRD1,4 of the CIRD scheme performs 54 splittings in only 0.118
seconds to reduce the problem to 3 boxes. Hence, CIRD1 is about 29.3 times
4 In this paper we use a new implementation of CIRD1, which is an improvement of

the old version used in [15].
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Table 2. Comparison between Quad and CIRD1: time is in seconds; #It is the number
of splittings; #Box is the number of boxes in output. The cells are filled with “n/a”
if results are not yet available for comparison in this submission, due to our limited
access to the code of Quad.

Quad CIRD1 Time Ratio
Problem #It #Box Time (sec.) CPU speed #It #Box Time (sec.) CPU speed Quad/CIRD1
Gough-Steward [n = 9] 24 4 183.0 1.0 GHz 912 4 2.7 1.7 GHz 39.9
Yama196 [n = 30] 108 16 31.4 2.66 GHz 25 2 3.8 1.7 GHz 12.9
Yama196 [n = 60] n/a n/a n/a n/a 18 2 21.0 1.7 GHz
Yama196 [n = 100] n/a n/a n/a n/a 20 2 85.8 1.7 GHz
Yama196 [n = 200] n/a n/a n/a n/a 19 2 560.2 1.7 GHz
Yama196 [n = 300] n/a n/a n/a n/a 20 2 1878.1 1.7 GHz

faster than A2 for the system (19), while it is more rigorous and accurate than
A2. Another technique to compare with is a very recent filtering technique called
Quad in [3], which was specifically designed to address quadratic constraints and
an extension of Quad in [4]. We take two problems, Gough-Steward and Yama196,
from [3] and [4] respectively for comparison. Gough-Steward is a 9-dimensional
quadratic equation system in Robotics having four solutions [3]. Yama196 is a
series of high dimensional problems consisting of n variables and n equations of
form {(n+1)2xi−1−2(n+1)2xi+(n+1)2xi+1 +exi = 0, xi ∈ [−10, 10] | i = 1, . . . , n},
where x0 = xn+1 = 0. Similar to [4], we use the resolution 10−8 for these problems.
Table 2 gives the comparison between CIRD1 and Quad (at the same resolution)
for the above two problems whose results has been reported in [3, 4].

Comparison with Interval Propagation Techniques. We have carried out
experiments on CIRD1 and two other recent interval propagation techniques. The
first one is the Box Consistency in ILOG Solver 6.0, denoted by BOX. The second
one is called HC4 (Revised Hull Consistency) in [1]. The experiments are carried
out on 33 problems which are unbiasedly selected and divided into 5 test cases.
The test case T1 consists of 8 problems with isolated solutions that are solvable
by all three propagators. The test case T2 consists of 4 problems with isolated
solutions that are solvable by only two propagators CIRD1 and BOX. The test
case T3 consists of 8 problems with isolated solutions that cause at least two
of three techniques being stopped due to timeout or due to running more than
106 splittings. The test case T4 consists of 7 small problems with continuum of
solutions that are solvable at resolution 10−2. The test case T5 consists of 6 hard
problems with continuum of solutions that are solvable at resolution 10−1. The
timeout value is 10 hours for all the test cases, it will be used as the running
time for the techniques which is timeout in the next result analysis (i.e. we are
in favor of slow techniques). For the first three test cases, the resolution is 10−4

and the search to be used is bisection. For the last two test cases, the search to
be used is a simple search technique, called UCA6, for inequalities (see [7, 8]). The
comparison of the interval propagation techniques is based on the measures of
1. The running time: The relative ratio of the running time of each propagator

to that of CIRD1 is called the relative time ratio.
2. The number of boxes: The relative ratio of that number of boxes in the output

of each propagator to that of CIRD1 is called the relative cluster ratio.
3. The number of splittings: the number of splittings in search needed to solve

the problems. The relative ratio of the number of splittings used by each
propagator to that of CIRD1 is called the relative iteration ratio.
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Table 3. (a) The average of the relative time ratios is taken over all the problems in the
test cases T1, T2, T3; the averages of the other relative ratios are taken over the problems
in the test case T1, i.e. over the problems which are solvable by all the techniques. (b)
The averages of the relative ratios are taken over all the problems in the test cases
T4, T5. In general, the lower the relative ratio, the better the performance/quality; and
the higher the inner volume ratio, the better the quality.

(a) Isolated Solutions (b) Continuum of Solutions

Propagator
Relative

time
ratio

Relative
reduction

ratio

Relative
cluster
ratio

Relative
iteration

ratio

Relative
time
ratio

Inner
volume
ratio

Relative
cluster
ratio

Relative
iteration

ratio

CIRD1 1.000 1.000 1.000 1.000 1.000 0.945 1.000 1.000
BOX 1429.660 5.323 30.206 4.263 3.414 0.944 1.102 1.056
HC4 17283.614 7.722 105.825 5.515 60.101 0.941 1.168 1.118

Table 4. This table contains the averages of the relative time ratios taken over the
problems in each test case.

(a) Isolated Solutions (b) Continuum of Solutions
Propagator Test case T1 Test case T2 Test case T3 Test case T4 Test case T5
CIRD1 1.00 1.00 1.00 1.00 1.00
BOX 8.33 6097.45 517.10 2.33 4.68
HC4 54.47 83009.81 1649.66 31.42 93.56

4. The volume of boxes (only for T1, T2, T3): We consider the reduction per
dimension when replacing the set of output boxes by a volume-equivalent
hypercube. The relative ratio of the reduction gained by each propagator to
that of CIRD1 is called the relative reduction ratio.

5. The volume of inner boxes (only for T4, T5): The ratio of the volume of inner
boxes to the volume of all output boxes is called the inner volume ratio.
The overviews of results in our experiments are given in Table 3 and Table 4.

Clearly, CIRD1 is superior than BOX and HC4 in performance and quality for
the problems with isolated solutions. CIRD1 still outperforms the others for the
problems with continuum of solutions while being a little better than the others
in quality of the output.

Remark 2. We have also carried out experiments on the naive use of affine arith-
metic as a replacement of interval arithmetic in interval constraint propagation.
However, the performance of obtained techniques is even worse than the one us-
ing interval arithmetic. Lack of space does not allows showing the results here.

6 Conclusion

In this paper, we propose a novel generic scheme, CIRD, for constraint propaga-
tion using different inclusion representations on DAG. The scheme is applicable
to most of known inclusion representations, including interval arithmetic, affine
arithmetic, polyhedral/quadratic enclosures and their generalizations. The mod-
ifications and improvements on the rigorous computations of affine arithmetic
are also proposed. As a result, we give several new combination strategies for
constraint propagation based on interval arithmetic, affine arithmetic, interval
constraint propagation and (safe) linear programming. After all, we show by
experiments that one implementation, CIRD1, outperforms recent techniques by
1-4 orders of magnitude in speed, while still being better in quality measures.
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Abstract. In contrast to the deterministic and sound inference during
search, we propose to make inference in an optimistic way, to speed up the
solving of problems. Specifically, we examine optimistic pruning where a
value is excluded from consideration when it is close to arc inconsistent.
Our preliminary empirical study shows that under a proper level of opti-
mism, optimistic pruning improves the performance of a MAC algorithm
on the hard random problem instances close to (from the satisfiable side
of) the phase transition point.

1 introduction

Much human and computer search simplifies the search space by making assump-
tions, which can later be incrementally or totally retracted if they eliminate all
satisfactory solutions. Basic backtrack search, which underlies much of CSP solv-
ing, can be viewed in these terms. However, there the expectation is that failure
is likely and backtracking inevitable. Here we propose an important ’psychologi-
cal shift’. Rather than take the natural, conservative attitude ’we can’t do that,
it could lose solutions’, we propose a more ’optimistic’ approach: ’let’s try that,
it might work’. Once we have done this basic bit of ’lateral thinking’ a whole
new world of possibilities opens up to us.

More specifically, we can consider situations in which conditions C allow
us to conclude a useful property P, and ask: Suppose we can come ’close’ to
establishing C, might it prove profitable to assume P anyway? More specifically
still, we can consider properties like arc-inconsistency that allows us to prune
values from variable domains and ask: Suppose a value is ’close’ to being arc
inconsistent, might it be profitable to assume it is? At worst, we might prune
values that leave us without a solution, or without the best solution if we are
optimizing; but we can always ’go back’ and undo our assumption if need be. The
question, as with all heuristic methods, is whether the potential gains outweigh
the potential losses.
? This work has received support from Science Foundation Ireland under Grant

00/PI.1/C075.
?? Current address: Department of Computer Science, Texas Tech University, Lubbock,
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It is actually rather curious that a field that emphasizes backtracking in
search more than any other has not explored more backtracking in inference.
Of course, choice and backtrack is forced on us for search. Inference is attrac-
tive in that it can be deterministic. However, embracing the risk involved in
voluntary choice, backstopped if necessary by backtracking, may prove powerful
as well. Stochastic approaches, such as local search and random restart, have
demonstrated that taking risks can be fruitful.

2 Optimistic pruning

Many methods have been developed to prune the search space. We restrict our-
selves to a specific and well studied pruning process: maintaining arc consistency
during search (MAC) [3]. In an optimistic MAC, a value is excluded from further
consideration if it is close to be arc inconsistent with respect to a constraint. The
optimism here is that if a value is close to be arc inconsistent, it stands a very
small chance to be supported in the future. How do we measure the closeness of
arc consistency?

Value ordering heuristics are frequently used to improve the efficiency of
solving a CSP problem. When instantiating a variable, a more promising value
is tried first. In other words, the less promising values are not likely to be a
correct assignment for the current variable. In optimistic MAC, the closeness to
arc inconsistency can be measured by any value ordering heuristic, and the less
promising a value is, the closer it is to arc inconsistency. When instantiating
a variable, it is cheap to calculate an ordering on its values, but it could be
expensive to maintain a value ordering on all variables during each invocation
of arc consistency. Here, we propose two ways to determine whether a value is
close to be arc inconsistent.

The first is to check the number of supports of a value with respect to each
constraint on it. When this number falls below a threshold, the value will be
removed from further consideration. The second depends on the proportion of
supports that a value has lost during a search procedure. If the proportion drops
below a certain percentage, the value will be deleted optimistically because it
loses supports “faster” than the other values.

Example Consider three variables x, y and z that can take values from
a domain of {−5,−2,−1, 1, 2, 5}. The constraint between x and y is |x| = |y|
when x = ±5 and otherwise is almost “|x| = |y| + 1 or |y| = |x| + 1” (except
for −2 of x and −1 of y) as shown in Fig. 1. The other constraints are |x| = |z|
and |y| = |z|. Since −2 of x has only one support in y, it can be removed
optimistically, resulting in the removal of {−1, 1,−2, 2} from the domains of x,
y and z. Now, it is easy to find a solution for the problem.

In our experiments, the optimism defined above leads to too many values
to be deleted, resulting in no solution for many originally satisfiable problem
instances. As more variables are instantiated, the condition of optimism is easier
to be satisfied in the later stage of the search. To curb this tendency, one method
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Fig. 1. A constraint between variables x and y

is to turn off the optimism at certain depth (i.e., the number of instantiated
variables) of search.

2.1 Optimistic pruning algorithm

In this section, we present an optimistic MAC algorithm that removes a value
optimistically in terms of the number of its supports. In the algorithm we need
to maintain the number of supports of a value, implying that the techniques
developed in AC-4 [2] are a good choice for this optimistic algorithm.

For each value with respect to a constraint incident on it, AC-4 maintains
not only the number of, but also a list of, all supports for the value. At the
initialization stage of AC-4, all the values that have zero support will be put
into a queue so that later we are able to propagate the removal of them to all
their supports. Specifically, when a value is taken from the queue, for each of its
supports a, decrease the number of supports of a by one. The optimism comes in
now. When a’s number of supports falls below a threshold, a will be put into the
queue, waiting to be deleted. At the same time, we can also check whether we are
beyond certain depth of search and if so turn off the optimism. The propagation
continues until no value is left in the queue.

The kernel of a preprocessing AC algorithm or MAC [3] is the propagation
algorithm. Given a queue of removed values, the propagation algorithm of the
optimistic MAC, listed in Fig. 2, popagates the values optimistically. The algo-
rithm needs the following data structures. For any value a of a variable i and
a constraint between i and j, counter(i,a,j) and supports(i,a,j) are the
number, and the list respectively, of all supports of a with respect to the con-
straint between i and j. A list of values to be removed, each of which is denoted
by (i,b) (a value b of variable i), are put in the queue Q.

The algorithm opti-propogate(Q) in Fig. 2 propogates the deletion of the
values in Q and removes an affected value optimistically in terms of the optimistic
condition implemented by the procdure removable-optimistically(j, a, i).

Line 1 in Fig. 3 ignores the optimism when the variable i is instantiated or
has only one value left in its domain. In this case, any value of j has only one
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algorithm opti-propogate(Queue Q)
begin

while Q not empty do
select and delete a value (i,b) from Q;
for each neighboring variable j of i do

for each value a in supports(i,b,j)

if removable-optimistically( j, a, i)
delete (i,a);
Q ← Q ∪ { (i,a) };

endif
endfor

endfor
endwhile

end

Fig. 2. The AC-4 propagation algorithm

procedure removable-optimistically( j, a, i)
begin

counter(j,a,i) = counter(j,a,i)-1;
if counter(j,a,i) is zero

return true;
1. if domain of i has only one value left

return false;
2. if counter(j,a,i) is smaller than a threshold

and the current search depth is shallower than a threshold
return true;

else return false

end

Fig. 3. procedure to check whether a value is optimistically removable

support in i and the optimism is turned off because otherwise all values of j will
be excluded optimistically, resulting in a search failure. Line 2 is to apply the
optimistic removal criteria to the value a of variable j.

3 Experimental results

Experiments are designed to examine the effectiveness of the optimistic MAC
and to characterise the problems on which optimistic pruning is effective. Uni-
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formly randomized binary constraint satisfaction problems (based on model B)
serve these purposes well. To specify a set of problem instances, we need the
parameters of the number of variables n, the maximum domain size d of the
variables, the number of constraints e, and the tightness of the constraints t (t
is the number of disallowed tuples). A tuple < n, d, e, t > is used to distinguish
different classes of problem instances.

In our experiments, < n, d, e, t > is set in terms of the following rules. n, d
are chosen arbitrarily and independently. To locate the hardest problems, the
number of constraints is set to be about 93% of n(n − 1)/2, the number of all
possible constraints. Once n, d, e are fixed, we locate the t at the peak of the
phase transition area. From the instances of < n, d, e, t > we choose only those
instances that are satisfiable. The reason to do so is to locate the problems
where optimistic pruning is promising. For unsatisfiable instances, due to the
incompleteness of optimistic pruning, finally we have to resort to a complete
search algorithm to prove the unsatisfiability and thus optimistic pruning could
not improve the performance of the hosting search algorithm.

After < n, d, e, t > is fixed, we vary e, the number of constraints, to generate a
sequence of classes of instances. In this way, we have hard problems in a relatively
large range of varying e’s, in contrast to generating instances by varying t with
n, d, e fixed.

For example, after setting n and d to be 30 and 10 respectively, e should
be 405 (about 93% of all constraints). Through experiments on various t’s, we
find the phase transition point where t = 15. With n, d, t being 30, 10 and 15
respectively, experimental data shown in Fig. 4 (The diagram is colorful and
best viewed on a computer) are collected by setting e to be various values less
than 405.

The optimistic pruning algorithms are parameterized by the minimum num-
ber of supports a value should have with respect to any incident constraints, and
the threshold depth that is the search depth where the optimism is turned off. In
all the experiments reported here, we set the minimum support to be 2, and vary
the threshold depth from 2 to 4. In Fig. 4, optiMAC< 1, 2 > means an algorithm
that removes a value if it has at most 1 support and employs a threshold depth
of 2. From this figure, it is observed that the optimistic algorithm with threshold
depth of 4 performs better than the non-optimistic MAC, especially on harder
problems close to the phase transition point.

To see whether this observation is applicable to other classes of random
problems, we explored the problems whose number of variables and domain size
are around 30 and 10 respectively. Fig. 5 shows the results on n = 27 and d from
9 to 13. The x axis is the sequence number of different settings and y axis is
the average number of constraint checks used for solving the instances in each
setting. The diagram contains five components. The leftmost is for d = 9, the
second for d = 10, and so on. The setting for each component varies only on
the numbers of constraints. For example, the left most component is obtained
by varying the number of constraints from 309 to 339 when n, d, t are 27, 8 and
12 respectively. It can be regarded as the miniaturized version of a diagram like
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Fig. 4. Experimental results on problem instances

Fig. 4. Results on other settings are shown in Fig. 6-8 (they are colorful picures
and best viewed on a computer) that use the same legends given in Fig. 4.

From these results, we can see that under a proper threshold depth, the
search algorithm with optimistic pruning performs better in most cases than non-
optimistic algorithm on the problems close to the peak of the phase transition
area.

There are a few remarks on the data shown in the diagrams. First, the number
of settings in each component varies. This is due to the fact that we eliminate
settings where there exist unsatisfiable instances. This could be remedied in the
future experiments by selecting a slightly smaller tightness for those settings
generating unsatisfiable instances. Second, each component is supposed to be
increasing when the number of constraints increases. The reason this is not true
for our data might be that we did not use a sufficient number of instances for
each setting < n, d, e, t >. (Due to the large number of settings, we test only 5
instances for each setting. We believe larger number of instances could improve
the situation.)

4 Discussion

Iterative broadening reported in [1] is a search scheme under which for each vari-
able, there is only a fixed number of values will be tried and backtracking occurs
if these values fail to be consistently extensible to a solution. In this scheme, no
values in the domains of future variables will be excluded from consideration (if
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n = 27, d = 9− 13

Fig. 5. Experimental results on more problem instances

they have a support with respect to every incident constraint). In the case of
optimistic pruning, some values of future variables will be deleted optimistically
in terms of the search depth and the number of its supports. This leads to more
pruning than the iterative broadening scheme.

Some readers might have realized that the optimism MAC, especially through
our experiments, is very coarse grained. For example, the optimism is turned off
at a very shallow depth of 4. We had tried to increase the threshold depth of the
optimistic pruning but obtained answers of unsatisfiability for some originally
satisfiable instances. It seems necessary to develop more fine-grained optimism
to achieve better performance. For example, when considering removing a value
optimistically, we could use the information on its supports with respect to all
incident constraints, rather than one constraint. In our current algorithms and
implementation, the same optimism scheme is used during arc consistency after
each instantiation of a variable. In this case, the optimism could be applied to
the same domain repeatedly, possibly resulting in more values removed optimisti-
cally. To relieve this effect, we can either restrict the number of times we apply
optimism to the domain of each variable in one execution of arc consistency
algorithm or relate the invocation of the optimism to the size of the domain.
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n = 28, d = 9− 13

n = 29, d = 10− 13

Fig. 6. Experimental results on more problem instances (continued)
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n = 30, d = 10− 13

n = 31, d = 8− 13

Fig. 7. Experimental results on more problem instances (continued)
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n = 32, d = 10− 13

n = 33, d = 10− 13

Fig. 8. Experimental results on more problem instances (continued)
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5 Conclusion

We propose to make optimistic inference during search and examine a specific
optimistic pruning – optimistic MAC. Preliminary experiments show that there
exist problems for which optimistic pruning is very promising. With proper con-
trol of optimism (through number of supports and depth of search), this approach
improves the performance of a search procedure on most problem instances close
(from the satisfiable side) to the phase transition point. It is also observed that
optimistic pruning makes some easy problems harder to solve. In the future we
will explore the potential of optimistic pruning by designing more fine-tuned
types of optimism and more importantly identifying the problems in specific
application domains that can be efficiently solved by optimistic pruning.
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