Sixth XCSP? Competition
(2024 CSP and COP competition)
First Call for Solvers and Benchmarks
(Participation Deadline: May 30, 2024)
https:/ /www.pycsp.org

The sixth international XCSP? constraint solver competition is organized to improve our
knowledge about components (e.g., filtering algorithms, heuristics, search strategies, encod-
ings, reformulation techniques and learning procedures) that are behind the efficiency of solv-
ing systems (referred to as constraint solvers in this document) for combinatorial constrained
problems. Two classical problems are considered for this competition:

e CSP (Constraint Satisfaction Problem)
e COP (Constrained Optimization Problem)

The intermediate! format XCSP? is used as input format for the solvers. The effort
required for entering the competition is limited because some tools (parsers) are available,
and only a central set of popular (and important) constraints is considered.

This call for solvers and benchmarks presents the tracks that will be considered during
the competition. In particular, we give important details about the format restrictions, the
execution environment, and the rules that must be followed by the solvers.

Importantly, do note that:

e detailed results concerning the previous XCSP? competitions can be found at
https://www.xcsp.org/competitions.

e anybody (an in particular, contestants) can submit new benchmarks. You can use the
modeling library called PyCSP? [LS24] for that.

e the proceedings of both the 2022 and 2023 competitions are available [ALL22, ALL23|.

IXCSP? is neither a modeling language, nor a flat format. It is intermediate because it preserves the
structure of problems through the concepts of variable arrays, constraint groups/blocks, and meta-constraints.

https://www.pycsp.org
https://www.xcsp.org/competitions/
https://pycsp.org

Contents

1 Main Points of the 2024 Competition 3
2 Timetable 3
3 Tracks 3
4 Modifications concerning XCSP? with respect to the 2023 Competition 4
5 Format 5
5.1 Standard Tracks 5
5.2 Mini-solver Tracks e 6

6 Resources: Benchmarks and Tools 6
7 Execution Environment 7
7.1 Command Line e 7
7.2 Output Format 8
7.3 Special Considerations for Incomplete Solvers 12
7.3.1 Complete solvers 12

7.3.2 Incomplete solvers 12

7.4 Special Considerations for Parallel Solvers 13

8 Entering the Competition 13
9 Ranking 14
10 Organization 14

1 Main Points of the 2024 Competition

The organization of the 2024 competition will be quite close to the one conducted in 2023.
There are however a few minor changes that are indicated in Section 4. As in 2022, do note
that two rules will be used if necessary:

e In case a team submits the same solver to both the main track and the mini-track of
the same problem (CSP or COP), the solver will be ranked in the mini-track only if the
solver is not one of the three best solvers in the main track.

e In case several teams submit variations of the same solver to the same track, only the
team who developped the solver and the best other team with that solver will be ranked
(possibly, a second best other team, if the jury thinks that it is relevant).

2 Timetable

The deadlines of the competition are defined below:

Opening of the registration site at

https://xcsp24.cril.fr/ April 2024
Pre-registration of contestants May 10, 2024
Final registration (submission of solvers and benchmarks) May 30, 2024
Test of solvers conformance May-June 2024
Position paper (2 pages) end-June 2024
Competition running June-July 2024
Final results available during CP 2024

Once submitted, solvers will be run on a limited number of benchmarks to make sure that
they interact correctly with the evaluation environment. Potential problems will be reported
to the authors so that they have some opportunities to fix bugs.

3 Tracks

Tracks remain the same as in 2022 and 2023 (but durations have been shortened
by 25%.) First, let us recall that we consider two main problems: CSP (a decision problem)
and COP (an optimization problem). For CSP, the goal is to exhibit one solution or to prove
that none exists. For COP (mono-objective optimization), the goal is to exhibit a solution
with the best possible objective value, ideally proving that it represents an optimum solution
(note that some COP instances in the competition may be unsatisfiable, which must then be
proved).

Anyone can submit a solver to any particular track. There are 4 main standard tracks,
imposing absolutely no conditions on solvers. For example, they can be written in any language
(provided that we can reasonably execute them in our environment; see section 7), and can
be complete or incomplete solvers (e.g., based on local search). The tracks are described in
Table 1.

Ranking for COP will be stated in two different manners: by considering and not consid-
ering possible proofs of optimality, permitting in the latter case to emphasize the quality of
incomplete solvers.

https://xcsp24.cril.fr/

Problem Goal Exploration Timeout

CSP one solution sequential 30 minutes
COP best solution sequential 3 minutes
cop best solution sequential 30 minutes
COP best solution parallel 30 minutes

Table 1: Standard Tracks.

There are also 2 Mini-Solver tracks. The goal of these tracks is to facilitate the submission
of new systems as well as to allow the discovery of new simple ideas. Basically, solvers in these
tracks will be evaluated on a restricted set of constraints and may be submitted as a patch of
an existing, open-source solver. See Section 5.2 for details.

Problem Goal Exploration Timeout
CSP one solution sequential 30 minutes
cop best solution sequential 30 minutes

Table 2: Mini-Solver Tracks.

4 Modifications concerning XCSP? with respect to the 2023
Competition
Compared to 2023, here are some extensions with respect to the syntax:

1. concerning the main tracks: the constraint allDifferentList is introduced (see Section
7.1.1.1 in [BLAP22]),

2. concerning the main tracks: the constraint lex is extended to take into account a limit
given by constants,

3. concerning the main tracks: undefined variables can be present (see Section 2.10 in
[BLAP22]).

Note that, as in 2023, variables (instead of integers) can be used in the element <coeffs>
of an objective. However, although authorized in XCSP? Specifications 3.1, for the 2023
competition, general integer expressions will not be permitted in the element <coeffs> of a
constraint sum or in the element <coeffs> of an objective.

Important: a set of instances is available in order to let the competitor to check these
minor changes/extensions:

https://www.cril.univ-artois.fr/ “lecoutre /compets/checkingInstancesXCSP24.zip

https://www.cril.univ-artois.fr/~lecoutre/compets/checkingInstancesXCSP24.zip

5 Format

The complete description of the format (XCSP?) used to represent combinatorial constrained
problems can be found in [BLAP22]. Do note that we refer to the version 3.1 of the speci-
fications. However, as in 2022, for the 2023 competition, we limit XCSP? to its kernel, called
XCSP3-core, whose description is given in [BLA22|. This means that the scope of XCSP? is
restricted to:

e integer variables,
e CSP and COP problems,

e aset of 24 popular (global) constraints for Standard tracks, and a small set of constraints
for Mini-solver tracks.

For simplicity, as in 2022 and 2023, we also impose the following restrictions:
e Integer variables have finite domains (and so, the special value infinity is forbidden).

e Variable arrays always start indexing at 0 (and so, the attribute startIndex, whose
default value is 0, cannot be associated with <array>).

e The attribute as can only be associated with elements <var> and <array>; see Section
10.5 in [BLAP22].

o Undefined variables (this is new in 2024) and useless variables are accepted (note that
parsers/solvers can easily identify such variables); see Section 2.10 in [BLAP22|.

e Advanced forms of constraints (see Part III in [BLAP22|) are not accepted, except for
the very specific cases explicitly described in the rest of this section.

e View extensions are accepted for some constraints: allDifferent and sum, as in 2019,
but also allEqual, count, nValues, minimum, and maximum, as in 2022 and 2023.

e The type of the objective (in case of a COP instance) cannot be "product" or "lex".

e Any integer value occurring in an XCSP? file must belong to the interval —231,.231 — 1,

5.1 Standard Tracks

In the Standard tracks, we find twenty-four constraints. Do note that a large majority of the
numerous instances that are currently available on our website https: //www.xcsp.org/instances/
only involve these 24 constraints.

Compared to 2023, except fot allDifferentList being introduced, and lex being
slightly extended, there are no changes concerning the 24 constraints already in-
volved, which are: intension, extension, regular, mdd, allDifferent, allEqual, ordered,
lex, precedence, sum, count, nValues, cardinality, maximum, minimum, element, channel,
noOverlap, cumulative, binPacking, knapsack, instantiation, circuit, slide.

For more information, we refer the reader to Section 5.1 of the two previous calls:

https://www.cril.fr/ “lecoutre /compets/call XCSP22.pdf
https://www.cril.fr/“lecoutre /compets /callXCSP23.pdf

https://www.xcsp.org/instances/
https://www.cril.univ-artois.fr/~lecoutre/compets/callXCSP22.pdf
https://www.cril.univ-artois.fr/~lecoutre/compets/callXCSP23.pdf

5.2 Mini-solver Tracks

As previously stated, the goal of the mini-solver tracks is to allow to enter the competition
without having to implement all the features required in the standard tracks.
The requirements to enter the mini-solver tracks are the following:

e solvers will be evaluated on a restricted set of constraints (see below),
e solvers will be only evaluated on sequential search,

e solvers may be submitted as a modification of an existing, open-source solver. The goal
in this case is to save developers the effort of developing a complete solver and to focus
on new techniques, heuristics and so on. In this case, the submission must contain both
the source of the initial solver, and the source of the modified solver (or equivalently
a patch file). The differences between the initial solver and the modified solver should
be significant enough. As an example, Mini-CP (www.minicp.org) may be used as a
starting point.

e obviously, solvers developed independently by their authors may be submitted as well.

Compared to 2023, there are no changes concerning the perimeter (constraints)
of the mini-tracks. Asin 2023 (and 2022), the constraints that are accepted for Mini-solver
tracks are restricted to five types. For more information, we refer the reader to Section 5.2 of
the 2022 call :

https://www.cril.fr/“lecoutre/compets /callXCSP22.pdf

6 Resources: Benchmarks and Tools
Many benchmarks can be found at https://www.xcsp.org/instances.

The organizers invite anybody to submit new benchmarks. The organizers are particularly
interested in new problem instances originating from real-world applications. For generating
new XCSP? instances, one can use the Python library PyCSP3: see https://pycsp.org/.

Some tools are also provided. They can be found at www.xcsp.org/tools.

Currently, you can find:
e a C++ parser

e a Java parser

a Python parser (in https://github.com/xcsp3team /pycsp3/tree/master/parser)

a Rust parser (in https://github.com /luhanzhen /xcsp3-rust)

a tool for checking solutions and costs

http://www.minicp.org
https://www.cril.univ-artois.fr/~lecoutre/compets/callXCSP22.pdf
https://www.xcsp.org/instances/
https://pycsp.org/
https://www.xcsp.org/tools
https://github.com/xcsp3team/pycsp3/tree/master/parser
https://github.com/luhanzhen/xcsp3-rust

7 Execution Environment

Solvers will run by the Slurm cluster management system on a cluster of computers executing
the CentOS Stream 8.3 operating system. They will run under the control of another program
(called runsolver) that will enforce some limits on both used memory and total CPU time.

Solvers can be run as either 32 bits or 64 bits applications. If you submit an executable,
you are required to provide us with an ELF executable (preferably statically linked). Authors
have to provide through the submission site the a document that enumerates the names and
versions of the tools, libraries, ... that are needed to build and execute the project. The
procedure to build and execute the solver must also be explained in this document.

Keep in mind that solvers will all be run on the same user account; softwares that alter
the user environment (eg. Anaconda) must set it back to its initial state after execution,
whatever the result of the execution (including a crash). It is advised to replace such tools by
counterparts which do not alter the environment (eg. venv instead of Anaconda).

Two executions of a solver with the same parameters and system resources are expected
to output the same result in approximately the same time (so that the experiments can be
repeated).

7.1 Command Line

During the submission process, you will be asked to provide the organizers with a suggested
command line that should be used to run your solver. In this command line, you will be asked
to use the following placeholders, which will be replaced by the actual information by the
evaluation environment.

e BENCHNAME will be replaced by the name of the file containing the XCSP? in-
stance to solve. Obviously, the solver must use this parameter or one of the following
variants: BENCHNAMENOEXT (name of the file with path but without extension),
BENCHNAMENOPATH (name of the file without path but with extension), BENCH-
NAMENOPATHNOEXT (name of the file without path nor extension).

¢ RANDOMSEED will be replaced by a random seed which is a number between 0 and
4294967295. This parameter MUST be used to initialize the random number generator
when the solver uses random numbers. It is recorded by the evaluation environment and
will allow to run the program on a given instance under the same conditions if necessary.

e TIMELIMIT (or TIMEOUT) represents the total CPU time (in seconds) that the solver
may use before being killed. May be used to adapt the solver strategy.

e MEMLIMIT represents the total amount of memory (in MiB) that the solver may use
before being killed. May be used to adapt the solver strategy.

e NBCORE will be replaced by the number of processing units that have been allocated
to the solver. Note that, depending on the available hardware, a processing unit may
be either a processor, a core of a processor or a “logical processor” (in hyper-threading).

e TMPDIR is the name of the only directory where the solver is allowed to read/write
temporary files

e DIR is the name of the directory where the solver files will be stored

Examples of command lines:

DIR/mysolver BENCHNAME RANDOMSEED
DIR/mysolver --mem-1imit=MEMLIMIT --time-1imit=TIMELIMIT --tmpdir=TMPDIR BENCHNAME
java -jar DIR/mysolver.jar -c DIR/mysolver.conf BENCHNAME

As an example, these command lines could be expanded by the evaluation environment as:

/solver10/mysolver /tmp/zebra.xml 1720968
/solver10/mysolver --mem-1imit=900 --time-1imit=1200 --tmpdir=/tmp/job12345 /tmp/zebra.xml
java -jar /solverl0O/mysolver.jar -c /solver10/mysolver.conf /tmp/zebra.xml

The command line provided by the submitter is only a suggested command line. Organizers
may have to modify this command line (e.g., memory limits of the Java Virtual Machine (JVM)
may have to be modified to cope with the actual memory limits).

The solver may also (optionally) use the values of the following environment variables:

e TIMELIMIT (or TIMEOUT) (the number of seconds it will be allowed to run)
e MEMLIMIT (the amount of RAM in MiB available to the solver)

e TMPDIR (the absolute pathname of the only directory where the solver is allowed to
create temporary files)

After TIMEOUT seconds have elapsed, the solver will first receive a SIGTERM to give it
a chance to output the best solution it found so far (in the case of an optimization problem).
One second later, the program will receive a SIGKILL signal from the controlling program to
terminate the solver.

The solver cannot write to any file except standard output, standard error
and files in the TMPDIR directory. A solver is not allowed to open any network
connection or launch unexpected external commands. Solvers may use several
processes or threads. Children of a solver process are allowed to communicate
through any convenient means (Pipes, Unix or Internet sockets, IPC, ...). Any
other communication is strictly forbidden. Solvers are not allowed to perform
actions that are not directly related to the resolution of the problem.

7.2 Output Format

To communicate their answers, solvers must print messages to the standard output and those
messages will be used to check the results. The first two characters of a line allow us to classify
it into different categories, which indicate the meaning of the line. With the exception of "o "
lines, there is no specific order imposed on the lines output by solvers.

e status line
This line starts by the two characters: lower case s followed by a space (ASCII code 32).
Only one such line is allowed, and it is mandatory. This line gives the answer of the
solver. It must be one of the following answers:

— s UNSUPPORTED
This line should be printed by the solver when it discovers that the XCSP? instance
contains a non-supported feature. As an example, a solver that cannot deal with a
global constraint should print this line when such a constraint is present.

— s SATISFIABLE
This line indicates that the solver has found a solution, and in such a case, a "v
line (see below) is mandatory. For CSP, the solver answers SATISFIABLE when
it has found a solution. For COP, the solver answers SATISFIABLE when it has
found a solution that it couldn’t prove to be optimal.

— s OPTIMUM FOUND
This line must be printed when the solver has found an optimal solution for a COP
instance, and in such a case, a "v " line (see below) is mandatory. This answer
implies that the solver has proved that no other solution can give a better value of
the objective function. This answer must not be used for CSP instances.

— s UNSATISFIABLE
This line must be output when the solver can prove that the instance has no
solution.

— s UNKNOWN
This line may be output in any other case, i.e. when the solver is not able to tell
anything about the instance.

n

It is of uttermost importance to respect the exact spelling of these answers. Any mistake
in the writing of these lines will cause the answer to be disregarded.

Solvers are not required to provide any specific exit code corresponding to their answer.

If the solver does not output a status line, or if the status line is misspelled, then
UNKNOWN will be assumed.

values line

This line starts by the two characters: lower case v followed by a space (ASCII code 32).
It is mandatory when the instance is satisfiable. More than one "v " line is allowed but
the evaluation environment will act as if their content was merged.

If the solver finds a solution (i.e., if the solver outputs "s SATISFIABLE" or "s OP-
TIMUM FOUND"), it must provide a solution. For CSP or COP, this solution is an
instantiation that satisfies every constraint. For COP, this instantiation must be such

that the value of the objective function corresponds to the best one that the solver was
able to find.

Solutions must respect the format described in Section 2.11 of [BLAP22|. However, it
is important to note that the attributes type and cost that can be associated with the
element <instantiation> are not required in the context of the competition. These
attributes, if present, will simply be ignored.

Importantly, the solution can be output on several successive "v " lines, provided that
each "v " line must be terminated by a Line Feed character (the usual Unix line termi-
nator \n’). A "v " line that does not end with that terminator will be ignored because
it will be considered that the solver was interrupted before it could print a complete
solution.

As an illustration, the following output is valid for the COP instance (Example 4) given
in Chapter 1 of [BLAP22]:

v <instantiation type="optimum" cost="1700">

v <list> b ¢ </1list>
v <values> 2 2 </values>
v </instantiation>

and the following output is valid for the CSP instance (Example 25) given in Section
2.11 of [BLAP22]:

<instantiation type="solution">
<list> x[] </list>
<values> 1 1 2 * </values>

v
v
v
v </instantiation>

As the attributes type and cost are not required (and simply ignored by our environ-
ment), we could have written:

<instantiation>
<list> b ¢ </list>
<values> 2 2 </values>

v
v
v
v </instantiation>

and

v <instantiation>

v <list> x[] </1list>

v <values> 1 1 2 * </values>
v </instantiation>

objective line

These lines start by the two characters: lower case o followed by a space (ASCII code
32). These lines are mandatory for incomplete solvers. As far as complete solvers
are concerned, they are not strictly mandatory but solvers are strongly invited to print
them. These lines are only relevant for COP instances.

Whenever the solver finds a solution with a better value of the objective function, it is
asked to print an "o " line with the current value of the objective function. Therefore,
an "o " line must contain the lower case o followed by a space and then by an integer
that represents the better value of the objective function. "o " lines should be output as
soon as the solver finds a better solution and be ended by a standard Unix end of line
character ("\n’). Programmers are advised to flush immediately the output stream.

As an example; let us consider Example 2 in Chapter 1 of [BLAP22|. Let us assume
that the solver finds first this solution:

<instantiation id=’so0ll’ type=’solution’ cost=’450’>
<list> b ¢ </list>
<values> 0 1 </values>

</instantiation>

and later:

<instantiation id=’s0l2’ type=’solution’ cost=’1700’>
<list> b ¢ </list>
<values> 2 2 </values>

</instantiation>

10

which is finally proved to be optimal by the solver. The output by the solver can be
(using this time only one "v " line):

450

1700

OPTIMUM FOUND

<instantiation> <list> b ¢ </list> <values> 2 2 </values> </instantiation>

< m O ©O

The evaluation environment will automatically timestamp each of these lines so that
it is possible to know when the solver has found a better solution and how good the
solution was. The goal is to be able to analyze the way solvers progress toward the best
solution. As an illustration, here is a sample of the output of a solver, with each line
timestamped (first column, expressed in seconds of wall clock time since the start of the
program):

0.00 c Time Limit set via TIMEOUT to 1800

0.51 c Initial problem consists of 6774 variables and 100 constraints.
0.55 c preprocess terminated. Elapsed time: 0.45
0.55 c Initial Lower Bound: O

0.63 o 235947

0.63 o 226466

0.63 o 217758

0.75 o 186498

1.16 o 178319

2.42 o 168389

3.13 c Restart #1 #Var: 6774 LB: 0 @ 3.03

4.89 c Restart #2 #Var: 6774 LB: 0 @ 4.79

5.73 o 160358

6.44 o 159206

7.52 o 150077

9.09 o 149533

12.14 o 140853

17.74 o 140264

19.61 o 131636

29.81 o 15450

34.00 o 7066

41.66 o 5000

84.01 o 3905

84.01 c NEW SOLUTION FOUND: 3905 @ 83.873

84.61 s OPTIMUM FOUND

84.61 v ... // solution not shown here for space reasons
84.61 c Total time: 84.478 s

diagnostic line

These lines are optional and start with the two following characters: lower case d followed
by a space (ASCII code 32). Then, a keyword followed by a value must be given on this
line.

More precisely, a diagnostic is a (name,value) pair that gives an information about the
work carried out by the solver. As indicated above, each diagnostic is a line of the form
'd NAME value’, where NAME is a sequence of letters describing the diagnostic, and value
is a sequence of characters defining its value. The following diagnostic is predefined:

WRONG DECISIONS: The total number of wrong decisions which have been carried out
(as defined in [BZF04]).

11

Contestants wishing to record other diagnostics than the one listed before above should
inform the organizers.

e comments line
A line which is not one the special lines defined above, or which explicitly starts with
the two characters: lower case ¢ followed by a space (ASCII code 32) is a comment line,
and is ignored. These lines are thus optional and may appear anywhere in the solver
output.

They contain any information that authors want to emphasize, such as #Dbacktracks,
#Mips,... or internal CPU time. They are recorded by the evaluation environment for
later viewing but are otherwise ignored. At most one megabyte of solver output will be
recorded. So, if a solver is very verbose, some comments may be lost.

Submitters are advised to avoid printing comment lines which may be useful in an
interactive environment but otherwise useless in a batch environment. For example,
printing comment lines with the number of constraints read so far only increases the size
of the logs with no benefit.

If a solver is really too verbose, the organizers will ask the submitter to remove some
comment lines.

7.3 Special Considerations for Incomplete Solvers

Complete solvers are solvers which can always decide the satisfiability of a CSP instance and
the optimality of a COP instance, provided that enough time and memory are given. Incom-
plete solvers may loop endlessly in a number of cases; local search algorithms are examples
of incomplete solvers. Both kinds of solvers are welcome in this competition. Submitters will
have to indicate if their solver is complete or incomplete on the submission form.

7.3.1 Complete solvers

There is no special requirement about complete solvers. See the input and output format that
all solvers must respect for details.

7.3.2 Incomplete solvers

Incomplete solvers are definitely welcome in the competition.

For CSP, an incomplete solver will stop as soon as it finds a solution and will time out if it
can’t find one. The only difference with a complete solver is that it will time out systematically
on unsatisfiable instances.

For COP, an incomplete solver will systematically time out because it will be unable to
prove that it has found the optimum solution. Yet, it may have found the optimum value well
before the time out. In order to get relevant information in these categories, an incomplete
solver must fulfill two requirements:

1. it must intercept the SIGTERM signal sent to the solver on timeout and output either
"s UNKNOWN" or "s SATISFIABLE" with the "v " line(s) corresponding to the best
solution it has found

12

2. it MUST output an "o " line whenever it finds a better solution so that, even if the solver
always timeouts, the timestamp of the last "o " line indicates when the best solution
was found. Keep in mind that it is the evaluation environment which is in charge of
timestamping "o " lines.

7.4 Special Considerations for Parallel Solvers

The execution environment will bind the solvers to a subset of all available processing units.
The environment variable NBCORE will indicate how many processing units have been
granted to the solver. The solver will not have access to more processing units than NBCORE.
This implies that if the solver uses x threads or processes (with z >NBCORE), z—NBCORE
threads or processes will necessarily sleep at one time. Note that only scenarios NBCORE=8
and NBCORE=4 will be possible this year; we will not share processors between two runs to
prevent them from stepping on each other too much (processor cache, access memory, ...).

As an example, if the competition is run on hosts with 2 quad-core processors (8 cores in
total), several scenarios are possible:

e one single solver is run on the host, it is allowed to use all 8 cores (NBCORE=8).

e two solvers are run simultaneously, each one being assigned to a given processor (which
means that a solver is assigned 4 cores, hence NBCORE=4).

e 4 solvers are run simultaneously, each one being assigned to a fixed set of 2 cores (be-
longing to the same CPU), hence NBCORE=2.

e more generally, a single solver may be assigned any number = of cores (from 1 to 8 in
this example) to simulate the availability of x processing units.

The solver might use the NBCORE environment variable to adapt itself to the number of
available processing units.

A solver must not modify its processor affinity (calls to sched_setaffinity(2) or taskset (1))
to get access to a processing unit that was not initially allocated to the solver. It may however
modify its processor affinity to use a subset of the initially allocated processing units.

8 Entering the Competition

Contestants can enter the competition with one or two solvers per track. Contestants are ex-
pected to submit their solver(s) and contribute some instances (as many instances as wished).
Submitted instances will be made available on the evaluation web site shortly after the actual
beginning of the competition. We cannot accept benchmarks which cannot (for various rea-
sons) be publicly available (because anyone must be able to reproduce the experiments of the
competition). In a second stage, they will also have to submit a position paper (1 page, or
preferably 2 pages, or even more) indicating the main components of the submitted solver(s).

Of course, we expect that contestants propose solvers that recognize XCSP? (either natively
or by embedding a conversion procedure).

The deadline for submitting both benchmarks and solvers is May 30, 2024. Submission of
solvers and benchmarks will be possible online in April 2024 at https://xcsp24.cril.fr/.

13

https://xcsp24.cril.fr/

9 Ranking

Basically, solvers will be ranked on the number of times a solver is able to give the best answer
obtained during the competition. Ties will be broken on the cumulated CPU /wall-clock time
to give these answers. Other ranking schemes may be introduced to help identify remarkable
features.

Wrong Answers. Note that a solver is declared to give a wrong answer in the following
cases:

e [t outputs UNSATISFIABLE for an instance which can be proved to be satisfiable.

e For CSP and COP, it outputs SATISFIABLE or OPTIMUM FOUND, but provides an
instantiation that does not satisfy every constraint. The only exception is when the
solver outputs an incomplete "v " line (which does not end by "\n’) in which case it is
assumed that the solver was interrupted before it could output the complete model and
the answer will be considered as UNKNOWN.

e [t outputs OPTIMUM FOUND but there exists an instantiation with a better value of
the objective function/cost that the one corresponding to the printed solution.

When a solver provides a wrong answer in a given track, the solver’s results in
that track will be excluded from the final evaluation results because they cannot
be trusted.

A solver that ends without giving any solution, or just crashes for some reason (internal
bugs...), is simply considered as giving an UNKNOWN result.

10 Organization

Gilles Audemard, Christophe Lecoutre and Emmanuel Lonca from CRIL.

They can be reached at lecoutre@cril.fr and lonca®@cril.fr.

References

[ALL22] G. Audemard, C. Lecoutre, and E. Lonca. Proceedings of the 2022 XCSP3 Com-
petition. Technical Report. on CoRR, arXiv:2209.00917, 2022. 99 pages.

[ALL23] G. Audemard, C. Lecoutre, and E. Lonca. Proceedings of the 2023 XCSP3 Com-
petition. Technical Report. on CoRR, arXiv:2312.05877, 2023. 98 pages.

[BLA22] F. Boussemart, C. Lecoutre, and G. Audemard. XCSP3-core: A Format for Rep-
resenting Constraint Satisfaction/Optimization Problems. Technical Report. v3.1
on CoRR, arXiv:2009.00514, 2020-2022. 105 pages.

[BLAP22| F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3: An Integrated
Format for Benchmarking Combinatorial Constrained Problems. Technical Report.
v3.1 on CoRR, arXiv:1611.03398, 2016-2022. 241 pages.

14

https://www.cril.univ-artois.fr/~audemard
https://www.cril.univ-artois.fr/~lecoutre/
https://www.cril.univ-artois.fr/~lonca
https://www.cril.univ-artois.fr/
mailto:lecoutre@cril.fr
mailto:lonca@cril.fr
https://arxiv.org/abs/2209.00917
https://arxiv.org/abs/2312.05877
https://arxiv.org/pdf/2009.00514.pdf
https://arxiv.org/pdf/1611.03398.pdf

[BZF04]

|LS24]

C. Bessiere, B. Zanuttini, and C. Fernandez. Measuring search trees. In Proceedings
of ECAI’04 workshop on Modelling and Solving Problems with Constraints, pages
31-40, 2004.

C. Lecoutre and N. Szczepanski. PyCSP3: Modeling Combinatorial Constrained
Problems in Python. Technical Report. v2.2 on CoRR, arXiv:2009.00326, 2020—
2024. 175 pages.

15

https://arxiv.org/pdf/2009.00326.pdf

	Main Points of the 2024 Competition
	Timetable
	Tracks
	Modifications concerning XCSP3 with respect to the 2023 Competition
	Format
	Standard Tracks
	Mini-solver Tracks

	Resources: Benchmarks and Tools
	Execution Environment
	Command Line
	Output Format
	Special Considerations for Incomplete Solvers
	Complete solvers
	Incomplete solvers

	Special Considerations for Parallel Solvers

	Entering the Competition
	Ranking
	Organization

