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Institut Universitaire de France
Lens, France

marquis@cril.fr

Abstract
We introduce a new class of belief change operators, named
promotion operators. The aim of these operators is to enhance
the acceptation of a formula representing a new piece of in-
formation. We give postulates for these operators and provide
a representation theorem in terms of minimal change. We also
show that this class of operators is a very general one, since it
captures as particular cases belief revision, commutative re-
vision, and (essentially) belief contraction.

Introduction
Belief change theory aims at studying and characterizing
operators that allow to modify the beliefs of an agent in light
of new pieces of evidence. Such operators are mandatory for
designing autonomous agents being able to face unexpected
situations.

The most central belief change operators are revision ope-
rators and contraction operators. On the one hand, revision
operators aim at adding a formula (representing new pieces
of evidence) into the beliefs of an agent, while getting rid
of beliefs that contradict the added formula. Thus a strong
priority is given to the incoming pieces of evidence over the
current beliefs. On the other hand, contraction operators aim
at removing some pieces of belief (a formula) from the be-
liefs of an agent. Basically, one does not want any longer the
formula to be entailed by the beliefs of the agent. As such,
contraction can be interpreted as being a change operation
that gives less priority to the change formula.

A number of additional change operators are related to
some extent to these two main families of belief change ope-
rators. Those additional operators are typically obtained by
considering other settings, based on distinct or supplemen-
tary assumptions. Among them are update operators (Kat-
suno and Mendelzon 1992), merging operators (Konieczny
and Pino Pérez 2002) and iterated revision operators (Dar-
wiche and Pearl 1997; Booth and Meyer 2006; Jin and
Thielscher 2007). Contrastingly, if one sticks to the original
belief change setting where the available information con-
sists of the current beliefs of an agent and of a unique change
formula, only few alternative views to revision and contrac-
tion have been pointed out so far. The main exception con-
cerns some works (merely achieved in the nineties) around
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non-prioritized revision (Hansson 1997c). The pursued ob-
jective was to determine which (or which part of the) infor-
mation given by the change formula should be accepted, but
no new change operation was actually pointed out.

In this paper, a new class of change operators, called pro-
motion operators, is defined. Promotion operators aim at
“enhancing” the acceptation of the new piece of beliefs in
the current beliefs of the agent, but do not require to accept
it entirely in every case. While revision considers the new
piece of beliefs as fully reliable, and contraction does not al-
low for acquiring new beliefs, promotion is a more general
change operation that allows for a more moderate incorpo-
ration of a new piece of evidence into existing beliefs.

Example 1. Consider the following scenario. Yuko is cur-
rently at the town office (TO) and would like to reach the
post office (PO). She does not precisely know where PO is,
but she currently believes that (i) it is located east to TO,
and (ii) there is a park located directly north-east to TO so
that if PO happens to also be north-east to TO, then she will
need time to reach her destination. On her way, she asks an
inhabitant (named Takeshi) for more information, who tells
her that PO is not far, north to TO. This contradicts Yuko’s
initial beliefs, and she seeks to promote the acceptation of
Takeshi’s claim into her initial beliefs. To represent Yuko’s
beliefs and Takeshi’s claim, one can consider three proposi-
tional variables n,w, f , which respectively stand for “PO is
located north to TO”, “PO is located west to TO”, and “PO is
far from TO”. Then Yuko’s initial beliefs can be encoded by
the propositional formula ϕY = ¬w ∧ (n ⇒ f) (Fig. 1(a)),
and Takeshi’s claim by µT = n ∧ ¬f (Fig. 1(b)).

Yuko has several options. First, she may choose to put
trust into Takeshi’s claim, and revise her initial beliefs ϕY
by µT . If she uses the Dalal revision operator ◦Dal (Dalal
1988), then her revised beliefs is a formula whose (unique)
model is the closest one to ϕ w.r.t. the Hamming distance,
i.e., ϕY ◦Dal µT ≡ n ∧ ¬w ∧ ¬f (Fig. 1(c)). In this case,
due to Yuko’s trust into Takeshi’s claim, her revised beliefs
are inconsistent with her previous beliefs. Second, she may
choose to weaken her beliefs so that to be consistent with
Takeshi’s claim by using a contraction operator, i.e., by con-
tracting Yuko’s beliefs by the negation of Takeshi’s claim.
Using the Dalal contraction operator −Dal, one adds to the
models of ϕY the model n ∧ ¬w ∧ ¬f , i.e., the closest one
to ϕY w.r.t. the Hamming distance, and her beliefs become
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Figure 1: The graphical representation of the different pieces
of beliefs from Example 1. In each case, the gray area rep-
resents the believed location of the post office (PO) w.r.t. the
town office (TO).

ϕY −Dal ¬µT ≡ ¬w (Fig. 1(d)). In this case, Yuko does not
acquire new information since her contracted beliefs are en-
tailed by her previous beliefs. Alternatively, she may want
to promote Takeshi’s claim into her initial beliefs, in such
a way as to acquire new beliefs without putting an entire
trust into Takeshi’s claim. This process can be viewed as a
midway between revision and contraction: one selects the
closest models of µT to ϕY , but allows also to select the
closest models of ϕY to µT . So for instance, using the Dalal
commutative revision operator �Dal, her new beliefs would
become ϕY �Dal µT ≡ (ϕY ◦Dal µT ) ∨ (µT ◦Dal ϕY ) ≡
¬w ∧ (f ⇒ n) (Fig. 1(e)). This is the kind of result that is
reasonable to expect when the relative certainty of µT and
ϕY is not definite.

However, using a commutative revision operator may not
be the only reasonable way to promote µT into ϕY . Fig. 1(f)
depicts an example of another reasonable choice for promo-
ting µT into ϕY (denoted ϕY ⊕ µT in the figure), which
is equivalent to the formula n ∧ (w ⇒ ¬f). 1 Furthermore,
there is no reason here to require promoting µT intoϕY to be
equivalent to promoting ϕY into µT . For instance, one may
select some models of µT that are the closest ones to ϕY ac-
cording to some revision operator, and select some models
of ϕY that are the closest ones to µT according to a different
revision operator. This is the kind of general change process
that we intend to characterize in this paper.

The key ideas underlying (respectively) the revision, con-
traction and promotion operators are illustrated in Fig. 2.
Since all those operators can be characterized semantically
in terms of model selection, one can used Venn diagrams for
representing sets of models.

Consider two (jointly inconsistent) formulas ϕ and µ re-
presented by their (disjoint) sets of models on Fig. 2(a).

1This example of promotion is formalized later in the paper.

ϕ

µ

(a) ϕ and µ

ϕ

µ

(b) Revision ϕ ◦ µ

ϕ

µ

(c) Contraction ϕ− ¬µ

ϕ

µ

(d) Promotion of µ into ϕ

Figure 2: Revision, Contraction, Promotion.

Fig. 2(b) illustrates the revision of ϕ by µ, where one se-
lects some models of µ as a result. Fig. 2(c) illustrates the
contraction of ϕ by ¬µ, so that the result is the whole set of
models of ϕ union the selection of some models of µ. Pro-
motion operators (illustrated on Fig. 2(d)) can be seen as a
midway between these two extreme scenarios: one does nei-
ther throw away all models of ϕ (as in the revision case), nor
retain all those models (as in the contraction case). Instead,
one selects some models of ϕ and some models of µ.

Beyond the definition of the class of promotion opera-
tors and some interesting subclasses of it, the main con-
tributions of the paper are as follows. We provide repre-
sentation theorems in terms of minimal change for pro-
motion operators. Then, we show that the class of promo-
tion operators is very general, since it includes as particular
cases many belief change operators. In particular revision
operators (Alchourrón, Gärdenfors, and Makinson 1985;
Gärdenfors 1988; Katsuno and Mendelzon 1991) are promo-
tion operators and contraction operators are also essentially
captured. We also discuss the close relationship with com-
mutative revision operators (Liberatore and Schaerf 1998)
(also called arbitration operators) and merging operators
(Konieczny and Pino Pérez 2002).

The proofs of propositions are given in an appendix.

Preliminaries
Our formal setting is finite propositional logic. Thus, we
consider a language L defined from a finite set V of propo-
sitional variables and the usual connectives. The elements
of L are called formulas. An interpretation I is a mapping
that assigns a truth value to every variable from V . For any
µ ∈ L, I is a model of µ, noted I |= µ iff it makes it true
in the usual truth functional way; and [µ] denotes the set of
models of µ.

We now recall the standard postulates for belief revision,
belief contraction, and LS commutative revision, starting
with the KM postulates for revision operators (Katsuno and
Mendelzon 1991):
Definition 1 (KM revision operator). A KM revision opera-
tor ◦ is a mapping associating every pair of formulas (ϕ, µ)
with a formula ϕ ◦ µ such that for all formulas µ, ϕ, µ′, ϕ′,
the following conditions are satisfied:
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(R1) ϕ ◦ µ |= µ;
(R2) If ϕ ∧ µ 6|= ⊥, then ϕ ◦ µ ≡ ϕ ∧ µ;
(R3) If µ 6|= ⊥, then ϕ ◦ µ 6|= ⊥;
(R4) If ϕ ≡ ϕ′ and µ ≡ µ′, then ϕ ◦ µ ≡ ϕ′ ◦ µ′;
(R5) (ϕ ◦ µ) ∧ µ′ |= ϕ ◦ (µ ∧ µ′);
(R6) If (ϕ ◦µ)∧µ′ 6|= ⊥, then ϕ ◦ (µ∧µ′) |= (ϕ ◦µ)∧µ′.

The postulates for contraction operators (Alchourrón,
Gärdenfors, and Makinson 1985; Gärdenfors 1988;
Caridroit, Konieczny, and Marquis 2015) are:
Definition 2 (CKM contraction operator). A contraction
operator − is a mapping associating every pair of formu-
las (ϕ, µ) with a formula ϕ − µ such that for all formulas
µ, ϕ, µ′, ϕ′, the following conditions are satisfied:
(C1) ϕ |= ϕ− µ;
(C2) If ϕ 6|= µ, then ϕ− µ |= ϕ;
(C3) If ϕ− µ |= µ, then |= µ;
(C4) If ϕ |= µ, then (ϕ− µ) ∧ µ |= ϕ;
(C5) If ϕ ≡ ϕ′ and µ ≡ µ′, then ϕ− µ ≡ ϕ′ − µ′;
(C6) ϕ− (µ ∧ µ′) |= (ϕ− µ) ∨ (ϕ− µ′);
(C7) If ϕ− (µ ∧ µ′) 6|= µ, then ϕ− µ |= ϕ− (µ ∧ µ′).

And the postulates for LS commutative revision (Libera-
tore and Schaerf 1998) are:
Definition 3 (LS commutative revision operator). An LS
commutative revision operator � is a mapping associating
every pair of formulas (ϕ, µ) with a formula ϕ � µ such that
for all formulas µ, ϕ, µ′, ϕ′, the following conditions are sa-
tisfied:
(A1) ϕ � µ ≡ µ � ϕ;
(A2) ϕ ∧ µ |= ϕ � µ;
(A3) If ϕ ∧ µ 6|= ⊥, then ϕ � µ |= ϕ ∧ µ;
(A4) If ϕ ∨ µ 6|= ⊥, then ϕ � µ 6|= ⊥;2

(A5) If ϕ ≡ ϕ′ and µ ≡ µ′, then ϕ � µ ≡ ϕ′ � µ′;

(A6) ϕ � (µ ∨ µ′) ≡

{
ϕ � µ or
ϕ � µ′ or
(ϕ � µ) ∨ (ϕ � µ′);

(A7) ϕ � µ |= ϕ ∨ µ;
(A8) If ϕ 6|= ⊥, then (ϕ � µ) ∧ ϕ 6|= ⊥.

Let us finally recall the representation theorem for belief
revision operators in terms of faithful assignments (Katsuno
and Mendelzon 1991):
Definition 4 (Faithful assignment). A faithful assignment is
a mapping that associates with any formula ϕ a pre-order
≤ϕ such that:
1. If I |= ϕ and J |= ϕ, then I 'ϕ J
2. If I |= ϕ and J 6|= ϕ, then I <ϕ J
3. If ϕ ≡ ϕ′, then ≤ϕ=≤ϕ′

We say that a faithful assignment is total if it associates with
any formula a total pre-order.

2The original formulation of (A4) in (Liberatore and Schaerf
1998) also requires the reciprocal statement, but we omitted it here
since it is implied by (A7).

Proposition 1. (Katsuno and Mendelzon 1991) A revision
operator ◦ satisfies postulates (R1)-(R6) if and only if there
exists a total faithful assignment ϕ 7→≤ϕ such that [ϕ◦µ] =
min([µ],≤ϕ).

This theorem shows that belief revision operators select
as result of the revision process the models of the change
formula µ that are the most plausible ones w.r.t. ϕ (i.e., the
minimal ones w.r.t. ≤ϕ).

Promotion Operators
Our aim is to define promotion operators, i.e., operators that
allow to “enhance” a formula µ in the current belief (ϕ) of an
agent. In particular, the promoted beliefs of the agent (i.e.,
once µ has been taken into account) are expected to be con-
sistent with µ. Formally, a promotion operator is defined as
follows:

Definition 5 (Promotion operators). A promotion operator
	 is a mapping associating a pair of formulas (ϕ, µ) with a
formula ϕ 	 µ such that the following conditions are satis-
fied:

(P1) ϕ	 µ |= ϕ ∨ µ;
(P2) If ϕ ∧ µ 6|= ⊥, then ϕ	 µ ≡ ϕ ∧ µ;
(P3) If µ 6|= ⊥, then (ϕ	 µ) ∧ µ 6|= ⊥;
(P4) If ϕ ≡ ϕ′ and µ ≡ µ′, then ϕ	 µ ≡ ϕ′ 	 µ′;
(P5) If (ϕ	 µ) ∧ µ ∧ γ 6|= ⊥, then

[ϕ	 (µ ∧ γ)] ∧ µ ≡ (ϕ	 µ) ∧ µ ∧ γ;
(P6) If (ϕ	 µ) ∧ ϕ ∧ γ 6|= ⊥, then

[(ϕ ∧ γ)	 µ] ∧ ϕ ≡ (ϕ	 µ) ∧ ϕ ∧ γ;
(P7) If [(ϕ ∧ γ)	 µ] ∧ ϕ 6|= ⊥, then (ϕ	 µ) ∧ ϕ 6|= ⊥.

A consensual promotion operator ⊕ is a promotion operator
satisfying the following additional condition:

(P8) If ϕ 6|= ⊥, then (ϕ⊕ µ) ∧ ϕ 6|= ⊥.

Let us explain the meaning of these postulates. (P1) im-
poses that the promotion ϕ 	 µ of µ in ϕ implies the dis-
junction of the two formulas ϕ and µ. This can be seen as a
minimal change requirement: no models outside those of the
two formulas involved in the change operation can be con-
sidered in the result of the promotion process. (P2) states that
if the conjunction of the two formulas ϕ and µ is consistent,
then the result of the promotion must be equivalent to this
conjunction. This postulate can also be seen as a minimal
change requirement: if ϕ and µ are not conflicting, then one
can keep them together. (P3) is a (weak) success postulate:
one wants the result of the promotion process to be consis-
tent with the new piece of information µ. (P4) is a traditional
irrelevance of syntax requirement: the result of the promo-
tion process is the same if ϕ or µ is replaced by a logically
equivalent formula. (P5) is right conjunction. It describes the
extent to which a promotion by µ can be related to a promo-
tion by µ ∧ γ. If µ ∧ γ is consistent with the result of the
promotion by µ, then the result of the promotion by µ∧γ of
the same formula ϕ will lead to an equivalent result (when
the focus is laid on the models of µ ∧ γ). This postulate is
the counterpart of the (R5-R6) postulates for KM revision
operators. (P6) is left conjunction. This is the dual of (P6)
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for ϕ: it describes the extent to which a promotion of ϕ can
be related to a promotion of ϕ∧γ. (P6) indicates that if ϕ∧γ
is consistent with the result of the promotion of ϕ, then the
result of the promotion of ϕ ∧ γ by the same formula µ will
lead to an equivalent result (when the focus is laid on the
models of ϕ ∧ γ). (P7) states that if the promotion of a for-
mula is consistent with a logically weaker formula, then the
promotion of this weaker formula by the same formula µ
must also be consistent with this weaker formula.

These postulates define the class of promotion operators.
If one adds (P8) to this set, then one obtains the subclass
of consensual promotion operators, where less priority is
given to µ. Note that the promotion postulate (P3) is the only
asymmetric postulate. Thus, when one adds its dual (P8) to
the list of postulates, the two formulas ϕ and µ get exactly
the same status (however, this does not imply that the opera-
tor is commutative, i.e., satisfies (A1)).

It is straightforward to show that:
Proposition 2. If a promotion operator satisfies (P8), then
it satisfies (P7).

More properties can be established when focusing on
commutative operators:
Proposition 3. If a promotion operator satisfies (A1), then:
• it satisfies (P3) if and only if it satisfies (P8);
• it satisfies (P6) if and only if it satisfies (P5).

One can also easily verify that the postulates characte-
rizing promotion operators are not self-conflicting, i.e., the
class of promotion operators is not empty. Indeed, a simple
promotion operator can be defined as follows:
Definition 6 (Drastic promotion operator). The drastic pro-
motion operator, denoted 	D, is defined as:

ϕ	D µ =

{
ϕ ∧ µ if consistent,
ϕ ∨ µ otherwise.

Proposition 4. The drastic promotion operator	D is a con-
sensual promotion operator in the sense of Definition 5, i.e.,
it satisfies postulates (P1-P8).

This operator is clearly the weakest promotion operator,
in the sense that for every ϕ and µ any promotion operator
	 satisfies ϕ	µ |= ϕ	D µ. In the following, we show how
more interesting promotion operators can be designed.

Representation Theorems
We first provide a representation theorem for promotion ope-
rators. This theorem shows that a promotion operator can be
defined from two classical KM revision operators and a trig-
ger function. It also provides a characterization of the pro-
motion operators in terms of minimal change based on total
faithful assignments.

Let us first introduce the notion of trigger function:
Definition 7 (Trigger function). A trigger function is a map-
ping σ associating any formula µ with a formula σ(µ) such
that for all formulas µ, µ′:
• µ |= σ(µ),

• if µ ≡ µ′ then σ(µ) ≡ σ(µ′).

Applying the trigger function to the change formula µ
generates a dilation of µ (i.e., a logically weaker formula)
(Bloch and Lang 2000). The trigger function is used to de-
cide whether or not ϕ 	 µ is consistent with the old beliefs
of the agent (ϕ).
Proposition 5 (Representation theorem for 	). 	 is a pro-
motion operator (i.e., it satisfies (P1-P7)) if and only if there
exist two KM revision operators ◦1, ◦2, and a trigger func-
tion σ, such that for all formulas ϕ, µ,

ϕ	 µ = (ϕ ◦1 µ) ∨ (µ ◦2 (ϕ ∧ σ(µ))).

	 is said to be induced by ◦1, ◦2, and σ.
Thanks to the representation theorem for KM revision

operators (cf. Proposition 1), the previous result can be
rephrased in terms of total faithful assignments:
Proposition 6. 	 is a promotion operator (i.e., it satisfies
(P1-P7)) if and only if there exist a trigger function σ, and
two total faithful assignments ϕ 7→≤1

ϕ and ϕ 7→≤2
ϕ, such

that for all formulas ϕ, µ,

[ϕ	 µ] =

 min([µ],≤1
ϕ) ∪min([ϕ],≤2

µ)
if ϕ ∧ σ(µ) 6|= ⊥,

min([µ],≤1
ϕ) otherwise.

Thus promoting µ into ϕ consists in (i) including some
worlds of µ; and (ii) including some worlds of ϕ provided
that ϕ is “close enough” to µ (where the admissible neigh-
borhood of µ is made precise by σ). The representation the-
orem also shows that promoting µ in ϕ using 	 carries out
a µ-promotion, in the sense of (Schwind et al. 2016), given
that we always have ϕ ∧ µ |= ϕ	 µ |= ϕ ∨ µ.

Let us now give a representation theorem for consensual
promotion operators. This theorem is similar to the previous
one except that specifying a trigger function is not needed.
Proposition 7 (Representation theorem for ⊕). ⊕ is a con-
sensual promotion operator (i.e., it satisfies (P1-P8)) if and
only if there exist two KM revision operators ◦1, ◦2, such
that for all formulas ϕ, µ, ϕ⊕ µ ≡ (ϕ ◦1 µ) ∨ (µ ◦2 ϕ).

Rephrasing this result directly in terms of total faithful
assignments we get:
Proposition 8. ⊕ is a consensual promotion operator (i.e.,
it satisfies (P1-P8)) if and only if there exist two total faithful
assignments ϕ 7→≤1

ϕ and ϕ 7→≤2
ϕ, such that for all ϕ, µ,

[ϕ⊕ µ] = min([µ],≤1
ϕ) ∪ min([ϕ],≤2

µ).

Clearly enough, a consensual promotion operator ⊕ is a
promotion operator for which the associated trigger function
σ satisfies σ(µ) ≡ > for every formula µ.

Given Proposition 7, it is natural to focus on the specific
case when the two KM revision operators used to define ⊕
coincide:
Definition 8 (Commutative promotion operator). A commu-
tative promotion operator is a consensual promotion ope-
rator ⊕ induced by a single KM revision operator ◦ (i.e.,
◦1 = ◦2 = ◦).
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A representation theorem for commutative promotion
operators can be easily obtained by adding (A1) to (P1-P8).

Let us go back to our introductive example:

Example 1 (continued). We can easily see that the operator
�Dal introduced in Example 1 is a commutative promotion
operator, since it is defined for every ϕ, µ as ϕ �Dal µ ≡
(ϕ◦Dal µ)∨ (µ◦Dal ϕ). Yet according to Proposition 7, any
consensual promotion operator can be characterized by two
KM revision operators ◦1, ◦2, so that one can easily define
a consensual promotion operator ⊕ that is not commutative.
For instance, let:
• ◦D be the drastic revision defined for every ϕ, µ as ϕ ◦D
µ = ϕ ∧ µ if ϕ ∧ µ is consistent, ϕ ◦D µ = µ otherwise;
• ◦∗ be any revision operator associated with a total faithful

assignment ϕ 7→≤ϕ (cf. Definition 4) defined such that
given the interpretation ω = n∧¬w ∧ f , we have ω <µT

ω′ for any ω′ |= ¬µT , ω′ 6= ω.3

Then by defining the consensual promotion operator ⊕ as
ϕ⊕ µ ≡ (ϕ ◦D µ) ∨ (µ ◦∗ ϕ) for any ϕ, µ, we get that:

ϕY ⊕ µT ≡ (ϕY ◦D µT ) ∨ (µT ◦∗ ϕY )
≡ ((¬w ∧ (n⇒ f)) ◦D (n ∧ ¬f))
∨((n ∧ ¬f) ◦∗ (¬w ∧ (n⇒ f)))

≡ (n ∧ ¬f) ∨ (n ∧ ¬w ∧ f)
≡ n ∧ (w ⇒ ¬f).

In particular, this corresponds to the promotion of µ into ϕ
depicted in Fig. 1(f).

Links with other Change Operators
In this section we show that belief revision is a special case
of promotion, and we establish a correspondence between
revision and a subclass of promotion operators. We also
show that contraction operators merely correspond to spe-
cial cases of promotion operators. Finally, we discuss some
links with LS commutative revision operators and merging
operators.

Let us start with belief revision:
Proposition 9. Every KM revision operator is a promotion
operator.

Switching from revision operators to promotion operators
leads to enlarge the family of belief change operators since
promotion operators do not satisfy (R1) in the general case
(for instance, the drastic promotion operator introduced in
Definition 6 does not satisfy (R1)). Interestingly, KM revi-
sion operators are exactly the promotion operators satisfying
(R1) :
Proposition 10. Let 	 be a promotion operator. If 	 satis-
fies (R1), then 	 is a KM revision operator (it satisfies also
(R2)-(R6)).

The case of contraction of ϕ by the negation of µ is a
bit more complicated because of the trivial case when ¬µ is
not entailed by ϕ, i.e., when ϕ ∧ µ is consistent. Indeed, if
ϕ ∧ µ 6|= ⊥ then (C2) implies that ϕ − ¬µ ≡ ϕ, but pro-
motion operators demands (because of (P2)) that in this case

3Note that ◦∗ 6= ◦Dal.

the result has to be ϕ ∧ µ. So stricto sensu, contraction ope-
rators are not promotion operators. However, this trivial case
is not the significant one for “true” contraction, that makes
sense merely when ϕ ∧ µ is not consistent. In such a non-
trivial case, contraction operators behave as specific promo-
tion operators. To make it more formal, one needs the notion
of conjunctive contraction operator induced by a contrac-
tion operator:
Definition 9 (Conjunctive contraction operator). Given a
contraction operator −, the conjunctive contraction opera-
tor ÷ induced by − is defined as follows:

ϕ÷ µ =

{
ϕ ∧ µ if ϕ ∧ µ 6|= ⊥,
ϕ− ¬µ otherwise.

The change achieved by applying ÷ on ϕ when µ is the
change formula is essentially a contraction (by the negation
of µ), since in the non-trivial case, i.e., when ϕ∧µ |= ⊥, the
two operators ÷ and − give the same results, i.e., ϕ ÷ µ ≡
ϕ−¬µ. The only difference between÷ and− thus concerns
the trivial case when contraction requires strictly no change
(the result must be equivalent to ϕ) whereas for promotion
operators more information is expected to be preserved (the
result must be ϕ ∧ µ). Accordingly, one can safely use the
÷ operator in the Levi identity4 instead of the corresponding
contraction operator − for defining the corresponding revi-
sion operator ◦−. To be more precise, if − is a contraction
operator, then ◦− defined as ϕ ◦− µ = (ϕ − ¬µ) ∧ µ can
also be defined using ÷: ϕ ◦− µ ≡ (ϕ÷ µ) ∧ µ.

That stated, we can show that ÷ operators are promotion
operators:
Proposition 11. Every conjunctive contraction operator ÷
is a consensual promotion operator.

The other way around, consensual promotion operators
can also be defined in terms of contraction (conjunctive or
not):
Proposition 12. Let ⊕ be the consensual promotion opera-
tor induced by two KM revision operators ◦1 and ◦2. Let−1

and −2 be the contraction operators associated with ◦1 and
◦2 using the Harper identity5. Let ÷1 and ÷2 be the con-
junctive contraction operators induced by −1 and −2 (re-
spectively). For every ϕ and µ, we have

ϕ⊕ µ ≡ (ϕ−1 ¬µ) ∧ (µ−2 ¬ϕ) ≡ (ϕ÷1 µ) ∧ (µ÷2 ϕ).

This proposition sheds some light on the inferential power
of consensual promotion, by providing a framing of the re-
sulting formula. Indeed, since −2 satisfies (C1), µ−2 ¬ϕ is
entailed by µ. Because ϕ ◦1 µ ≡ (ϕ −1 ¬µ) ∧ µ thanks to
Levi identity, we get that

ϕ ◦1 µ |= ϕ⊕ µ |= ϕ−1 ¬µ.
4Let ÷ be a contraction operator, the Levy identity is ϕ ◦ µ =

(ϕ÷ ¬µ) ∧ µ (Gärdenfors 1988)
5Let ◦ be a revision operator, the Harper identity is ϕ ÷ µ =

(ϕ ◦ µ) ∨ ϕ (Caridroit, Konieczny, and Marquis 2015; Gärdenfors
1988)
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Furthermore, since ϕ ◦1 µ ≡ ϕ ⊕ µ ≡ ϕ ÷1 µ ≡ ϕ ∧ µ
when ϕ ∧ µ is consistent, and since ϕ ÷1 µ ≡ ϕ −1 ¬µ in
the remaining case, we also have

ϕ ◦1 µ |= ϕ⊕ µ |= ϕ÷1 µ.

Concerning commutative revision (aka arbitration) opera-
tors (Liberatore and Schaerf 1998) a direct relationship can
be established. Indeed, every LS commutative revision ope-
rator � can be defined as ϕ � µ ≡ (ϕ ◦ µ) ∨ (µ ◦ ϕ) for
some KM revision operator ◦ (Liberatore and Schaerf 1998;
Konieczny and Pino Pérez 2002), and Proposition 7 shows
that consensual promotion operators can be defined as (ϕ ◦1
µ) ∨ (µ ◦2 ϕ). As a direct consequence:

Proposition 13. Every LS commutative revision operator is
a commutative promotion operator.

In addition, commutative promotion operators are “al-
most” LS commutative revision operators.

Proposition 14. Every commutative promotion operator sa-
tisfies (A1-A5) and (A7-A8).

In fact, as illustrated by Proposition 7, commutative pro-
motion operators are ”true” commutative revision operators.
LS commutative revision operators ask for the additional
property (A6) that prevents some revision operators from be-
ing used.

Noteworthy, a class of consensual promotion opera-
tors can also be obtained from IC merging operators ∆
(Konieczny and Pino Pérez 2002). In a nutshell, an IC
merging operator considers a vector of formulas E =
〈ϕ1, . . . , ϕm〉 and an integrity constraint IC, and associates
with them a consistent new formula ∆IC(E) which is con-
sistent with IC and aims to represent the point of view of
the group E (see (Konieczny and Pino Pérez 2002) for more
details on the underlying IC postulates):

Proposition 15. Let ∆ be an IC merging operator
(Konieczny and Pino Pérez 2002), and let 	 be the operator
defined by ϕ 	 µ = ∆ϕ∨µ(〈ϕ, µ〉) for every ϕ and µ. Then
	 is a commutative promotion operator.

Finally, we would like to discuss the relationships be-
tween promotions operators and two other kinds of opera-
tors that allow softer change than revision operators: non-
prioritized revision operators and improvement operators.

Several studies about non-prioritized revision operators
exist (see (Hansson 1997b) for an overview). The basic idea
on which such operators are based is to get rid of postulate
(R1), i.e., the success of revision is no longer ensured, so
the new formula is not always accepted after revision. For
instance, for screened revision (Makinson 1997), a classical
revision is performed only if the change formula does not
threat a specific part of the old beliefs (the core). (R1) is also
questioned by credibility-limited revision operators (Hans-
son et al. 2001; Booth et al. 2012) which are operators satis-
fying the following (Relative success) postulate: ϕ ◦ µ |= µ
or ϕ ◦ µ ≡ ϕ. While this postulate requires the revised be-
liefs to entail the new piece of evidence µ or not to change
anything, our postulate (P3) requires promoted beliefs to be
consistent with µ when µ is consistent. Obviously enough,

an operator satisfying (P3) and (Relative success) would sa-
tisfy the success postulate (R1), showing that the two ap-
proaches weaken (R1) in quite different ways. In Hansson’s
semi-revision (Hansson 1997a), the new formula µ is first
added to the initial beliefs, and in case of inconsistency µ or
some of the initial beliefs are deleted. Semi-revision departs
significantly from promotion since it is based on a different
setting: initial beliefs are represented through a belief base,
i.e., a set of formulas that is not logically closed. As a con-
sequence, semi-revision is not required to satisfy the syntax
independence postulate (P4), unlike promotion operators.

Another framework where the success postulate is not
expected is the one of improvement operators (Konieczny
and Pino Pérez 2008; Konieczny, Medina Grespan, and Pino
Pérez 2010). The underlying purpose is similar to the one
considered in this paper, that is, enhancing the change for-
mula into the beliefs of the agent without doing it too drasti-
cally (i.e., without being forced to accept it entirely). How-
ever, improvement differs from promotion on several as-
pects. On the one hand, when using a promotion operator,
it is ensured that at least one model of the change formula
µ is a model of the result of the promotion process, whereas
this cannot be guaranteed when improvement operators are
used instead. On the other hand, promoting µ into ϕ can
lead to pieces of belief that would not be allowed by an im-
provement operator: namely, using promotion, one can se-
lect some models of µ and some models of ϕ, but not nec-
essarily all of them (in the general case, i.e., when ϕ ∧ µ
is not consistent). Contrastingly, with improvement, only
two cases are possible: keeping all models of ϕ or remov-
ing them all, but no selection of the models of ϕ is possi-
ble (again, in the general case, i.e., when ϕ ∧ µ is not con-
sistent). Last but not least, improvement operators consider
epistemic states, i.e., they are defined in the Darwiche and
Pearl’s framework (Darwiche and Pearl 1997), while promo-
tion operators are defined in the classical AGM framework,
where the pieces of belief are propositional formulas (Kat-
suno and Mendelzon 1991), and not more complex objects.
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Conclusion
We have presented in this paper a new class of belief change
operators, promotion operators, and some representation
theorems for them. This is, as far as we know, the most
general family of belief change operators ever introduced,
since it captures as special cases classical KM revision ope-
rators, Liberatore and Shaerf commutative revision opera-
tors, and (essentially) belief contraction operators. More pre-
cisely, our approach offers a unifying setting for these three
families, that allows one to better understand the principle
of minimal change in belief change, and encompasses new
change operators, which can be seen as in-between revision
and (conjunctive) contraction. From the new perspective on
belief change given in the paper, revision and contraction
can be viewed as two “extreme” cases of change operators;
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choosing an operator that is strictly in-between is appropri-
ate when a more cautious operator is expected.

In perspective, we plan to find a direct characterization
of the class of conjunctive contraction operators introduced
in the paper, which looks interesting on its own. Another
research perspective is to look at the iterated change pro-
blem. For belief revision and contraction this requires to
shift to epistemic states for the beliefs of the agent, while
keeping a formula for the new evidence (Darwiche and Pearl
1997). Since promotion operators provide a more symme-
trical treatment to the two pieces of information, this may
require to use epistemic states on both sides.

Appendix: proofs of propositions
Proofs of Proposition 2 and Proposition 3. Direct by de-
finition of the postulates.

Proof of Proposition 4. (P1), (P2) and (P4) are directly sa-
tisfied by definition of 	D. Then, one can remark that 	D
satisfies (A1), that allows us to take advantage of Proposition
3 in the rest of the proof. Let us now show that the remaining
postulates are satisfied.

(P3) One can verify by definition of 	D that (ϕ	D µ) ∧
µ ≡ µ, whether ϕ ∧ µ is consistent or not. So if µ is con-
sistent, then (ϕ 	D µ) ∧ µ is also consistent. Hence, 	D
satisfies (P3).

(P8) By Proposition 3, since 	D satisfies (A1) and (P3).
(P6) Assume that (ϕ 	D µ) ∧ ϕ ∧ γ is consistent. Let

us consider two cases: first, assume that ϕ ∧ µ is consistent.
Then (ϕ	Dµ)∧ϕ∧γ ≡ ϕ∧µ∧γ. This means thatϕ∧µ∧γ is
consistent, so we also get that [(ϕ∧γ)	Dµ]∧ϕ ≡ ϕ∧µ∧γ.
Hence, [(ϕ ∧ γ) 	D µ] ∧ ϕ ≡ (ϕ 	D µ) ∧ ϕ ∧ γ. now,
assume that ϕ ∧ µ is inconsistent. Then on the one hand,
(ϕ 	D µ) ∧ ϕ ∧ γ ≡ (ϕ ∨ µ) ∧ ϕ ∧ γ ≡ ϕ ∧ γ. And
on the other hand, since ϕ ∧ µ is inconsistent, we have that
ϕ∧ γ ∧ µ is also inconsistent, and so [(ϕ∧ γ)	D µ]∧ ϕ ≡
[(ϕ ∧ γ) ∨ µ] ∧ ϕ ≡ (ϕ ∧ γ) ∨ (µ ∧ ϕ) ≡ ϕ ∧ γ. Hence,
[(ϕ ∧ γ) 	D µ] ∧ ϕ ≡ (ϕ 	D µ) ∧ ϕ ∧ γ. This shows that
	D satisfies (P6).

(P5) By Proposition 3, since 	D satisfies (A1) and (P6).
(P7) Assume that ((ϕ∧γ)	Dµ)∧ϕ is consistent. We fall

into two cases. Assume first that ϕ ∧ µ is consistent. Then
(ϕ	Dµ)∧ϕ ≡ ϕ∧µ, which is consistent. Assume now that
ϕ∧µ is inconsistent. Then (ϕ	Dµ)∧ϕ ≡ (ϕ∨µ)∧ϕ ≡ ϕ.
Yet ϕ is consistent since we assumed that ((ϕ∧γ)	Dµ)∧ϕ
is consistent. Hence, (ϕ	D µ) ∧ ϕ, so 	D satisfies (P7).

This concludes the proof.

Proof of Proposition 5. (If) Let ◦1 and ◦2 be KM revision
operators, σ be a trigger function, and 	 be an operator de-
fined as ϕ 	 µ = (ϕ ◦1 µ) ∨ (µ ◦2 (ϕ ∧ σ(µ))). We show
that 	 satisfies (P1-P7):

(P1) By (R1), ϕ◦1µ |= µ, and µ◦2(ϕ∧σ(µ)) |= ϕ∧σ(µ),
so µ◦2 (ϕ∧σ(µ)) |= ϕ. Thus (ϕ◦1µ)∨(µ◦2 (ϕ∧σ(µ))) |=
ϕ ∨ µ. Hence, ϕ	 µ |= ϕ ∨ µ. So 	 satisfies (P1).

(P2) Assume that ϕ∧ µ 6|= ⊥. First, by (R2), (i) ϕ ◦1 µ ≡
ϕ ∧ µ. Second, by (R2), µ ◦2 ϕ ≡ ϕ ∧ µ. So (µ ◦2 ϕ) ∧
σ(µ) ≡ ϕ ∧ µ ∧ σ(µ), which is equivalent to ϕ ∧ µ since
µ |= σ(µ). Then since (µ ◦2 ϕ) ∧ σ(µ) 6|= ⊥, by (R5) and

(R6) it is also equivalent to µ ◦2 (ϕ ∧ σ(µ)). Hence, (ii)
µ ◦2 (ϕ ∧ σ(µ)) ≡ ϕ ∧ µ. Therefore, by (i) and (ii) above,
(ϕ◦1µ)∨(µ◦2 (ϕ∧σ(µ))) ≡ ϕ∧µ. Hence, ϕ	µ ≡ ϕ∧µ.
So 	 satisfies (P2).

(P3) Assume that µ 6|= ⊥. By (R1), ϕ ◦1 µ |= µ. Thus
((ϕ◦1µ)∨(µ◦2(ϕ∧σ(µ))))∧µ 6|= ⊥. Hence, (ϕ	µ)∧µ 6|=
⊥. So 	 satisfies (P3).

(P4) Assume that ϕ ≡ ϕ′ and µ ≡ µ′. By (R4), ϕ ◦1
µ ≡ ϕ′ ◦1 µ′, and since σ(µ) ≡ σ(µ′), µ ◦2 (ϕ ∧ σ(µ)) ≡
µ′ ◦2 (ϕ′ ∧ σ(µ′)). Thus (ϕ ◦1 µ) ∨ (µ ◦2 (ϕ ∧ σ(µ))) ≡
(ϕ′ ◦1 µ′) ∨ (µ′ ◦2 (ϕ′ ∧ σ(µ′))). Hence, ϕ	 µ ≡ ϕ′ 	 µ′.
So 	 satisfies (P4).

(P5) is proved similarly as (P6) below.
(P6) Assume first that ϕ∧µ 6|= ⊥. By (P2), ϕ	µ ≡ ϕ∧µ.

If (ϕ	µ)∧ϕ∧ γ 6|= ⊥, then (ϕ	µ)∧ϕ∧ γ ≡ ϕ∧µ∧ γ,
and then ϕ∧ γ ∧ µ 6|= ⊥, so [(ϕ∧ γ)	 µ]∧ϕ ≡ ϕ∧ γ ∧ µ,
thus (ϕ	 µ) ∧ ϕ ∧ γ ≡ [(ϕ ∧ γ)	 µ] ∧ ϕ.

Now, assume that ϕ∧µ |= ⊥ and (ϕ	µ)∧ϕ∧γ 6|= ⊥. We
have (ϕ	µ)∧ϕ∧γ ≡ (ϕ◦1µ∨(µ◦2(ϕ∧σ(µ))))∧ϕ∧γ. By
(R1), ϕ◦1µ |= µ, and since ϕ∧µ |= ⊥, (ϕ◦1µ)∧ϕ |= ⊥. So
(ϕ◦1µ∨(µ◦2(ϕ∧σ(µ))))∧ϕ∧γ ≡ (µ◦2(ϕ∧σ(µ)))∧ϕ∧γ.
By (R1), µ◦2(ϕ∧σ(µ)) |= ϕ∧σ(µ), so µ◦2(ϕ∧σ(µ)) |= ϕ,
and then (µ ◦2 (ϕ ∧ σ(µ))) ∧ ϕ ≡ µ ◦2 (ϕ ∧ σ(µ)). Thus
µ ◦2 (ϕ∧ σ(µ))∧ϕ∧ γ ≡ µ ◦2 (ϕ∧ σ(µ))∧ γ. We got that
(ϕ	 µ) ∧ ϕ ∧ γ ≡ µ ◦2 (ϕ ∧ σ(µ)) ∧ γ. Yet by hypothesis,
(ϕ	µ)∧ϕ∧γ 6|= ⊥, so µ◦2(ϕ∧σ(µ))∧γ 6|= ⊥. Then by (R5)
and (R6), we get that µ◦2(ϕ∧σ(µ))∧γ ≡ µ◦2(ϕ∧γ∧σ(µ)).
Yet by (R1), µ ◦2 (ϕ ∧ γ ∧ σ(µ)) |= ϕ ∧ γ ∧ σ(µ), thus
µ ◦2 (ϕ ∧ γ ∧ σ(µ)) |= ϕ. So µ ◦2 (ϕ ∧ γ ∧ σ(µ)) ≡ (µ ◦2
(ϕ ∧ γ ∧ σ(µ))) ∧ ϕ. Then, by (R1) (ϕ ∧ γ) ◦1 µ |= µ, and
since ϕ ∧ µ |= ⊥, we have ((ϕ ∧ γ) ◦1 µ) ∧ ϕ |= ⊥. So
we can write (µ ◦2 (ϕ ∧ γ ∧ σ(µ))) ∧ ϕ ≡ [((ϕ ∧ γ) ◦1
µ) ∨ (µ ◦2 (ϕ ∧ γ ∧ σ(µ)))] ∧ ϕ. By definition of 	, this
is equivalent to ((ϕ ∧ γ) 	 µ) ∧ ϕ. Overall, we got that
(ϕ	 µ) ∧ ϕ ∧ γ ≡ ((ϕ ∧ γ)	 µ) ∧ ϕ. So 	 satisfies (P6).

(P7) Assume first that ϕ∧µ 6|= ⊥. By (P2), ϕ	µ ≡ ϕ∧µ,
so (ϕ 	 µ) ∧ ϕ ≡ ϕ ∧ µ, and thus (ϕ 	 µ) ∧ ϕ 6|= ⊥. So
assume now that ϕ∧µ |= ⊥ and ((ϕ∧γ)	µ)∧ϕ 6|= ⊥ (the
precondition of (P7)). We must prove that (ϕ	µ)∧ϕ 6|= ⊥.
We know that ((ϕ∧γ)	µ)∧ϕ ≡ (((ϕ∧γ)◦1µ)∨(µ◦2 (ϕ∧
γ ∧σ(µ))))∧ϕ 6|= ⊥. By (R1), (ϕ∧ γ) ◦1 µ |= µ, and since
ϕ∧µ |= ⊥, ((ϕ∧γ)◦1µ)∧ϕ |= ⊥. So (((ϕ∧γ)◦1µ)∨(µ◦2
(ϕ∧γ∧σ(µ))))∧ϕ ≡ (µ◦2(ϕ∧γ∧σ(µ)))∧ϕ 6|= ⊥. So µ◦2
(ϕ∧γ∧σ(µ)) is consistent, and by (R1), ϕ∧γ∧σ(µ) 6|= ⊥.
Thus ϕ∧σ(µ) 6|= ⊥. So by (R1) and (R3), µ◦2 (ϕ∧σ(µ)) 6|=
⊥ and µ ◦2 (ϕ∧σ(µ)) |= ϕ. So (µ ◦2 (ϕ∧σ(µ)))∧ϕ 6|= ⊥,
thus ((ϕ ◦1 µ)∨ (µ ◦2 (ϕ∧ σ(µ))))∧ϕ 6|= ⊥, which means
that (ϕ	 µ) ∧ ϕ 6|= ⊥. So 	 satisfies (P7).

(Only If) Let 	 be an operator satisfying (P1-P7). De-
fine a trigger function σ such that for every formula µ and
every interpretation I , I |= σ(µ) iff I |= αI 	 µ, where αI
denotes any formula such that [αI ] = {I}. Define the revi-
sion operator ◦1 as ϕ ◦1 µ ≡ (ϕ 	 µ) ∧ µ. and define ◦2
as ϕ ◦2 µ ≡ (µ 	 ϕ) ∧ µ if (µ 	 ϕ) ∧ µ 6|= ⊥, otherwise
ϕ◦2µ ≡ µ. Let us verify first that ◦1 and ◦2 satisfy (R1-R6).

(R1) By definition of ◦1, ϕ ◦1 µ ≡ (ϕ 	 µ) ∧ µ, thus
ϕ ◦1 µ |= µ. So ◦1 satisfies (R1). By definition of ◦2, we
have ϕ ◦2 µ ≡ (µ 	 ϕ) ∧ µ or ϕ ◦2 µ ≡ µ. In both cases,
ϕ ◦2 µ |= µ. So ◦2 satisfies (R1).
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(R2) Assume that ϕ ∧ µ 6|= ⊥. By (P2), ϕ 	 µ ≡ ϕ ∧ µ.
Thus ϕ◦1µ ≡ (ϕ	µ)∧µ ≡ ϕ∧µ. So ◦1 satisfies (R2). And
(µ	ϕ)∧µ ≡ ϕ∧µ 6|= ⊥, thus ϕ◦2µ ≡ (µ	ϕ)∧µ ≡ ϕ∧µ.
So ◦2 satisfies (R2).

(R3) Assume that µ 6|= ⊥. By (P3), (ϕ	µ)∧µ 6|= ⊥, thus
ϕ ◦1 µ 6|= ⊥. So ◦1 satisfies (R3). Now, if (µ	ϕ)∧µ 6|= ⊥,
then ϕ◦2 µ ≡ (µ	ϕ)∧µ, and thus ϕ◦2 µ 6|= ⊥. So assume
that (µ 	 ϕ) ∧ µ |= ⊥. In this case, ϕ ◦2 µ ≡ µ, yet we
assumed µ 6|= ⊥, so ϕ ◦2 µ 6|= ⊥. Hence, ◦2 satisfies (R3).

(R4) Assume that ϕ ≡ ϕ′ and µ ≡ µ′. By (P4), ϕ	 µ ≡
ϕ′	µ′. Thus ϕ◦1µ ≡ (ϕ	µ)∧µ ≡ (ϕ′	µ′)∧µ′ ≡ ϕ′◦1µ′.
So ◦1 satisfies (R4). Then, if (µ 	 ϕ) ∧ µ 6|= ⊥, ϕ ◦2 µ ≡
(µ 	 ϕ) ∧ µ ≡ (µ′ 	 ϕ′) ∧ µ′ by (P4), which is consistent
and thus equivalent to ϕ′ ◦2µ′. Otherwise, (µ	ϕ)∧µ |= ⊥,
and then ϕ ◦2 µ ≡ µ ≡ µ′. This is equivalent to ϕ′ ◦2 µ′,
since (µ	 ϕ) ∧ µ |= ⊥ and by (P4) (µ′ 	 ϕ′) ∧ µ′ |= ⊥. In
both cases, ϕ ◦2 µ ≡ ϕ′ ◦2 µ′. So ◦2 satisfies (R4).

(R5-R6) We first need to show that if (ϕ◦1µ1)∧µ2 6|= ⊥,
ϕ◦1 (µ1∧µ2) ≡ (ϕ◦1µ1)∧µ2. So assume (ϕ◦1µ1)∧µ2 6|=
⊥. By definition of ◦1, (ϕ ◦1 µ1) ∧ µ2 ≡ (ϕ 	 µ1) ∧ µ1 ∧
µ2 ≡ ((ϕ 	 µ1) ∧ µ2) ∧ (µ1 ∧ µ2), which is consistent,
thus equivalent to (ϕ	 (µ1 ∧ µ2))∧ (µ1 ∧ µ2) by (P5), i.e.,
equivalent to ϕ ◦1 (µ1 ∧ µ2) by definition of ◦1. We got that
(ϕ ◦1 µ1) ∧ µ2 ≡ ϕ ◦1 (µ1 ∧ µ2). So ◦1 satisfies (R5-R6).

Now we need to show that if (ϕ ◦2 µ1) ∧ µ2 6|= ⊥, ϕ ◦2
(µ1∧µ2) ≡ (ϕ◦2 µ1)∧µ2. So assume (ϕ◦2 µ1)∧µ2 6|= ⊥.
We fall into two cases:
• case (i): (µ1	ϕ)∧µ1 6|= ⊥. Then (ϕ◦2µ1)∧µ2 ≡ (µ1	
ϕ)∧µ1∧µ2 ≡ ((µ1	ϕ)∧µ1∧µ2)∧µ2, which is consistent,
so by (P6) it is equivalent to ((µ1∧µ2)	ϕ)∧µ1∧µ2, which
is equivalent to ϕ ◦2 (µ1 ∧µ2), by definition of ◦2 and since
it is consistent.
• case (ii): (µ1	ϕ)∧µ1 |= ⊥. Then (ϕ◦2µ1)∧µ2 ≡ µ1∧µ2.
We need to show that it is also equivalent to ϕ ◦2 (µ1 ∧ µ2).
Yet since (µ1 	 ϕ) ∧ µ1 |= ⊥, by (P7) we get that ((µ1 ∧
µ2)	 ϕ) ∧ µ1 |= ⊥, thus ((µ1 ∧ µ2)	 ϕ) ∧ µ1 ∧ µ2 |= ⊥.
By definition of ◦2, we get that ϕ ◦2 (µ1 ∧ µ2) ≡ µ1 ∧ µ2,
that was left to be shown.

If (ϕ ◦2 µ1) ∧ µ2 6|= ⊥, we have shown in both cases (i)
and (ii) above that ϕ ◦2 (µ1 ∧ µ2) ≡ (ϕ ◦2 µ1) ∧ µ2. So ◦2
satisfies (R5) and (R6).

Let us now verify that σ is a trigger function according
to Definition 7. We need to show that for all formulas µ, µ′
such that µ ≡ µ′, (i) µ |= σ(µ) and (ii) σ(µ) ≡ σ(µ′). Let µ
and µ′ be two equivalent formulas:

(i) Let I be an interpretation such that I |= µ, and let us
show that I |= σ(µ). Since I |= µ, αI ∧ µ 6|= ⊥. By (P2),
αI 	 µ ≡ αI ∧ µ. And by definition of σ, I |= σ(µ).

(ii) Let I be an interpretation. We have I |= σ(µ) iff I |=
αI 	 µ (by definition of σ) iff I |= αI 	 µ′ (by (P4)) iff
I |= σ(µ′) (by definition of σ). Thus σ(µ) ≡ σ(µ′).

Let us now show that for all formulas ϕ, µ, ϕ	µ ≡ (ϕ◦1
µ)∨(µ◦2 (ϕ∧σ(µ))). By (P1), ϕ	µ ≡ (ϕ	µ)∧(ϕ∨µ) ≡
((ϕ	 µ) ∧ µ) ∨ ((ϕ	 µ) ∧ ϕ) ≡ (ϕ ◦1 µ) ∨ ((ϕ	 µ) ∧ ϕ)
by definition of ◦1. What remains to be shown is that (ϕ 	
µ) ∧ ϕ ≡ µ ◦2 (ϕ ∧ σ(µ)). We fall into two cases:
• case (i): (ϕ	µ)∧ϕ 6|= ⊥. Let us first prove that (ϕ	µ)∧
ϕ |= σ(µ). Let I |= (ϕ	µ)∧ϕ. We have I |= (ϕ	µ)∧ϕ∧
αI . By (P6), I |= ((ϕ∧αI)	µ)∧ϕ. Thus I |= (αI	µ)∧ϕ,

so I |= αI 	 µ, i.e., I |= σ(µ). We have just proved that
(ϕ	µ)∧ϕ |= σ(µ). So (ϕ	µ)∧ϕ ≡ (ϕ	µ)∧ϕ∧σ(µ) ≡
((ϕ∧σ(µ))	µ)∧ϕ∧σ(µ) (by (P6), since it is consistent),
which by definition of ◦2 is equivalent to µ ◦2 (ϕ ∧ σ(µ)),
since it is consistent. Hence, (ϕ	µ)∧ϕ ≡ µ◦2 (ϕ∧σ(µ)).
• case (ii): (ϕ 	 µ) ∧ ϕ |= ⊥. Since we want to prove that
(ϕ 	 µ) ∧ ϕ ≡ µ ◦2 (ϕ ∧ σ(µ)), it is enough to show that
µ ◦2 (ϕ ∧ σ(µ)) |= ⊥. By (R3), this boils down to show
that ϕ ∧ σ(µ) |= ⊥. Toward a contradiction, assume that
ϕ ∧ σ(µ) 6|= ⊥, and let I |= ϕ ∧ σ(µ). By definition of σ,
I |= αI 	 µ. Yet I |= ϕ, so I |= ((ϕ ∧ αI)) 	 µ) ∧ ϕ. So
((ϕ ∧ αI))	 µ) ∧ ϕ 6|= ⊥, and by (P7), (ϕ	 µ) ∧ ϕ 6|= ⊥.
This contradicts (ϕ	µ)∧ϕ |= ⊥. Therefore, (ϕ	µ)∧ϕ ≡
µ ◦2 (ϕ ∧ σ(µ)).

We have shown that in both cases (i) and (ii) above, (ϕ	
µ) ∧ ϕ ≡ µ ◦2 (ϕ ∧ σ(µ)), from which we conclude that
ϕ	 µ ≡ (ϕ ◦1 µ) ∨ (µ ◦2 (ϕ ∧ σ(µ))).

Proof of Proposition 6. This proof follows from Proposi-
tion 5 and from the usual representation theorem for belief
revision (Proposition 1). It is easy to check that an opera-
tor defined from a trigger function and two total faithful as-
signements as

[ϕ	 µ] =

 min([µ],≤1
ϕ) ∪min([ϕ],≤2

µ)
if ϕ ∧ σ(µ) 6|= ⊥,

min([µ],≤1
ϕ) otherwise,

satisfies (P1-P7).
For the converse implication, suppose that 	 is a promo-

tion operator. From Proposition 7 we have that ϕ 	 µ ≡
(ϕ ◦1 µ) ∨ (µ ◦2 (ϕ ∧ σ(µ)). There are two cases.

First if ϕ ∧ σ(µ) is inconsistent, then by (R1) we know
that µ ◦2 (ϕ ∧ σ(µ)) is inconsistent. So ϕ 	 µ ≡ ϕ ◦1 µ.
Now from Proposition 1, there exists a total faithful assign-
ment ϕ 7→≤1

ϕ s.t. [ϕ ◦1 µ] = min([µ],≤1
ϕ). So [ϕ 	 µ] =

min([µ],≤1
ϕ). The second case is when ϕ ∧ σ(µ) is con-

sistent, then from Proposition 1 there exists ϕ 7→≤1
ϕ and

ϕ 7→≤′ϕ and [ϕ	µ] = min([µ],≤1
ϕ)∪min([ϕ∧σ(µ)],≤′µ).

We will look at two subcases. First suppose that ϕ ∧ µ is
consistent, then min([ϕ ∧ σ(µ)],≤′µ) = min([ϕ],≤′µ), so
[ϕ 	 µ] = min([µ],≤1

ϕ) ∪ min([ϕ],≤′µ). Now, if ϕ ∧ µ is
inconsistent, define ≤2 from ≤′. For any formula α 6≡ µ,
≤2
α=≤′α. For µ define I ≤2

µ J as:

• If I |= ϕ ∧ σ(µ) and J |= ϕ ∧ ¬σ(µ) and I '′µ J , then
I <2

µ J ,
• If I |= ϕ ∧ σ(µ), J |= ϕ ∧ ¬σ(µ), K |= ¬ϕ and I '′µ
J '′µ K, then I <2

µ K,

• Otherwise I ≤2
µ J iff I ≤′µ J .

We have that µ 7→≤2
µ is a total faithful assignement, and we

have min([ϕ ∧ σ(µ)],≤′µ) = min([ϕ],≤2
µ). So there exists

ϕ 7→≤1
ϕ and ϕ 7→≤′ϕ s.t.

[ϕ	 µ] = min([µ],≤1
ϕ) ∪min([ϕ],≤2

µ).

We have shown that there exists ϕ 7→≤1
ϕ and ϕ 7→≤2

ϕ s.t.
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[ϕ	 µ] =

 min([µ],≤1
ϕ) ∪min([ϕ],≤2

µ)
if ϕ ∧ σ(µ) 6|= ⊥,

min([µ],≤1
ϕ) otherwise.

Proof of Proposition 7. (If) Let ◦1 and ◦2 be KM revi-
sion operators, and ⊕ be an operator defined as ϕ ⊕ µ ≡
(ϕ ◦1 µ)∨ (µ ◦2 ϕ). We show that ⊕ satisfies (P1-P8). Since
◦2 satisfies (R4), ϕ ⊕ µ ≡ (ϕ ◦1 µ) ∨ (µ ◦2 (ϕ ∧ σ>(µ)),
where σ>(µ) is defined as σ>(µ) = > for every formula
µ. By Proposition 5, ⊕ satisfies (P1-P7). What remains to
be shown is that ⊕ satisfies (P8). Assume ϕ 6|= ⊥. By (R1),
µ ◦2 ϕ |= ϕ and by (R3), µ ◦2 ϕ 6|= ⊥. So (µ ◦2 ϕ)∧ϕ 6|= ⊥.
Thus ((ϕ◦1µ)∨(µ◦2ϕ))∧ϕ 6|= ⊥. Hence, (ϕ⊕µ)∧ϕ 6|= ⊥.
So ⊕ satisfies (P8).

(Only If) Let⊕ be an operator satisfying (P1-P8). Define
an operator ◦1 as ϕ ◦1 µ ≡ (ϕ ⊕ µ) ∧ µ and an operator ◦2
as ϕ ◦2 µ ≡ (µ⊕ ϕ) ∧ µ.

Let us define an additional operator ◦′2 as ϕ ◦′2 µ ≡ (µ ⊕
ϕ) ∧ µ if (µ ⊕ ϕ) ∧ µ 6|= ⊥, otherwise ϕ ◦′2 µ ≡ µ. Lastly,
let us define a trigger function σ as σ(µ) ≡ > for every µ.

Since ⊕ satisfies (P1-P8), from Proposition 5 we get that
◦1 and ◦′2 are KM revision operators, and ϕ ⊕ µ ≡ (ϕ ◦1
µ) ∨ (µ ◦′2 (ϕ ∧ σ(µ))), i.e., ϕ ⊕ µ ≡ (ϕ ◦1 µ) ∨ (µ ◦′2 ϕ),
since for every formula µ, σ(µ) ≡ >.

What we need to show is that ϕ⊕µ ≡ (ϕ◦1µ)∨(µ◦2ϕ),
but since ϕ ⊕ µ ≡ (ϕ ◦1 µ) ∨ (µ ◦′2 ϕ), what remains to be
shown is that ϕ ◦2 µ ≡ ϕ ◦′2 µ. We fall into two cases:
• case (i): (µ ⊕ ϕ) ∧ µ 6|= ⊥. Then by definition, ϕ ◦′2 µ ≡
(µ⊕ ϕ) ∧ µ ≡ ϕ ◦2 µ.
• case (ii): (µ⊕ϕ)∧µ |= ⊥. First, since ϕ◦2µ ≡ (µ⊕ϕ)∧µ
by definition, we have that ϕ ◦2 µ |= ⊥. Second, ϕ ◦′2 µ ≡
µ by definition. Yet since (µ ⊕ ϕ) ∧ µ |= ⊥ and since ⊕
satisfies (P8), we get µ |= ⊥. Thus ϕ ◦′2 µ |= ⊥. We got that
ϕ ◦2 µ ≡ ϕ ◦′2 µ. We have showed that for all formulas ϕ, µ,
ϕ⊕ µ ≡ (ϕ ◦1 µ) ∨ (µ ◦2 ϕ).

Proof of Proposition 8. This proof follows directly from
Proposition 7 and from the usual representation theorem for
belief revision (Proposition 1). From Proposition 7 we have
that ϕ⊕µ ≡ (ϕ◦1µ)∨(µ◦2ϕ). Now from Proposition 1 we
know that there exists a total faithful assignment ϕ 7→≤1

ϕ s.t.
ϕ ◦1 µ = min([µ],≤1

ϕ), and similarly for ◦2 we know that
there exists a total faithful assignment ϕ 7→≤2

ϕ s.t. ϕ ◦2 µ =

min([µ],≤2
ϕ). So putting this together we obtain that there

exists ϕ 7→≤1
ϕ and ϕ 7→≤2

ϕ s.t. ϕ ⊕ µ = min([µ],≤1
ϕ)

∪ min([ϕ],≤2
µ).

Proof of Proposition 9. Let ◦ be a KM revision operator.
We need to show that ◦ is a promotion operator. Let us define
the trigger function σ as σ(µ) = µ for every formula µ. Let
us define the operator 	 as ϕ 	 µ = (ϕ ◦ µ) ∨ (µ ◦ (ϕ ∧
σ(µ))). According to Proposition 5, by construction, 	 is a
promotion operator. Yet for all formulas ϕ, µ, we fall into
one of the following two cases:

• case (i): ϕ ∧ µ is consistent. Then:
ϕ	 µ ≡ (ϕ ◦ µ) ∨ (µ ◦ (ϕ ∧ σ(µ))) (by def. of 	)

≡ (ϕ ◦ µ) ∨ (µ ◦ (ϕ ∧ µ)) (by def. of σ)
≡ (ϕ ∧ µ) ∨ (µ ∧ (ϕ ∧ µ)) (by (R2))
≡ ϕ ∧ µ
≡ ϕ ◦ µ (by (R2)).

• case (ii): ϕ ∧ µ is inconsistent. Then:
ϕ	 µ ≡ (ϕ ◦ µ) ∨ (µ ◦ (ϕ ∧ σ(µ))) (by def. of 	)

≡ (ϕ ◦ µ) ∨ (µ ◦ (ϕ ∧ µ)) (by def. of σ)
≡ (ϕ ◦ µ) ∨ (µ ◦ ⊥)
≡ ϕ ◦ µ (by (R1)).

In both cases, we get that ϕ ◦ µ ≡ ϕ	 µ. Then since 	 is a
promotion operator, ◦ is a promotion operator as well. This
concludes the proof.

Proof of Proposition 10. Let 	 be a promotion operator,
i.e., it satisfies postulates (P1-P7), and assume that 	 satis-
fies (R1). We must prove that 	 is a KM revision operator,
i.e., that it satisfies postulates (R1-R6). (R1) is satisfied by
assumption, and (R2) and (R4) are identical to (P2) and (P4),
respectively, so 	 trivially satisfies (R2) and (R4). More-
over, (R3) is a direct consequence of (P3). What remains to
be shown is that postulates (R5) and (R6) are satisfied. Both
(R5) and (R6) are trivially satisfied if ϕ 	 (µ1 ∧ µ2) is in-
consistent, so assume that ϕ 	 (µ1 ∧ µ2) is consistent. We
must prove that (ϕ 	 µ1) ∧ µ2 ≡ ϕ 	 (µ1 ∧ µ2). Yet from
(R1), ϕ	µ1 |= µ1, so (ϕ	µ1)∧µ2 ≡ (ϕ	µ1)∧µ1∧µ2.
Then (ϕ 	 µ1) ∧ µ1 ∧ µ2 is consistent, and by (P5) we get
that (ϕ	µ1)∧µ1∧µ2 ≡ [ϕ	 (µ1∧µ2)]∧µ1. Yet by (R1),
ϕ	 (µ1 ∧µ2) |= µ1 ∧µ2, so ϕ	 (µ1 ∧µ2) |= µ1, and then
[ϕ	 (µ1 ∧ µ2)]∧ µ1 ≡ ϕ	 (µ1 ∧ µ2). we have just proved
that (ϕ 	 µ1) ∧ µ2 ≡ ϕ 	 (µ1 ∧ µ2), which shows that 	
satisfies (R5) and (R6). This concludes the proof.

Proof of Proposition 11. Let ÷ be a conjunctive contrac-
tion operator. We need to show that ÷ is a consensual pro-
motion operator. Let us define the operator ⊕ as ϕ ⊕ µ =
(ϕ◦÷µ)∨(µ◦Dϕ), where (i) ◦÷ is the KM revision operator
associated with÷ defined asϕ◦÷µ = (ϕ÷µ)∧µ, and (ii)◦D
is the KM drastic revision operator defined as ϕ◦Dµ = ϕ∧µ
if ϕ ∧ µ is consistent, otherwise ϕ ◦D µ = µ. According to
Proposition 7, by construction, ⊕ is a consensual promotion
operator. Yet for all formulas ϕ, µ, we fall into one of the
following two cases:
• case (i): ϕ ∧ µ is consistent. Then:
ϕ⊕ µ ≡ (ϕ ◦÷ µ) ∨ (µ ◦D ϕ) (by def. of ⊕)

≡ (ϕ ◦÷ µ) ∨ (µ ∧ ϕ) (by def. of ◦D)
≡ (ϕ ∧ µ) ∨ (µ ∧ ϕ) (since ◦÷ sat. (R2))
≡ ϕ ∧ µ
≡ ϕ÷ µ (by def. of ÷).

• case (ii): ϕ ∧ µ is inconsistent. Then:
ϕ⊕ µ ≡ (ϕ ◦÷ µ) ∨ (µ ◦D ϕ) (by def. of ⊕)

≡ (ϕ ◦÷ µ) ∨ ϕ (by def. of ◦D)
≡ ((ϕ÷ µ) ∧ µ) ∨ ϕ
≡ ((ϕ−÷ ¬µ) ∧ µ) ∨ ϕ
≡ (ϕ−÷ ¬µ) ∧ ϕ) ∨ (ϕ ∧ µ)
≡ (ϕ−÷ ¬µ) ∧ ϕ
≡ ϕ−÷ ¬µ (by (C1))
≡ ϕ÷ µ (by def. of ÷).
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In both cases, we get that ϕ÷ µ ≡ ϕ⊕ µ. Then since ⊕ is a
consensual promotion operator,÷ is a consensual promotion
operator as well. This concludes the proof.

Proof of Proposition 12. Using Harper identity, we have
(ϕ−1 ¬µ)∧ (µ−2 ¬ϕ) ≡ ((ϕ ◦1 µ)∨ϕ)∧ ((µ ◦2 ϕ)∨ µ).
Distributing ∧ over ∨, we get as an equivalent formula
((ϕ◦1µ)∧(µ◦2ϕ))∨((ϕ◦1µ)∧µ)∨((µ◦2ϕ)∧ϕ)∨(ϕ∧µ).
There are two cases:
• ϕ∧µ is consistent: in this case, we have ϕ◦1µ ≡ µ◦2ϕ ≡
ϕ∧µ since ◦1 and ◦2 satisfies (R2), hence the above formula
is also equivalent to ϕ ∧ µ. We also have ϕ ⊕ µ ≡ ϕ ∧ µ,
ϕ ÷1 µ ≡ ϕ ∧ µ, and ϕ ÷2 µ ≡ ϕ ∧ µ. Hence ϕ ⊕ µ ≡
(ϕ−1¬µ)∧ (µ−2¬ϕ) ≡ (ϕ÷1 µ)∧ (µ÷2ϕ), as expected.
• ϕ ∧ µ is inconsistent: in this case, the formula can be sim-
plified into ((ϕ◦1µ)∧(µ◦2ϕ))∨((ϕ◦1µ)∧µ)∨((µ◦2ϕ)∧ϕ).
Since ◦1 and ◦2 satisfies (R1), we have (ϕ◦1µ)∧µ ≡ ϕ◦1µ
and (µ ◦2 ϕ) ∧ ϕ ≡ µ ◦2 ϕ. Hence the formula can be fur-
ther simplified into (ϕ ◦1 µ) ∨ (µ ◦2 ϕ), which is equivalent
to ϕ ⊕ µ. Finally, when ϕ ∧ µ is inconsistent, we also have
that ϕ −1 ¬µ ≡ ϕ ÷1 µ and ϕ −2 ¬µ ≡ ϕ ÷2 µ, and this
completes the proof.

Proof of Proposition 13. From (Liberatore and Schaerf
1998; Konieczny and Pino Pérez 2002), we already know
that every LS commutative revision operator � can be de-
fined as ϕ � µ ≡ (ϕ ◦ µ) ∨ (µ ◦ ϕ) for some KM revision
operator ◦. The result is a direct consequence of Definition 8
and Proposition 7.

Proof of Proposition 14. Let ⊕ be a commutative promo-
tion operator. So ⊕ is defined as ϕ⊕ µ ≡ (ϕ ◦ µ)∨ (µ ◦ϕ).
Then the fact that ⊕ satisfies (A1-A5) and (A7-A8) is a di-
rect consequence of (Konieczny and Pino Pérez 2002) (De-
finition 45, Theorem 46 and Theorem 47).

Proof of Proposition 15. Let ∆ be an IC merging operator
(Konieczny and Pino Pérez 2002), and let 	 be an operator
defined as ϕ 	 µ = ∆ϕ∨µ(〈ϕ, µ〉). From (Konieczny and
Pino Pérez 2002) (Theorem 46), we get thatϕ	µ = (ϕ◦µ)∨
(µ◦ϕ), for some KM revision operator ◦. So by Definition 8,
	 is a commutative consensual promotion operator.
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Konieczny, S., and Pino Pérez, R. 2008. Improvement ope-
rators. In Proceedings of the Eleventh International Confer-
ence on Principles of Knowledge Representation And Rea-
soning (KR’08), 177–187.
Konieczny, S.; Medina Grespan, M.; and Pino Pérez, R.
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