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Abstract

In this paper, we study the problem of aggregation of Dung’s abstract argumentation
frameworks. An argumentation framework allows the representation of conflictual
agent’s beliefs by using a set of arguments and interactions between them (i.e.,
attack or non-attack). One argumentation framework per agent can be used to
represent the beliefs of a group of agents. The aggregation process aims to represent
the beliefs of this group by solving the potential conflicts between them. Some
aggregation operators were defined, and more recently, some rationality properties
for this process were introduced. In this work, we study the existing operators as well
as some new ones, which we define in light of the proposed properties. We highlight
the fact that existing operators do not satisfy a lot of properties. The conclusions
are that on one hand none of the existing operators seem fully satisfactory, but on
the other hand some of the properties proposed so far seem too demanding.
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1 Introduction

Argumentation is based on the exchange and the evaluation of interacting
arguments. In the last twenty years, it became one of the core subjects of Ar-
tificial Intelligence [4]. Indeed, argumentation can be used for modelling some
aspects of reasoning, decision making, and dialogue; as such, it is now adopted
as part of real-world applications from legal reasoning to sense-making in in-
telligence analysis. Among the existing formalisms, the work of Dung [19] on
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abstract argumentation is now recognized as a significant basis in the field. In
Dung’s abstract argumentation theory, the relation between arguments takes
the form of conflicts, and the main goal is to extract a subset of arguments
which can be jointly accepted w.r.t the way they interact. Dung’s argumen-
tation frameworks (AF) are modelled by directed graphs, where the nodes
represent the abstract arguments and the edges represent the attacks between
them. Several semantics (see [2] for an overview) were proposed to indicate
which subsets of arguments, called extensions, are acceptable.

Studying dynamics of argumentation frameworks is a question of interest for
researchers in the area. In recent years there have been a lot of contributions
regarding the problem of evolution (revision) of argumentation frameworks
[8,5,1,16,3,11,12]. However, there are few contributions on the aggregation of
argumentation frameworks. This problem, illustrated in Fig. 1, is an important
one for multi-agent systems: each agent may be associated with a different ab-
stract argumentation framework on the same set of arguments (i.e. each agent
may have different views on what constitutes a valid attack) that represents
his beliefs. The problem is how to define a suitable representation of the be-
liefs of the group. This is an important question on its own, but also because
this computed aggregated argumentation framework could be considered as
the result of an ideal negotiation process, with respect to which the results of
practical negotiation protocols (see e.g. the work by Bonzon and Maudet [6])
could be evaluated.

AF1

AF2

...

AFn

agent 1’s
beliefs

agent 2’s
beliefs

...

agent n’s
beliefs

?

Fig. 1. Problem of aggregation of n AFs where each AF represents the beliefs of one
agent

Contributions on this issue have been mainly proposals of particular aggrega-
tion methods [10,27,9,22]. We focus on the methods that comply with clas-
sical Dung’s setting, meaning that they take as an input a classical abstract
argumentation frameworks, and return as an output either an abstract ar-
gumentation framework (or more generally a set of abstract argumentation
frameworks), or a set of extensions. Therefore, we do not study here proposals
like the one by Gabbay and Rodrigues [22], since the output of their frame-
work is an ordered set of arguments. Our work also differs from the work done
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by Caminada and Pigozzi [7] where the problem is how to find the correct la-
belling amongst the ones that correspond to a given argumentation framework
while we consider several argumentation frameworks as input.

To aggregate several AFs, different questions arise like: If a strict majority of
agents think that an attack between two arguments exists, should this attack
appear in the aggregation result? If an argument is accepted by all the agents,
should this argument appear in the aggregation result? Inspired by the social
choice theory, Dunne et al. [21] formally define a number of axioms for argu-
ment aggregation. However, they do not check whether existing aggregation
methods of AFs satisfy them.
This is what we propose in this work. We study existing methods from the
literature in light of the proposed properties. We also propose an additional
method based on WAFs (Weighted Argumentation Frameworks) [20,13] where
one of the possible interpretations of the weights on the attacks that is men-
tioned is that they may represent the number of agents in a group that agree
with this attack. We endorse this view, and check how to use these works to
define aggregation methods. We assume that the set of arguments is identical
for all the agents. This is common in many situations where all the agents re-
ceive the same information and accept each other’s arguments. However, they
often do not agree on whether an argument attacks another one [15]. Thus,
the agents can have same arguments but different attack relations. In such a
case, one of our operators could be useful. Of course, in some situations, the
agents do not have the same knowledge and do not share all the arguments
(e.g. because of privacy and/or strategical issues). This situation was studied
by Coste-Marquis et al. [10]. They introduce a new attack relation between
arguments, called the ignorance relation (an agent does not know whether
there is an attack between two arguments). The next step of our work could
be to propose aggregation operators in this more general setting.

The remainder of this paper is organised as follows. In the next section we
provide the necessary background on argumentation frameworks. Section 3 is
a reminder about weighted argumentation frameworks, and Section 4 recalls
the proposals for aggregating argumentation frameworks. Section 5 studies the
properties of these aggregation methods. In Section 6 we check the properties
satisfied by the existing operators. In Section 7 we propose a new aggregation
method, more precisely three variations, and study their properties. In Section
8 we sum up and discuss the obtained results, before concluding in Section 9.
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2 Preliminaries

In this section, we briefly recall some key elements of abstract argumentation
frameworks as proposed by Dung [19].

Definition 1 An argumentation framework (AF) is a pair F = 〈A,R〉
with A a set of arguments and R a binary relation on A, i.e. R ⊆ A×A, called
the attack relation. A set of arguments S ⊆ A attacks an argument b ∈ A,
if there exists a ∈ S, such that (a, b) ∈ R. We use the notation Arg(F ) = A
and Att(F ) = R.

The central question is to determine the sets of arguments that can be ac-
cepted together. Let us first introduce the notions of conflict-freeness and
acceptability.

Definition 2 Let F = 〈A,R〉 be an argumentation framework. A set of ar-
guments S ⊆ A is conflict-free in F iff there exists no a, b ∈ S such that
(a, b) ∈ R. An argument a ∈ A is acceptable with respect to S iff for each
b ∈ A, if (b, a) ∈ R then b is attacked by S.

A set of arguments is admissible when it is conflict-free and each argument
of the set is acceptable for this set. Given an argumentation framework one of
the main questions is identifying sets S of arguments which can be accepted
together (so called extensions). To find these extensions, several semantics
have been proposed but, in this paper, we only focus on the standard semantics
defined in [19]:

• S is a complete extension of F iff it is an admissible set and every argument
which is acceptable with respect to S belongs to S,
• S is a preferred extension of F iff it is a maximal (w.r.t. set inclusion ⊆)

admissible set of F ,
• S is a stable extension of F iff it is a conflict-free set and it attacks all the

arguments that do not belong to S.
• S is a grounded extension of F iff S is the least fixed point of the charac-

teristic function H of F defined by H: 2A → 2A with H(S) = {a ∈ A : a is
acceptable with respect to S}.

We denote by Eσ(F) the set of extensions of F for the semantics σ ∈ {comp(lete),
pref(erred), sta(ble), gr(ounded)}.

We can now define the acceptability status of each subset of arguments. Given
a semantics σ, an argument a is skeptically accepted iff there exists at least
one extension and a belongs to all extensions. An argument is credulously
accepted iff it belongs to at least one extension. We denote by saσ(F ) (resp.
caσ(F )) the set of skeptically (resp. credulously) accepted arguments in F .
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3 Weighted Argumentation Frameworks

Let us now turn to an extension of Dung’s framework where a weight on
each attack is added [20,13,14]. Several interpretations of weights on attacks
exist [20]: a measure of the extent of inconsistency between pairs of arguments
(the higher the weight on the attack between two arguments, the greater the
inconsistency between them), the relative strength of the attack (higher weight
denotes a stronger attack), or the number of agents that support the attack.

Definition 3 [13] A Weighted Argumentation Framework (WAF) is a triple
WF = 〈A,R,w〉 where 〈A,R〉 is a Dung abstract argumentation framework,
and w : A × A → N is a function assigning a natural number to each attack
(i.e. w(a, b) > 0 iff (a, b) ∈ R), and a null value otherwise (w(a, b) = 0 iff
(a, b) /∈ R).

Example 1 Let WF = 〈A,R,w〉 be a weighted argumentation framework
with A = {a, b, c, d, e, f}, R = {(c, a), (c, b), (d, c), (d, e), (e, d), (e, f)} and w:
(c, a)→ 3, (c, b)→ 5, (d, c)→ 5, (d, e)→ 1, (e, d)→ 2, (e, f)→ 5.

a

b

c d e f

1

2
3

5

5 5

Fig. 2. A weighted argumentation framework

Let us denote as WF the standard argumentation framework obtained from
a weighted argumentation framework WF by “forgetting” the weights, i.e. if
WF = 〈A,R,w〉 then WF = 〈A,R〉.
We later show how to use WAFs to aggregate several AFs. For the moment
let us recall how one can use them for the “relaxing” of extensions and for
selecting the best amongst several extensions.

3.1 Relaxed Extensions

Initially WAFs were introduced with the idea to ensure non-empty extensions
[20]. Roughly, the goal is to delete some attacks in order to obtain a non-empty
set of extensions.

Definition 4 [14] We say that ⊕ is an aggregation function if for every n ∈
N, ⊕ is a mapping from Nn to N such that:
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• if xi ≥ x′i, then ⊕(x1, . . . , xi, . . . , xn) ≥ ⊕(x1, . . . , x
′
i, . . . , xn)
(non-decreasingness)

• ⊕(x1, . . . , xn) = 0 iff for every i, xi = 0 (minimality)
• ⊕(x) = x (identity)

Thus, given a natural number β, an aggregation function is used to select the
set of attacks such that the aggregation of their weight is smaller than β.

Definition 5 [14] Let WF = 〈A,R,w〉 be a weighted argumentation frame-
work, σ be a semantics, and ⊗ be an aggregation function. The aggregation of
the weights of the attacks in a set S ⊆ R is w⊗(S,w) = ⊗(a,b)∈Sw(a, b). The
function Sub(R,w,β) returns the set of subsets of R whose total aggregated
weight does not exceed β: Sub(R,w, β) = {S | S ⊆ R and w⊗(S,w) ≤ β}.
The set of σβ⊗-extensions of WF, denoted E⊗,βσ (WF), is defined as:

E⊗,βσ (WF) = {E ∈ Eσ(〈A,R\S〉) | S ∈ Sub(R,w, β)}

Example 1 (cont.) Let us compute the set of σβ⊗-extensions of the WAF
illustrated in Fig. 2 for different values of β. We choose the sum as the ag-
gregation function (⊗ = Σ) and the preferred and grounded semantics (σ =
{pref, gr}).

β EΣ,β
pref (WF) EΣ,β

gr (WF)

0 {{c, e}, {a, b, d, f}} {∅}
1 {{c, e}, {a, b, d, f}} {∅, {c, e}}
2 {{c, e}, {a, b, d, f}} {∅, {c, e}, {a, b, d, f}}
3 {{c, e}, {a, c, e}, {a, b, d, f}, {a, b, d, e}} {∅, {a}, {c, e}, {a, b, d, f}, {a, b, d, e}}

Table 1
E⊗,βσ (WF) for β ∈ {0, 1, 2, 3}

We can see that there exists no non-empty grounded extension associated with
the classical argumentation framework WF : Egr(WF) = {∅}. However, in us-
ing the relaxed extensions, new extensions are generated. For example, when
β = 2, it is possible to remove either the attack from d to e (in this case we
obtain the extension {c, e}) or the attack from e to d (we obtain the extension
{a, b, d, f}). Please note that these two attacks are the only ones that are re-
movable because they have a weight lesser or equal to β. So we add these two ex-
tensions to previous ones (β < 2) to obtain EΣ,2

gr (WF) = {∅, {c, e}, {a, b, d, f}}.

In contrast to what happens in Dung’s setting, several grounded extensions
may exist when the relaxing of extensions is considered. Furthermore, it may
be the case that the empty set belongs to a set of relaxed extensions. This
situation can be problematic because it trivializes skeptical inference relation,
so the next definition removes it from the set of extensions. Thus, the most
interesting value of β is the smallest one that leads to a non-empty extension
(for the semantics under consideration):
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Definition 6 Given a weighted argumentation framework WF, a semantics
σ, and an aggregation function ⊗, the set of σ⊗-extensions of WF, denoted by
E⊗σ (WF) is defined as E⊗σ (WF) = E⊗,βσ (WF) where 1 :

• E⊗,βσ (WF) is non-trivial 2 ,
• there is no β′ < β s.t. E⊗,β′σ (WF) is non-trivial,
• for a set E of extensions, E = E \ {∅}.

Example 1 (cont.) There exists no change for the preferred semantics which
is already non-trivial when β = 0, so EΣ

pref (WF) = {{c, e}, {a, b, d, f}}. How-
ever, for the grounded semantics, the case β = 0 does not respect the first
condition concerning the non-triviality. So the smallest value of β that leads
to a non-trivial set of extensions is when β = 1. So, after removing the empty
set, we obtain EΣ

gr(WF) = {{c, e}}.

3.2 Best Extensions

In general, an argumentation framework may admit a large number of ex-
tensions for some semantics. Within the WAF setting, it is possible to take
advantage of the available weights, in order to select the “best” extensions.
In the paper by Coste-Marquis et al. [13] this selection process goes through
a comparison of the extensions’ scores, expressing intuitively how good they
are.

Definition 7 Let WF = 〈A,R,w〉 be a weighted argumentation framework.
Let E and F be two extensions of WF for a given semantics σ and ⊕ be
an aggregation function. The ⊕-attack from E on F is: S⊕(E → F ) =
⊕a∈E,b∈Fw(a, b). Then E >⊕ F iff S⊕(E → F ) > S⊕(F → E).

Let us introduce an additional parameter to the best function, that will be
useful for the operators we define in Section 7.

Definition 8 Let WF = 〈A,R,w〉 be a weighted argumentation framework
and X ⊆ 2A. Let ⊕ be an aggregation function. Then :

• best⊕1 (X,WF) = {E ∈ X : @E ′ ∈ X,E ′ >⊕ E}
• best⊕2 (X,WF) = argmaxE∈X |{E ′ ∈ X : E >⊕ E

′}|
• best⊕3 (X,WF) = argmaxE∈X |{E ′ ∈ X : E >⊕ E

′}|− |{E ′ ∈ X : E ′ >⊕ E}|
• best⊕4 (X,WF) = argmaxE∈XKS⊕(E),
where KS⊕(E) = minE′∈X,E′ 6=E(S⊕(E → E ′))

1 We add a third condition compared to the original definition [14], in order to
directly encode the non-trivial skeptical inference [14].
2 A set of extensions is non-trivial if it has at least one non-empty extension.
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The first rule selects the extensions which are not beaten by any other exten-
sion. This method can give an empty set as the answer, which is not the case
with the other three methods. The second approach consists in counting how
many extensions are defeated by a given extension. The third rule is similar
to the Copeland voting rule [25] because the score of an extension E is the
difference between the number of extensions beaten by E and the number of
extensions that beat E. The fourth method, similar to the Kramer-Simpson
voting rule [24,26], selects the extensions maximising the KS score, which is
the minimal value of ⊕-attack from E to E ′, when E ′ ranges over all extensions
of WF.

Four natural ways to define the ordering >⊕ are proposed in [13] :

Definition 9 Let WF be a weighted AF. Let ⊕ be an aggregation function.
Then, ∀i ∈ {1, 2, 3, 4}, bestσ,⊕i (WF) = best⊕i (Eσ(WF),WF).

Example 2 [13] Let us compute the best extensions of the weighted argumen-
tation framework WF illustrated in Fig. 3.

a

b

c

d

e g

f

3

5

2 2

414

2

1

1
2

2

Fig. 3. The digraph of WF

WF has five preferred extensions : Epref (WF) = {E1, E2, E3, E4, E5} with E1 =
{a, c}, E2 = {b, d, f}, E3 = {b, e, f}, E4 = {b, d, g} and E5 = {b, e, g}. To
compare these extensions, we use the ⊕-attack (see Definition 7), focusing on
two aggregation functions ⊕ = {Σ,max}:

Then, in using the different methods best, the following extensions are selected:

• bestpref,Σ1 (WF) = {E1}
• bestpref,Σ2 (WF) = {E5}
• bestpref,Σ3 (WF) = {E1, E5}
• bestpref,Σ4 (WF) = {E1}

• bestpref,max1 (WF) = {E5}
• bestpref,max2 (WF) = {E5}
• bestpref,max3 (WF) = {E5}
• bestpref,max4 (WF) = {E4}
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Σ E1 E2 E3 E4 E5

E1 × 5 5 5 5

E2 5 × 3 1 4

E3 3 5 × 6 1

E4 5 4 7 × 3

E5 3 9 4 5 ×

max E1 E2 E3 E4 E5

E1 × 2 2 2 2

E2 4 × 3 1 3

E3 2 5 × 5 1

E4 4 4 4 × 3

E5 2 5 4 5 ×

Fig. 4. Comparison of extensions from WF using the ⊕-attack (⊕ ∈ {Σ,max}).
Each number in the table corresponds to the score obtained from the attacks from
an extension in a row on an extension in the corresponding column.

4 Aggregation Operators

Some merging operators for argumentation frameworks, inspired by proposi-
tional logic merging operators [23], have been defined in the literature. From
now on, we make the hypothesis that all the argumentation frameworks are
defined on the same set of arguments X . We use the notation AF for the set of
all argumentation frameworks that can be defined from the set of arguments
X used by the agents. A profile of n AFs is denoted by F̂ = (F1, . . . , Fn) which
is a tuple in AFn.

a

b c

F1

a

b c

F2

a

b c

F3

Fig. 5. A profile of three AFs

Coste-Marquis et al. [10] were the first to consider the problem of aggregating
several argumentation frameworks. Their method is a two-phase process. In
the first phase, each argumentation framework (which have not necessarily the
same set of arguments) is converted into a partial argumentation framework
which is an extension of Dung’s framework where a new relation, called the
ignorance relation (the agent does not know whether there is an attack or not
between two arguments), is added. However, as we said in the introduction of
this section, we only consider the AFs defined from the set of arguments, so
we can directly go to the second step.
During the second step, where all the argumentation frameworks have the
same set of arguments, a distance-based method is used to aggregate them.
Indeed, the result of the aggregation is represented by one or several AFs
which are as close as possible to the given profile of AFs.
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Definition 10 Let D be a distance between AFs, F̂ be a profile and ⊕ be an
aggregation function. The merging operator ∆⊕D is defined as :

∆⊕D(F̂ ) = {F ∈ AF : F minimizes⊕ni=1 D(F, Fi)}

The distance D used by Coste-Marquis et al. [10] as an example is the edit
distance (de), which is in our case equivalent to the cardinality of the symmet-
rical difference between two attack relations. Typical examples of aggregation
functions are sum (Σ) and leximax 3 . In what follows, we focus on these two
functions.

Example 3 Let us compute the result of the aggregation of the profile repre-
sented in Fig. 5. From all of the possible AFs with three arguments that can be
computed, we select the closest AFs to the profile in the input (see Fig. 6). With

a

b c

F ′1

a

b c

F ′2

a

b c

F ′3

a

b c

F ′4

a

b c

F ′5

Fig. 6. Set of possible AFs representing the result of aggregation ∆⊕D

the sum as aggregation function and the edit distance (de) as distance between
AFs, the only AF to obtain the minimal score is F ′5 (

∑3
i=1 de(F

′
5, Fi) = 5),

so ∆Σ
de(〈F1, F2, F3〉) = {F ′5}. However, with the leximax, there are four AFs

with the minimal score : F ′1, F
′
2, F

′
3 and F ′4 (for the case of F ′1, we obtain

Leximax3
i=1de(F

′
1, Fi) = (3, 2, 1)), so ∆leximax

de (〈F1, F2, F3〉) = {F ′1, F ′2, F ′3, F ′4}.

Inspired by voting methods, other aggregation operators have been defined by
Tohmé et al. [27]. In particular, they propose a qualified voting method where
an attack (a→ b) appears in the unique resulting AF iff it appears more than
its opposite attack (b→ a) but also more than the absence of attacks (a9 b
and b9 a) and a subset of agents U believes that this attack exists:

Definition 11 Let F̂ be a profile and U ⊂ {1, . . . , n} be a subset of agents.
Let us note :

• Sa→b = |{Fi : (a, b) ∈ Att(Fi)}|
• Sb→a = |{Fi : (b, a) ∈ Att(Fi)}|
• Sa9b = |{Fi : (a, b) /∈ Att(Fi) and (b, a) /∈ Att(Fi)}|

3 When applied to a vector of n real numbers, the leximax function gives the list
of those numbers sorted in a decreasing way. Such lists are compared w.r.t. the
lexicographic ordering induced by the standard ordering on real numbers.
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Qualified voting is defined as QV (F̂ ) = 〈A,R〉, where A is the set of arguments
used by agents, and R = {(a, b) | a, b ∈ A and Sa→b > max(Sb→a, Sa9b) and
U ⊆ {i : (a, b) ∈ Att(Fi)}}.

This semantics has been defined in order to satisfy some properties inspired
from social choice theory, in particular the non-dictatorship property (we will
see the other properties in Section 5). To satisfy it, Tohmé et al. suppose
that the set U should contain at least two agents (|U | ≥ 2). In addition, it is
important to note that the set U cannot contain all the agents.

Example 3 (cont.) From the profile illustrated in Fig. 5, with U = {1, 3},
the result of the aggregation method QV is the AF depicted in Fig. 7 which
contains only the attack from a to b.

a

b c

F ′6

Fig. 7. Result returned by the aggregation method QV

Indeed, all the agents in U think that this attack exists ((a, b) ∈ Att(F1) and
(a, b) ∈ Att(F3)) and Sa→b = 2, Sb→a = 1 and Sa9b = 0, which implies
Sa→b = 2 > 1 = max(Sb→a, Sa9b). So QV (〈F1, F2, F3〉) = F ′6.

5 Properties of Aggregation Function

Dunne et al. [21] propose some rationality properties for characterizing aggre-
gation of a set of argumentation frameworks, based on translations of proper-
ties coming from social choice theory to the argumentation setting.

Recall that we denote by AF the set of all argumentation frameworks defined
from a (finite) set of arguments and that we suppose that all agents have the
same set of arguments. We denote by N the set of all agents. An aggregation
function γ is defined by γ : AFn → AF. Unless stated explicitly all the prop-
erties are defined ∀F̂ ∈ AFn.

Anonymity[21] The aggregation function γ is anonymous if it produces the
same argumentation framework for all permutations Π(F̂ ) of the input.

∀F̂ ′ ∈ Π(F̂ ) : γ(F̂ ) = γ(F̂ ′) (ANON)

Non-Triviality[21] An argumentation framework is non-trivial, for a seman-
tics σ, if it has at least one non-empty extension: |Eσ(F )| > 1 and Eσ(F ) 6=
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{∅}. Let us note AFNTσ the set of non-trivial (for the semantics σ) argumen-
tation frameworks. The aggregation function γ is σ-strongly non-trivial if
the ouput is always non-trivial:

γ(F̂ ) ∈ AFNTσ (σ-SNT)
The aggregation function γ is σ-weakly non-trivial if, when all the input
frameworks are non-trivial, then the output framework is also non-trivial:

∀F̂ ∈ AFnNTσ : γ(F̂ ) ∈ AFNTσ (σ-WNT)

Decisiveness[21] An argumentation framework is decisive, for a semantics σ,
if it has exactly one non-empty extension: |Eσ(F )| = 1 and Eσ(F ) 6= {∅}. Let
us note AFDσ the set of decisive (for the semantics σ) argumentation frame-
works. The aggregation function γ is σ-strongly decisive if the output is
always decisive:

γ(F̂ ) ∈ AFDσ (σ-SD)
The aggregation function γ is σ-weakly decisive if, when all the input frame-
works are decisive, then the output framework is also decisive:

∀F̂ ∈ AFnDσ : γ(F̂ ) ∈ AFDσ (σ-WD)

Unanimity[21] If all agents are unanimous with respect to some aspect of
the domain (extensions, attacks, . . . ), for a semantics σ, then this unanimity
should be reflected in the social outcome.
• Unanimous attack concerns attacks between arguments:

n⋂
k=1

Att(Fk) ⊆ Att(γ(F̂ )) (A-U)

• σ-unanimity concerns extensions:
n⋂
k=1
Eσ(Fk) ⊆ Eσ(γ(F̂ )) (σ-U)

• caσ-unanimity concerns credulous inference:
n⋂
k=1

caσ(Fk) ⊆ caσ(γ(F̂ )) (caσ-U)

• saσ-unanimity concerns skeptical inference:
n⋂
k=1

saσ(Fk) ⊆ saσ(γ(F̂ )) (saσ-U)

Majority[21] If a strict majority of agents agree on something, then this
should be reflected in the social outcome:
• Majority attack concerns attacks between arguments:

(|{Fi : a ∈ Att(Fi)}| > n
2
)⇒ a ∈ Att(γ(F̂ )) (A-MAJ)

• σ-majority concerns extensions:
(|{Fi : S ∈ Eσ(Fi)}| > n

2
)⇒ S ∈ Eσ(γ(F̂ )) (σ-MAJ)

• caσ-majority concerns credulous inference:
(|{Fi : x ∈ caσ(Fi)}| > n

2
)⇒ x ∈ caσ(γ(F̂ )) (caσ-MAJ)

• saσ-majority concerns skeptical inference:
(|{Fi : x ∈ saσ(Fi)}| > n

2
)⇒ x ∈ saσ(γ(F̂ )) (saσ-MAJ)
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Closure[21] The aggregation function must not invent entities that do not
exist in the input.
• Closure says that the resulting AF must match exactly one AF in the in-
put:

∃i ∈ N : Att(γ(F̂ )) = Att(Fi) (CLO)
• Attack closure says that if one attack is in the resulting AF, this attack
must be present in at least one AF in the input:

Att(γ(F̂ )) ⊆ Att(F1) ∪ . . . ∪ Att(Fn) (A-C)
• σ-closure is related to extensions:

∀S ∈ Eσ(γ(F̂ )) : S ∈
n⋃
k=1
Eσ(Fk) (σ-C)

• caσ-closure is related to credulous inference:

∀x ∈ caσ(γ(F̂ )) : x ∈
n⋃
k=1

caσ(Fk) (caσ-C)

• saσ-closure is related to skeptical inference:

∀x ∈ saσ(γ(F̂ )) : x ∈
n⋃
k=1

saσ(Fk) (saσ-C)

Tohmé et al. [27] propose some properties inspired from social choice the-
ory for characterizing good aggregation operators. A property, called Pareto
condition, is first introduced and is exactly Unanimous attack (A-U). A non-
dictatorship property is then introduced and is satisfied by all reasonable ag-
gregation operators. We give below the two other properties that they propose,
that are translations of meaningful social choice theory properties:

Positive responsiveness [27] This property says that increasing the number
of agents that have an attack should not decrease the chance for that attack
to appear in the social outcome:
(PR) Let F̂ and Ĝ be two profiles of AFn. If {Fi ∈ F̂ : (a, b) ∈ Att(Fi)} ⊆
{Gi ∈ Ĝ : (a, b) ∈ Att(Gi)} and (a, b) ∈ Att(γ(F̂ )), then (a, b) ∈ Att(γ(Ĝ))

Independence of irrelevant alternatives [27] Deciding whether an attack
holds or not should be concerned only with the attacks between these two
arguments in the input profile.
(IIA) Let F̂ and Ĝ be two profiles of AFn. If (∀i (a, b) ∈ Att(Fi) iff (a, b) ∈
Att(Gi)), then ((a, b) ∈ Att(γ(F̂ )) iff (a, b) ∈ Att(γ(Ĝ)))

This is not mentioned in [27], but one can easily show that PR implies IIA:

Proposition 1 Positive responsiveness implies Independence of Irrelevance
Alternatives.

Proof. The property PR says that for two profiles F̂ and Ĝ, if {Fi ∈ F̂ :
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(a, b) ∈ Att(Fi)} ⊆ {Gi ∈ Ĝ : (a, b) ∈ Att(Gi)}, and (a, b) ∈ Att(γ(F̂ )),
then (a, b) ∈ Att(γ(Ĝ)). This is also true in the particular case when {Fi ∈
F̂ : (a, b) ∈ Att(Fi)} = {Gi ∈ Ĝ : (a, b) ∈ Att(Gi)}. To prove IIA, let us
suppose that ∀i (a, b) ∈ Att(Fi) iff (a, b) ∈ Att(Gi). From PR we obtain that: if
(a, b) ∈ Att(γ(F̂ )) then (a, b) ∈ Att(γ(Ĝ)). Since {Fi ∈ F̂ : (a, b) ∈ Att(Fi)} =
{Gi ∈ Ĝ : (a, b) ∈ Att(Gi)}, the implication is also true in the other direction:
(a, b) ∈ Att(γ(Ĝ))⇒ (a, b) ∈ Att(γ(F̂ )). Thus, IIA is satisfied.

To this set of properties from the literature we want to add the following
intuitive properties.

Identity If all the AFs in the input coincide and are non-trivial, the result of
merging should be identical to this AF.
• Identity attack on the attacks :

Att(γ(F, . . . , F )) = Att(F ) (A-ID)
• σ-identity on the extensions :

∀F ∈ AFNTσ : Eσ(γ(F, . . . , F )) = Eσ(F ) (σ-ID)
• caσ-identity on the credulous inference :

∀F ∈ AFNTσ : caσ(γ(F, . . . , F )) = caσ(F ) (caσ-ID)
• saσ-identity on the skeptical inference :

∀F ∈ AFNTσ : saσ(γ(F, . . . , F )) = saσ(F ) (saσ-ID)
These four intuitive properties are particular cases of the property of unanim-
ity. In the case where we aggregate a single AF (which represents the beliefs of
one agent for example) then this property implies that the operator should not
change this AF, that, as we will see, is not ensured by all existing aggregation
methods.

Proposition 2 For every semantics σ such that there exists an argumentation
framework F which is not decisive, the properties σ-strong decisiveness and
σ-Identity are not compatible.

Proof. Let F be a non-decisive argumentation framework for a given se-
mantics σ (F /∈ AFDσ) and F̂ = (F, . . . , F ) be a profile. According to the
property σ-Identity, the result of aggregation, and specifically its set of exten-
sions, should be exactly the same as the input i.e. non-decisive (γ(F, . . . , F ) /∈
AFDσ). Conversely, the property of σ-strong decisiveness says that the result
should be decisive (γ(F, . . . , F ) ∈ AFDσ).

6 Properties of Existing Operators

Let us first check which properties are satisfied by the aggregation operators
of Coste-Marquis et al. [10]. Recall that the properties introduced by Dunne et
al. are defined for a unique AF as an output, whereas the merging operators
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may have several AFs as an output. We generalize the properties from the
previous section as follows: instead of asking that a property holds for the AF
at the output, we ask that the same property is satisfied by all AFs in the
output. By following this idea, most of the properties can be generalized in a
straightforward way. We generalize Positive Responsiveness as follows:
(PR) Let F̂ and Ĝ be two profiles of AFn. If {Fi ∈ F̂ : (a, b) ∈ Att(Fi)} ⊆
{Gi ∈ Ĝ : (a, b) ∈ Att(Gi)}, and ∀Fj ∈ γ(F̂ ) we have (a, b) ∈ Att(Fj), then

∀Gk ∈ γ(Ĝ) we have (a, b) ∈ Att(Gk).

There exists no straightforward way to generalize the definition of IIA to
the case when several AFs are allowed in the output. That is why we do not
consider it in the remainder of the paper.

Recall that the aggregation operators proposed in [10] have two parameters:
a distance between AFs, and an aggregation function. Thus, we will use the
edit distance (de) combined with the sum Σ (Proposition 3) or the leximax
(Proposition 4) as aggregation function.

Proposition 3 Let σ ∈ {comp, pref, sta, gr} be a semantics. MΣ
de satisfies

Anonymity (ANON), the properties of Identity (A-ID, σ-ID, caσ-ID, saσ-ID),
Unanimous attack (A-U), Majority attack (A-MAJ), Attack closure (A-C) and
Positive responsiveness (PR). The other properties are not satisfied.

Proof. For Anonymity, note that ∆Σ
de does not take into consideration the

order of merging of the AFs.
For the properties of Identity, the proof follows directly from the observation
that de(F, F ′) = 0 if and only if F = F ′. Thus, the unique argumentation
framework minimizing the sum of distances is the one present at the input.
For the properties of attacks, a link has been established by Coste-Marquis and
al. [10] between ∆Σ

de and the majority graph where an attack is in this graph iff
this attack is in a strict majority of AFs. The three properties (A-U, A-MAJ
and A-C) are thus satisfied.
For PR, suppose that ∀Fi ∈ ∆Σ

de(F̂ ), (a, b) ∈ Att(Fi) (i.e. the attack (a,b)
belongs to all AFs in the output) meaning that the attack is accepted for a
strict majority of agents [10, Definition 38]. When we increase the number of
agents that agree with this attack, the majority of agents which support this
attack a fortiori: ∀Gi ∈ ∆Σ

de(Ĝ), (a, b) ∈ Att(Gi).

In what follows, we propose several counter-examples regarding the properties
that are not satisfied by ∆Σ

de.

Counter-example 1 (σ-SNT, σ-WNT, σ-SD, σ-WD) We show that
even if all the input systems are non-trivial (resp. decisive) we can obtain a
trivial (resp. non-decisive) system in the output. We show this by using the

15



profile 〈F1, F2, F3〉 depicted in Fig. 8.

a

c

b

Epref (F1) = {{a, c}}

a

c

b

Epref (F2) = {{a, b}}

a

c

b

Epref (F3) = {{b, c}}

∆Σ
de returns a unique argumentation system:

a

c

b

F ′

Fig. 8. ∆Σ
de falsifies σ-SNT, σ-WNT, σ-SD and σ-WD

Note that each of the three systems in the profile 〈F1, F2, F3〉 is non-trivial
and decisive. By applying the merging method ∆Σ

de, we obtain a unique result:
∆Σ
de(F1, F2, F3) = {F ′} with ∑3

i=1 de(F
′, Fi) = 3 However, the result of the

merging F ′ is a trivial and non-decisive system since Epref (F ′) = {∅}. The
result is identical for σ ∈ {comp, gr}. For the stable semantics, we obtain
Esta(F ′) = ∅.

Counter-example 2 (Unanimity, Majority, Closure) To show that ∆Σ
de

does not satisfy the properties of Unanimity (σ-U, caσ-U, saσ-U), Majority (σ-
MAJ, caσ-MAJ, saσ-MAJ) and Closure (CLO, σ-C, caσ-C, saσ-C), consider
the profile 〈F1, F2, F3〉 depicted in Fig. 9.

a b c

d e

Epref (F1) =
{{a, c, d, e}}

a b c

d e

Epref (F2) =
{{a, c, d, e}}

a b c

d e

Epref (F3) =
{{a, c, d, e}}

∆Σ
de returns a unique argumentation system:

a b c

d e

Epref (F ′) = {{b, c, d, e}}

Fig. 9. ∆Σ
de falsifies the properties of Unanimity, Majority and Closure

By applying ∆Σ
de, we obtain ∆Σ

de(F1, F2, F3) = {F ′} with ∑3
i=1 de(F

′, Fi) = 3.
However, we have Epref (F ′) = {{b, c, d, e}} and hence caσ(F ′) = saσ(F ′) =
{b, c, d, e}.
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This contradicts the properties of Closure since the extension {b, c, d, e} does
not belong to any AF in the profile (idem for the argument b which is neither
skeptically nor credulously accepted by the AFs in the input).
The idea is similar for the properties of Majority since the extension {a, c, d, e},
even if present in a majoritarian way in the input, does not appear in the ex-
tensions of the output framework (idem for the argument a which is skeptically
and credulously accepted by a majority of AFs, and not accepted by the result
of the merging).
The same reasoning holds for the property of Unanimity.
The result is identical for every semantics σ ∈ {comp, pref, sta, gr}.

Let us check now if there are more properties satisfied when the leximax is
used as the aggregation function.

Proposition 4 Let σ ∈ {comp, pref, sta, gr} be a semantics. ∆leximax
de sat-

isfies Anonymity (ANON), the properties of Identity (A-ID, σ-ID, caσ-ID,
saσ-ID), Unanimous attack (A-U), Attack closure (A-C) and Positive respon-
siveness (PR). The other properties are not satisfied.

Proof. For the properties of Anonymity and Identity, the proof is the same
as for ∆Σ

de.
Concerning the property of Unanimous attack (A-U), let us suppose that an
attack is in all the n argumentation frameworks in the input but is not in
the resulting argumentation framework F ′ which has the minimal score of
Leximaxni=1de(F

′, Fi) = (e1, . . . , en). If we add this attack to F ′, then it ob-
tains a better score (with respect to the leximax) which is (e1 − 1, . . . , en − 1).
For the property Attack closure (A-C), let us suppose that an attack is in F ′,
which has a minimal score of Leximaxni=1de(F

′, Fi) = (e1, . . . , en), but this at-
tack is in no argumentation framework in the input. If we remove this attack
from F ′, then the new AF obtains a better score (e1 − 1, . . . , en − 1).
Let us now prove PR. Let F̂ and Ĝ be two profiles such that {Fi ∈ F̂ :
(a, b) ∈ Att(Fi)} ⊆ {Gi ∈ Ĝ : (a, b) ∈ Att(Gi)}, and let for every F ∗ ∈ γ(F̂ ),
(a, b) ∈ Att(F ∗). For every argumentation framework F ∗ that contains (a, b)
its leximax score with respect to Ĝ is better than or equal to its leximax score
with respect to F̂ . For every argumentation framework F ∗ that does not con-
tain (a, b) its leximax score with respect to Ĝ is worse than or equal to its
leximax score with respect to F̂ . Thus, it must be that for every G∗ ∈ γ(Ĝ),
(a, b) ∈ Att(G∗).

To see that ∆leximax
de does not satisfy σ-SNT, σ-WNT, σ-SD and σ-WD, con-

sider the example from Fig. 8.

To see that Mleximax
de does not satisfy σ-U, caσ-U, saσ-U, σ-MAJ, caσ-MAJ,

saσ-MAJ, CLO, σ-C, caσ-C and saσ-C, consider the example from Fig. 9.
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Counter-example 3 (A-MAJ) Fig. 10 contains a counter-example show-
ing that Majority attack is not satisfied by ∆leximax

de .

a b

Epref (F1) = {{a}}

a b

Epref (F2) = {{b}}

a b

Epref (F3) = {{b}}

∆leximax
de returns the following argumentation frameworks:

a b

F ′1

a b

F ′2

Fig. 10. ∆leximax
de falsifies Majority attack

The property A-MAJ is not satisfied because the attack (b, a) is not in F ′2.

Let us now turn to the properties satisfied by the qualified voting method [27].
Note that we suppose that qualified voting satisfies a given postulate if and
only if it satisfies this postulate for all |U | ≥ 2 from definition 11.

Proposition 5 QV satisfies gr-weak non triviality (gr-WNT), gr-weak deci-
siveness (gr-WD), Attack closure (A-C) and Positive responsiveness (PR) for
every |U | ≥ 2. The other properties are not satisfied.

Proof. The proof that QV satisfies PR can be found in [27].
Regarding A-C, the proof comes from the definition of QV. Indeed, an attack
appears in the result of the merging if and only if there are more agents that
agree with that attack than those who disagree (i.e. those who consider that
there is no attack or that there is an attack in the inverse direction).
For the proof of gr-WD, we recall that a non-empty grounded extension ex-
ists if there exists at least one non-attacked argument in the AF. Let F̂ =
〈F1, . . . , Fn〉 be a profile and U ⊂ {1, . . . , n}. Recall that ∀i Fi ∈ AFDgr so
there exists at least one non-attacked argument in each Fi. Let us prove that
each non-attacked argument (proposed by each agent in U) stays non-attacked
after the merging. Hence, the result, noted γ(F̂ ), will be decisive too.
Let an argument x ∈ Arg(F1) such that x is non-attacked in F1 and 1 ∈ U .
Suppose that there exists an argument y ∈ Arg(γ(F̂ )) such that (y, x) ∈
Att(γ(F̂ )). That means that all the agents in U should agree with this attack
(see the second condition of the definition of QV). However, it is not the case
of F1 because x is non-attacked. So x stays non-attacked in γ(F̂ ) implying the
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existence of a non-empty grounded extension which is unique by definition.
The proof is similar for gr-WNT because of the uniqueness of the grounded
extension.

QV does not satisfy the property ANON because of the set of agents U which
gives more importance to some argumentation frameworks. In addition, the
permutation does not garantee that the set of agents U is correctly rearranged
too which can lead to a different result.

Counter-example 4 (gr-SNT, gr-SD) The example from Fig. 11 shows
that, with U = {1, 2}, gr-SNT and gr-SD are not satisfied by QV because F ′

is trivial and non-decisive.

a

c

b

Egr(F1) = {∅}

a

c

b

Egr(F2) = {∅}

a

c

b

Egr(F3) = {∅}

The result of the merging is a trivial and non-decisive unique AF:

a

c

b

Egr(F ′) = {∅}

Fig. 11. QV falsifies gr-SNT and gr-SD

Counter-example 5 (σ-SNT, σ-WNT, σ-SD, σ-WD) The example from
Fig. 12 shows that, with U = {1, 2}, QV does not satisfy σ-SNT, σ-WNT, σ-
SD and σ-WD for σ ∈ {pref, sta, comp} because F ′ is trivial and non-decisive.

a

b c

Epref (F1) = {{a}}

a

b c

Epref (F2) = {{c}}

a

b c

Epref (F3) = {{b}}

Applying QV gives a trivial and non-decisive unique AF:
a

b c

Epref (F ′) = {∅}

Fig. 12. QV falsifies the properties of Non-Triviality and Decisiveness

It is easy to see that the same counter-example can be used for stable and
complete semantics.
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Counter-example 6 (Unanimity, Majority, Closure) To show that the
properties σ-U, caσ-U, saσ-U, σ-MAJ, caσ-MAJ, saσ-MAJ, σ-C, caσ-C and
saσ-C are violated, we can use the counter-example from Fig. 9 for any U ⊆
{1, 2, 3} and |U | ≥ 2. Indeed, the only attack resulting of the aggregation of
the three AFs is the attack from b to a. Thus, we obtain, for the four classi-
cal semantics, one extension which is different from the extension obtained in
each AF in the input.

Counter-example 7 (Identity, A-ID, A-MAJ, A-U, CLO) Consider
the example from Fig. 13, with U = {1, 2}, to show that σ-ID, caσ-ID, saσ-ID,
A-ID, A-MAJ, A-U and CLO are not satisfied by QV.

a b c

Epref (F1) = {{a}}

a b c

Epref (F2) = {{a}}

a b c

Epref (F3) = {{a}}

By applying QV, we obtain a unique result:
a b c

Epref (F ′) = {{a, b}}

Fig. 13. QV falsifies the Identity properties, A-MAJ, A-U and CLO

The same counter-example can be used for σ ∈ {comp, pref, sta, gr}.

7 Using WAFs for Aggregating AFs

Let us now propose new aggregation methods based on WAFs. When WAFs
were introduced [20,13,14] one of the possible interpretations of the weights
on an attack was that it could represent the number of agents in a group that
agree with this attack. So we endorse this interpretation and study how we
can define operators that aggregate a set of AFs using techniques developed
for WAFs.

7.1 FUSAll

The first method, noted FUSAll, consists in simply building a WAF where the
weights represent the number of agents that agree with (i.e. that have) a given
attack. Once built, we use one of four best methods (see Definition 9) in order
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to obtain a set of extensions representing the result of the aggregation of the
profile.

Definition 12 Let F̂ = (F1, . . . , Fn) be a profile

FUS
bestσ,⊕i
All (F̂ ) = bestσ,⊕i (waf(F̂ ))

where waf(F̂ ) = 〈A,R,w〉, with:

• A = X ,
• R =

⋃n
i=1Att(Fi),

• and w(a, b) = |{Fi ∈ F̂ : (a, b) ∈ Att(Fi)}|.

Note that the construction of waf(F̂ ) is exactly the one proposed by Cayrol
and Lagasquie-Schiex [9] up to a normalization of the weights, but nothing is
said about what to do with the obtained WAF. We propose to use the best
methods in order to find extensions as an output.

Example 3 (cont.) From the profile illustrated in Fig. 5, let us begin to build
the corresponding WAF (see Fig. 14).

a

b c

2
1

2

2

1

Fig. 14. WAF obtained with FUSAll

In using the preferred semantics, there are two distinct extensions Epref (WF) =
{{b}, {c}} which cannot be distinguished with the best methods because the
weight on the attack from b to c and the weight on the attack from c to b are

identical. So, FUS
bestpref,⊕i
All (〈F1, F2, F3〉) = {{b}, {c}}.

Conversely, with the grounded semantics, there exists no non-empty exten-
sion from WAF: Egr(WF) = {∅}. With no extension to compare, the result of

aggregation stays the same for all best method: FUS
bestgr,⊕i
All (〈F1, F2, F3〉) = {∅}.

Let us now check which properties are satisfied by FUSAll. Note that our
operators produce as a result a set of extensions. Hence, some of the prop-
erties, namely Unanimous attack (A-U), Majority attack (A-MAJ), Closure
(CLO), Attack closure (A-C), Identity attack (A-ID) and Positive Respon-
siveness (PR), dealing with the attacks relation, are not applicable here. We
recall also that in this paper we focus on the main semantics defined by Dung
: σ ∈ {comp, pref, sta, gr}. Finally, concerning the best extensions (see Defi-
nition 9), we choose to study the four best rules with the sum and the max
as aggregation function (⊕ ∈ {Σ,max}).
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Proposition 6 Let σ ∈ {comp, pref, sta, gr} be a semantics. FUSAll satisfies
Anonymity (ANON) and properties gr-Identity (gr-ID), cagr-Identity (cagr-
ID) and sagr-Identity (sagr-ID) for each best rule and for each aggregation
function ⊕ ∈ {Σ,max}. The other properties are not satisfied.

Proof. The claim for Anonymity is obvious since FUSAll does not use a
specific order for the aggregation. Concerning the properties of Identity, the
three properties based on extensions are satisfied because of the uniqueness of
the grounded extension.

Counter-example 8 (σ-SNT, σ-WNT, σ-SD, σ-WD) Consider the ex-
ample from Fig. 15 where F1, F2 and F3 are non-trivial and decisive.

a

c

b

Epref (F1) = {{a, c}}

a

c

b

Epref (F2) = {{a, b}}

a

c

b

Epref (F3) = {{b, c}}

We obtain the following trivial and non-decisive WAF:

a

c

b
1

11

bestpref,Σ1 (WF) = {∅}

Fig. 15. FUSAll falsifies σ-SNT, σ-WNT, σ-SD and σ-WD

The same example can be used with other best methods and for every seman-
tics σ ∈ {comp, pref, sta, gr}.

Counter-example 9 (gr-U, cagr-U, sagr-U) To show that the properties
of Unanimity (gr-U, sagr-U, cagr-U) are not satisfied under grounded seman-
tics, consider the example from Fig. 16.

Egr(F1) ∩ Egr(F2) = {a, c, e} * {{a}} = bestgr,Σ1 (WF)

Consequently, e and c, which are skeptically and credulously satisfied in all AFs
in the input, are not in the result of the aggregation. We can note that this
counter-example gives a similar result if another best method is used because
of the uniqueness of the result.

Counter-example 10 (σ-U, caσ-U, σ-ID, caσ-ID, saσ-ID) We show
that σ-U, caσ-U, σ-ID, caσ-ID and saσ-ID are falsified for σ ∈ {sta, pref, comp}.

Suppose three identical argumentation systems F1, F2, F3 (with the same ar-
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a b c

de

Egr(F1) = {a, c, e}

a b c

de

Egr(F2) = {a, c, e}

We obtain the following WAF:

a b c

de

2 1

1 1 1

1

1

bestgr,Σ1 (WF) = {a}

Fig. 16. FUSAll falsifies gr -U, cagr-U and sagr-U

a b

c d

Epref (F1,2,3) = {{a, c}, {b, d}}

a b

c d

3

3

3

3
3 3

bestpref,Σ1 (WF) = {{b, d}}

Fig. 17. FUSAll falsifies σ-U, caσ-U, σ-ID, caσ-ID and saσ-ID

guments and the same attack relation), depicted on the left side of Fig. 17.
Note that Epref (F1,2,3) = {{a, c}, {b, d}}.
The corresponding WAF is on the right side of Fig. 17. We obtain Epref (WF) =
{{a, c}, {b, d}}.
Let us compare the two extensions using bestΣ1 .

SΣ({a, c} → {b, d}) = w(a, b) + w(a, d) + . . . = 6

SΣ({b, d} → {a, c}) = w(b, a) + w(b, c) + . . . = 12

 {a, c} <Σ {b, d}

We have bestpref,Σ1 (WF) = {{b, d}}.

• σ-U, σ-ID : {a, c} * {{b, d}} = bestpref,Σ1 (WF)

• caσ-U, caσ-ID : a /∈ {b, d} = capref (best
pref,Σ
1 (WF)) (idem for c)

• saσ-ID : sapref (F1,2,3) = ∅ 6= {b, d} = sapref (best
pref,Σ
1 (WF))

Using leximax instead of sum and/or another best method yields the same re-
sult. The same counter-example can be used for stable and complete semantics.
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Counter-example 11 (saσ-U) Consider the systems from Fig. 16. F1 and
F2 have the same extensions Epref (F1) = Epref (F2) = {{a, c, e}}, and conse-
quently sapref (F1) = sapref (F2) = {a, c, e}.
The extensions of the corresponding WF are: Epref (WF) = {{a, d}, {a, c, e}}.
We have bestpref,Σ1 (WF) = {{a, d}, {a, c, e}}, so sapref (best

pref,Σ
1 (WF)) = {a}.

So we obtain:

sapref (F1) ∩ sapref (F2) = {a, c, e} * {a} = sapref (best
pref,Σ
1 (WF))

Applying stable or complete semantics together with another best method (or
max instead of sum) gives a similar result.

Counter-example 12 (σ-MAJ, caσ-MAJ, saσ-MAJ) Consider the ex-
ample depicted in Fig. 18.

a b

Epref (F1) = {{a, b}}

a b

Epref (F2) = {{a, b}}

a b

Epref (F3) = {{a}}

We obtain the following trivial WAF :
a b

1

bestpref,Σ1 (WF) = {{a}}

Fig. 18. FUSAll falsifies σ-MAJ, caσ-MAJ and saσ-MAJ

• σ-MAJ is not satisfied since the extension {a, b}, present in two input sys-
tems, does not appear as an extension of the resulting system: {a, b} /∈
{{a}} = bestpref,Σ1 (WF)

• caσ-MAJ is not satisfied because b is credulously accepted in a strict major-
ity of AF in the input, whereas it does not appear in the set of credulous
arguments of the resulting system: b /∈ {a} = capref (best

prefΣ
1 (WF))

• We use the same reasoning for saσ-MAJ: b /∈ {a} = sapref (best
pref,Σ
1 (WF))

The same example can be used for σ ∈ {comp, pref, sta, gr} and other best
methods.

Counter-example 13 (σ-C, caσ-C, saσ-C) Consider the example from Fig.
19.

• σ-closure : {a, c} /∈ {{a, d}, {a, b}} = Egr(F1) ∪ Egr(F2)
• caσ-closure, saσ-closure : c is credulously (resp. skeptically) accepted in the

result of the aggregation. However, it is not credulously (resp. skeptically)
accepted in any of the input systems : c /∈ {a, b, d} = cagr(F1) ∪ cagr(F2) =
sagr(F1) ∪ sagr(F2).
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a b c

d

Egr(F1) = {a, d}

a b c

d

Egr(F2) = {a, b}

We obtain the following WAF :

a b c

d

1

1

1

1
1

1

bestgr,Σ1 (WF) = {{a, c}}

Fig. 19. FUSAll falsifies gr-C, cagr-C and sagr-C

The same example can be used for σ ∈ {comp, pref, sta, gr}. As the result
contains exactly one extension, this result is the same for any best method
used.

In particular, one of the properties that is not satisfied is non-triviality, mean-
ing that these operators do not ensure the existence of at least one result in
the output, which can be considered as an important drawback.

7.2 FUSAllNT

A solution to satisfy non-triviality, i.e. to ensure that the set of extensions of
a WF is always non-empty, is to use the relaxed extensions techniques (see
Section 3.1).

Definition 13 Let F̂ = (F1, . . . , Fn) be a profile

FUS
σ,best⊕i ,⊗
AllNT (F̂ ) = best⊕i (E⊗σ (waf(F̂ ), waf(F̂ )))

where waf(F̂ ) = 〈A,R,w〉, with:

• A = X ,
• R =

⋃n
i=1Att(Fi),

• and w(a, b) = |{Fi ∈ F̂ : (a, b) ∈ Att(Fi)}|.

Concerning the aggregation function used for relaxed extensions, we only focus
on the sum 4 (⊗ = Σ).

4 That is the original definition by Dunne et al. [21].
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Example 3 (cont.) From the profile illustrated in Fig. 5, we obtain the same
WAF that FUSAll (see Fig. 14). Concerning the preferred semantics, the result
is exactly the same as FUSAll because the weighted argumentation framework

obtained is non-trivial. So, FUS
bestpref,⊕i ,⊗
AllNT (〈F1, F2, F3〉) = {{b}, {c}}.

With no non-empty grounded extension, we have to remove some attacks to
find at least one non-empty extension. The smallest β which returns a non-
empty extension with the sum as aggregation function is 2 because we obtain
two extensions: EΣ,2

gr (WF) = {{c}, {a, c}}. Indeed, either the attack from b to
c with a weight of 2 is removed to obtain the extension {c}, or we remove the
two attacks with a weight of 1 to obtain the extension {a, c}. However, it is
possible to make a distinction between the two extensions because c attacks a,
i.e. SΣ({a, c} → {c}) = 0 while SΣ({c} → {a, c}) = w(c, a) = 1. Consequently,

with the best methods, we have FUS
bestgr,⊕i ,Σ
AllNT (〈F1, F2, F3〉) = {{c}}.

Proposition 7 Let σ ∈ {comp, pref, sta, gr} be a semantics. Let ⊗ = Σ.
FUSAllNT satisfies Anonymity (ANON), σ-strong non-triviality (σ-SNT), σ-
weak non-triviality (σ-WNT) and properties gr-Identity (gr-ID), cagr-Identity
(cagr-ID) and sagr-Identity (sagr-ID) for each best rule and each aggregation
function ⊕ ∈ {Σ,max}. The other properties are not satisfied.

Proof. The proof for Anonymity follows directly from the definition. For the
properties of non-triviality, the proof is also trivial, since the relaxing mecha-
nisms guarantees the existence of at least one extension. Let us show that the
gr-Identity, cagr-Identity and sagr-Identity are satisfied. If the profile contains
n identical argumentation frameworks, the merged framework has the same
grounded extension and the best method is not used (since the grounded exten-
sion is unique). Furthermore, since the definition of σ-Identity, caσ-Identity
and saσ-Identity require the input frameworks to be non-trivial, their grounded
extensions are not empty. Hence, the grounded extension of the output frame-
work is not empty too.

Regarding all properties that are not satisfied by FUSAllNT , some counter-
example used for FUSAll can also be used for FUSAllNT . It is the case of the
properties σ-U, caσ-U, saσ-U, σ-ID, caσ-ID, saσ-ID, σ-MAJ, caσ-MAJ, saσ-
MAJ, σ-C, caσ-C and saσ-C. Indeed, none of those examples had a trivial
result, so using FUSAllNT does not change anything.

Counter-example 14 (σ-SD, σ-WD) The same counter-example as for
FUSAll (see Fig. 15) can be used. Indeed, in using the relaxed extensions, we
obtain the following result which is not decisive too :

bestΣ1 (EΣ
pref (WF,WF)) = {{a, b}, {a, c}, {b, c}}

The same example can be used with other best methods and for every seman-
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tics σ ∈ {comp, pref, sta, gr}.

This operator is useful if we want to take into account all the attacks given
by the agents. However, the result does not ensure the representation of the
opinion of the majority. For instance, suppose that we have nine AFs with
A = {a, b} and R = {} and one AF with the same set of arguments but
a attacks b (R = {(a, b)}). If we merge these ten AFs by using FUSAll and
FUSAllNT , then the attack (a, b), only given by one agent, is present in the
resulting system. This is clearly against the opinion of the majority.

7.3 FUSMajNT

A more natural way of constructing the WAF corresponding to the set of AFs
should take into account the notion of majority during the construction of the
WAF. This means that, instead of representing all the attacks of the profile,
we only select the attacks accepted by a strict majority of agents.

Definition 14 Let F̂ = (F1, . . . , Fn) be a profile.

FUS
σ,best⊕i ,⊗
MajNT (F̂ ) = best⊕i (E⊗σ (mwf(F̂ ),mwf(F̂ )))

where mwf(F̂ ) = 〈A,R,w〉, with:

• A = X ,
• R = {(a, b) : |{Fi : (a, b) ∈ Att(Fi)}| > n

2
},

• and w(a, b) = |{Fi ∈ F̂ : (a, b) ∈ Att(Fi)}| if (a, b) ∈ R, and = 0 otherwise.

Example 3 (cont.) From the profile illustrated in Fig. 5, we obtain the WAF
illustrated in Fig. 20 that contains the three attacks that appear in a strict
majority of AFs in the input.

a

b c

2

2

2

Fig. 20. WAF obtained with FUSMajNT

The grounded and the preferred extensions are the same here : Epref (WF) =
Egr(WF) = {{a, c}}. This extension is non-trivial (so we do not need to find
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the relaxed extensions) and is the only one (so this is obviously the best exten-

sion). FUS
bestpref,⊕i ,⊗
MajNT (〈F1, F2, F3〉) = FUS

bestgr,⊕i ,⊗
MajNT (〈F1, F2, F3〉) = {{a, c}}.

Let us now check what properties are satisfied by FUSMajNT .

Proposition 8 Let σ ∈ {comp, pref, sta, gr} be a semantics. Let ⊗ = Σ.
FUSMajNT satisfies Anonymity (ANON), σ-strong non-triviality (σ-SNT),σ-
weak non-triviality (σ-WNT) and properties gr-Identity (gr-ID), cagr-Identity
(cagr-ID) and sagr-Identity (sagr-ID) for each best rule and each aggregation
function ⊕ ∈ {Σ,max}. The other properties are not satisfied.

Proof. The proofs are similar to the ones for FUSAllNT .

Counter-example 15 (σ-SD, σ-WD) Consider the example from Fig. 21.

a b

d c

Epref (F1) = {{a, c}}

a b

d c

Epref (F2) = {{b, c, d}}

a b

d c

Epref (F3) = {{b, d}}

a b

d c

2

2

2

2

bestΣ1 (EΣ
pref (WF),WF) = {{a, c}, {b, d}}

Fig. 21. FUSMajNT falsifies σ-SD and σ-WD

Note that each of F1, F2, F3 is decisive. However, the result of the merging is
not decisive. Both extensions are equally preferred by each of best methods.
The same example can be used for other semantics. For the grounded seman-
tics, we obtain this result thanks to the relaxed extensions.

Counter-example 16 (Unanimity, Majority, Closure) Let us show that
FUSMajNT violates σ-U, caσ-U, saσ-U, σ-MAJ, caσ-MAJ, saσ-MAJ, σ-C, caσ-
C and saσ-C. Let F1, F2 and F3 be three AFs represented in Fig. 22. Each of
them has a unique grounded extension: {a, c, d, e}.

The corresponding WAF is depicted in the same figure, below the three systems.
Applying FUSMajNT yields a unique extension {b, c, d, e} (see Section 8 for
more details). The same example can be used with other best methods and for
every semantics σ ∈ {comp, pref, sta, gr}.
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a b c

d e

Egr(F1) = {{a, c, d, e}}

a b c

d e

Egr(F2) = {{a, c, d, e}}

a b c

d e

Egr(F3) = {{a, c, d, e}}

a b c

d e

3

bestΣ1 (EΣ
gr(WF),WF) = {{b, c, d, e}}

Fig. 22. FUSMajNT falsifies σ-U, caσ-U, saσ-U, σ-MAJ, caσ-MAJ, saσ-MAJ, σ-C,
caσ-C, saσ-C

Note the surprising fact that the properties of majority are not satisfied by
FUSMajNT . We will explain the reasons in the next section.

8 Discussion

Let us sum up our results in Table 2 and discuss their impact.
It is clear that there are few properties satisfied by the existing aggregation
operators. There are two possible (non-exclusive) explanations: either the ex-
isting operators are not good enough, or the “rationality” properties are too
demanding. Our point of view is that both are true to some extent. Indeed,
more work is needed both in defining a set of rationality properties that cap-
ture more adequately the desirable behaviour of an aggregation operator, and
on defining aggregation methods themselves.

Let us first argue that some of the properties are too strong (this means that
not satisfying them is not a disqualifying feature for an aggregation operator).
Let us recall the example from Fig. 9.

a b c

d e

F1

a b c

d e

F2

a b c

d e

F3

So, if one focuses on the attack relation, the intuitive output is the following
AF:

a b c

d e
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Properties MΣ
de Mleximaxde QV FUSAll FUSAllNT FUSMajNT

ANON X X × X X X

σ-SNT × × × × X X

σ-WNT × × Xgr × X X

σ-SD × × × × × ×
σ-WD × × Xgr × × ×
A-U X X × - - -

σ-U × × × × × ×
caσ-U × × × × × ×
saσ-U × × × × × ×

A-MAJ X × × - - -

σ-MAJ × × × × × ×
caσ-MAJ × × × × × ×
saσ-MAJ × × × × × ×

CLO × × × - - -

A-C X X X - - -

σ-C × × × × × ×
caσ-C × × × × × ×
saσ-C × × × × × ×
A-ID X X × - - -

σ-ID X X × Xgr Xgr Xgr

caσ-ID X X × Xgr Xgr Xgr

saσ-ID X X × Xgr Xgr Xgr

PR X X X - - -

Table 2
Properties × Aggregation operators. A cross × means that the property is not

satisfied, symbol X means that the property is satisfied, Xσ means that the property
is satisfied for the semantics σ, and symbol − means that the property can not be
applied to the operator (because the output of the operator is not compatible with
the constraint given by the rule)

This proposed result can seem, at first sight, illogical if we focus on exten-
sions (and consequently the accepted arguments) since each Fi has the same
extension {a, c, d, e}, so we could expect this extension to be the outcome.
However, if we look more closely at this example, we can see that this same
extension is obtained for very different reasons. Each agent has a reason (ar-
gument) to reject b, but this attack is challenged by all the other agents, and
thus could be interpreted as an error of this agent. So it is quite natural to
refuse all attacks on b for the outcome aggregation framework, which means
that {a, c, d, e} should be rejected as the extension of the outcome (and that
{b, d, c, e} is much more natural). In fact, this AF is obtained by using the
majority method (majority vote on the attack relation): all the Fi agree on
the attack (b, a), whereas all other attacks have a maximum of one Fi sup-
porting it. This is also the result obtained when FUSMajNT is used. However,
that goes against the properties of unanimity, majority and closure related to
extensions, credulous inference and skeptical inference 5 . So if one wants to

5 σ-MAJ, caσ-MAJ, saσ-MAJ, σ-U, caσ-U, saσ-U, CLO, σ-C, caσ-C, and saσ-C
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obtain the expected outcome of this example, only the properties about the
attack relation seem to not be problematic.
We want to insist on the fact that we give here a simple example with only
three argumentation frameworks, but this example can be generalized with
100 agents (and 102 arguments), such that (b, a) is supported by all, and each
agent i supports only an additional attack between argument ai and b (and
he is the only one to support it). In this case the quasi-unanimity situation
(all agents except one are against the other attacks) is much more striking.
The properties of decisiveness seem also much too strong requirements for
most semantics that accept several extensions (and are trivial for the ones
that accept at most one extension), so we propose to remove them from nec-
essary properties also.

Basically our opinion is that the proposed properties were more or less direct
translations of properties coming from social choice theory. This was certainly
an important first step. However, argumentation frameworks have more struc-
ture than sets of candidates in voting problems, so the specificities of this
structure of AFs have to be taken into account. We argue that these struc-
tural specificities invalidate some of the properties from social choice theory as
being required for aggregation of AFs. This does not mean that they are not
of interest, since they can be used to characterize some aggregation methods
(there should be some methods that satisfy them), but they can not be con-
sidered as absolutely necessary requirements. An alternative is proposed by
Delobelle et al. [17] where the postulates from propositional merging are re-
stated in the domain of abstract argumentation and a generic representation
theorem is derived for extension-based argumentation merging. These pos-
tulates seem more adequate for argumentation than properties coming from
social choice theory, since they deal with structured pieces of information.

The shaded rows in Table 2 contain, in our opinion, the most desirable prop-
erties if one concentrates on the attack relation. Indeed, ANON seems to be
a basic requirement to avoid the problem of giving more importance to some
agents. The properties which focus on the attack relation in the result of the
aggregation (i.e. A-U, A-MAJ, A-ID and PR) should obviously be satisfied
because when at least a strict majority of agents agree with an attack, the
result should have this attack too in order to correctly reflect the group’s
point of view. Concerning A-C, it seems difficult to justify the fact that an
attack appears in the resulting AF while it does not appear in any AF in the
input. We consider σ-WNT to be a mandatory requirement - as it guarantees
the existence of a solution of the aggregation when the AFs at the input are
non-trivial.

However, one can see that there is no existing aggregation method that fully
satisfies all of these properties. This means that there is still work needed to
define good aggregation operators.
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The previous example illustrates that there seems to be some incompatibilities
between the rationality properties for aggregation of argumentation frame-
works that deal with extensions and the ones that deal with attacks. Both
approaches seem sensible, so there should be two different sets of postulates,
depending on the chosen priority, i.e. one that focuses on extensions and one
that concentrates on the attack relation. To go further, two families of aggre-
gation operators of argumentation frameworks seem to appear: one focuses on
the attack relations like all the operators defined in this paper while the other
focuses on the extensions (see operators defined in [17]).

9 Conclusion

In this paper we put together the works from the literature on aggregation
methods for Dung’s abstract argumentation frameworks. We focus on the
methods that take as input a profile of abstract argumentation frameworks,
and give as a result an argumentation framework, a set of argumentation
frameworks, or a set of extensions. We also investigate the use of WAFs in
order to aggregate profiles of AFs, and we end up with three possible defini-
tions, FUSMajNT being certainly the most convincing. We show that few of
the proposed properties are satisfied by existing aggregation operators. The
explanation seems to incriminate both suspects: the properties and the meth-
ods. On one hand, some of the properties seem to be too demanding in the
general case. On the other hand, the existing operators do not satisfy even the
most desirable properties.
Our results seem to suggest that a lot of work is still needed on the two fronts.
A more careful study of the rationality properties for aggregation methods for
abstract argumentation is required and there is clearly room for definition of
other (possibly better) aggregation methods.
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