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Abstract

There are relatively few proposals for inconsistency measures for propositional
belief bases. However inconsistency measures are potentially as important as in-
formation measures for artificial intelligence, and more generally for computer
science. In particular, they can be useful to define various operators for belief re-
vision, belief merging, and negotiation. The measures that have been proposed so
far can be split into two classes. The first class of measures takes into account the
number of formulae required to produce an inconsistency: the more formulae re-
quired to produce an inconsistency, the less inconsistent the base. The second class
takes into account the proportion of the language that is affected by the inconsis-
tency: the more propositional variables affected, the more inconsistent the base.
Both approaches are sensible, but there is no proposal for combining them. We
address this need in this paper: our proposal takes into account both the number
of variables affected by the inconsistency and the distribution of the inconsistency
among the formulae of the base. Our idea is to use existing inconsistency measures
in order to define a game in coalitional form, and then to use the Shapley value to
obtain an inconsistency measure that indicates the responsibility/contribution of
each formula to the overall inconsistency in the base. This allows us to provide a
more reliable image of the belief base and of the inconsistency in it.

⇤This paper is a revised and extended version of the paper ”Shapley Inconcistency Values” presented at
KR’06.
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1 Introduction
There are numerous works on reasoning under inconsistency. One can quote for exam-
ple paraconsistent logics, argumentation frameworks, belief revision and fusion, etc.
All these approaches illustrate the fact that the dichotomy between consistent and in-
consistent sets of formulae that comes from classical logics is not sufficient for describ-
ing these sets. As shown by these works, normally when given two inconsistent sets of
formulae, they are not trivially equivalent. They do not contain the same information
and they do not contain the same contradictions.

Measures of information à la Shannon have been studied in logical frameworks
(see for example [Kem53]). Roughly they involve counting the number of models of
the set of formulae (the less models, the more informative the set). The problem is
that these measures regard an inconsistent set of formulae as having a null information
content, which is counter-intuitive (especially given all the proposals for paraconsistent
reasoning). So generalizations of measures of information have been proposed to solve
this problem [Loz94, WB01, Kni03, KLM03, HK05].

In comparison, there are relatively few proposals for inconsistency measures [Gra78,
Hun02, Kni02, KLM03, Hun04, GH06]. However, these measures are potentially im-
portant in diverse applications in artificial intelligence, such as belief revision, belief
merging, and negotiation, and more generally in computer science. Already some
provisional studies indicate that measuring inconsistency may be seen to be a useful
tool in analysing a diverse range of information types including news reports [Hun06],
integrity constraints [GH06], software specifications [BPF04, BPF05, MJLL05], and
ecommerce protocols [CZZ04].

The current proposals for measuring inconsistency can be classified in two appro-
aches. The first approach involves “counting” the minimal number of formulae needed
to produce the inconsistency. The more formulae needed to produce the inconsistency,
the less inconsistent the set [Kni02]. This idea is an interesting one, but it rejects
the possibility of a more fine-grained inspection of the (content of the) formulae. In
particular, if one looks to singleton sets only, one is back to the initial problem, with
only two values: consistent or inconsistent.

The second approach involves looking at the proportion of the language that is
touched by the inconsistency. This allows us to look inside the formulae [Hun02,
KLM03, GH06]. This means that two formulae viewed as two whole belief bases
(singleton sets) can have different inconsistency measures. But, in these approaches
one can identify the set of formulae with its conjunction (i.e. the set {','0} has the
same inconsistency measure as the set {' ^ '

0}). This can be sensible in some appli-
cations, but this means that the distribution of the contradiction among the formulae is
not taken into account.

What we propose in this paper is a definition for inconsistency measures that allow
us to take the best of the two approaches. This will allow us to build inconsistency
measures that are able to look inside the formulae, but also to take into account the
distribution of the contradiction among the different formulae of the set.

The above-mentioned approaches define inconsistency measures, i.e. functions that
associates a number to each belief base. These global base-level measures are sufficient
for a lot of applications. But in some cases we need an evaluation on a finer level, that
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is for each formula of the base. We call these functions, that associates a number to
each formula of a base inconsistency values. This allow to identify which are the most
problematic formulae of a belief base with respect to the inconsistency. This can be
very useful for applications such as belief revision or negotiation. These inconsistency
values provide a more detailed view of the inconsistency inconsistency, and they can
be used to defined new inconsistency measures which more accurately reflect the in-
consistency of the whole base.

To this end we will use a notion that comes from coalitional game theory: the
Shapley value. This value assigns to each player the payoff that this player can expect
from her utility for each possible coalition. The idea is to use existing inconsistency
measures (that allow us to look inside the formulae) in order to define a game in coali-
tional form, and then to use the Shapley value to obtain an inconsistency measure with
the desired properties. From these inconsistency values, it is possible to define new
interesting inconsistency measures. We present these measures, we state a set of log-
ical properties they satisfy, and we show that they are more interesting than the other
existing measures.

The plan of the paper is as follows: After some preliminaries in the next section,
section 3 introduces inconsistency measures that count the number of formulae needed
to produce an inconsistency. Section 4 presents the approaches where the inconsistency
measure depends on the number of variables touched by the inconsistency. Section 5
introduces the problem studied in this paper and illustrates that the naive solution is not
adequate. Section 6 gives the definition of coalitional games and of the Shapley value.
Section 7 introduces the inconsistency measures based on Shapley value. Then we
study the logical properties of these measures in Section 8, and we provide a complete
axiomatization of a particular measure in Section 9 through a set of intuitive axioms.
Section 10 sketches the possible applications of those measures for reasoning and for
belief change operators. Finally section 11 concludes by giving perspectives of this
work and its possible applications for belief change operators.

2 Preliminaries
We will consider a propositional language L built from a finite set of propositional
symbols P . We will use a, b, c, . . . to denote the propositional variables, and Greek
letters ↵,�,', . . . to denote the formulae. An interpretation is a total function from P
to {0, 1}. The set of all interpretations is denoted W . An interpretation ! is a model of
a formula ', denoted ! |= ', if and only if it makes ' true in the usual truth-functional
way. Mod(') denotes the set of models of the formula ', i.e. Mod(') = {! 2
W | ! |= '}. We will use ✓ to denote the set inclusion, and we will use ⇢ to denote
the strict set inclusion, i.e. A ⇢ B iff A ✓ B and B 6✓ A. Let A and B be two subsets
of C, we note C = A � B if A and B form a partition of C, i.e. C = A � B iff
C = A [B and A \B = ;. We will denote the set of real numbers by IR.

A belief base K is a finite set of propositional formulae. More exactly, as we
will need to identify the different formulae of a belief base in order to associate them
with their inconsistency value, we will consider belief bases K as vectors of formulae.
For logical properties we will need to use the set corresponding to each vector, so we
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suppose that there is a function mapping each vector K = (↵1, . . . ,↵n

) into K, the
set {↵1, . . . ,↵n

}. As it will never be ambigous, in the following we will omit the
graphical distinction and write K as both the vector and the set.

Let us note KL the set of belief bases definable from formulae of the language
L. A belief base is consistent if there is at least one interpretation that satisfies all its
formulae.

If a belief base K is not consistent, then one can define the minimal inconsistent
subsets of K as:

MI(K) = {K 0 ✓ K | K 0 ` ? and 8K 00 ⇢ K

0
,K

00 0 ?}

If one wants to recover consistency from an inconsistent base K by removing some
formulae, then the minimal inconsistent subsets can be considered as the purest form
of inconsistency. To recover consistency, one has to remove at least one formula from
each minimal inconsistent subset [Rei87]. The notion of maximal consistent subset
is the dual of that of minimal inconsistent subset. Each maximal consistent subset
represents a maximal (by set inclusion) subset of the base that is consistent.

MC(K) = {K 0 ✓ K | K 0 0 ? and 8K 00 s. t. K 0 ⇢ K

00
,K

00 ` ?}

A free formula of a belief base K is a formula of K that does not belong to any
minimal inconsistent subset of the belief base K, or equivalently a formula that belongs
to every maximal consistent subset of the belief base. This means that this formula has
nothing to do with the conflicts of the base.

3 Inconsistency Measures based on Formulae
When a base is inconsistent the classical inference relation is trivialized, since one can
deduce every formula of the language from the base (ex falso quodlibet). To address
this problem, paraconsistent reasoning techniques have been developed to only allow
non-trivial consequences to follow from an inconsistent base. There is a range of para-
consistent systems, each based on a weakening of classical reasoning. One approach is
a very straightforward weakening that only allows inferences from consistent subsets
of a base rather than from the whole base (e.g. [MR70, BDP97, Neb91]).

Paraconsistent reasoning systems provide a natural starting point for analysing in-
consistency. One interesting option is to analyse inconsistency in terms of the maximal
consistent subsets of the base. So one can use for instance the size (or the number) of
those maximal consistent subsets as a measure of the inconsistency. Indeed analysis of
the maximal consistent subsets of a base is the basis of the measure of inconsistency
proposed by Knight [Kni02, Kni03] which we review next.

Definition 1 A probability function on L is a function P : L ! [0, 1] s.t.:

• if |= ↵, then P (↵) = 1

• if |= ¬(↵ ^ �), then P (↵ _ �) = P (↵) + P (�)
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See [Par94] for more details on this definition. In the finite case, this definition
gives a probability distribution on the interpretations, and the probability of a formula
is the sum of the probability of its models.

Then the inconsistency measure defined by Knight [Kni02] is given by:

Definition 2 Let K be a belief base.

• K is ⌘�consistent (0  ⌘  1) if there is a probability function P such that
P (↵) � ⌘ for all ↵ 2 K.

• K is maximally ⌘�consistent if ⌘ is maximal (i.e. if � > ⌘ then K is not
��consistent).

As is easily seen, in the finite case, a belief base is maximally 0�consistent if and
only if it contains a contradictory formula. And a belief base is maximally 1�consistent
if and only if it is consistent.

The notion of maximal ⌘�consistency can be used as an inconsistency measure.
This is the direct formulation of the idea that the more formulae are needed to produce
the inconsistency, the less this inconsistency is problematic. Let us illustrate this on the
following “lottery example”:

Example 1 There are a number of lottery tickets with one of them being the winning
ticket. Suppose w

i

denotes ticket i will win, then we have the assumption w1 _ . . . _
w

n

. In addition, for each ticket i, we may pessimistically (or probabilistically if the
number of tickets is important) assume that it will not win, and this is represented by
the assumption ¬w

i

. So the base K

L

is:

K

L

= {¬w1, . . . ,¬wn

, w1 _ . . . _ w

n

}

Clearly if there are three or two (or one!) tickets in the lottery, then this base is
highly inconsistent. But if there are millions of tickets there is intuitively (nearly)
no conflict in the base. This is expressed by the ⌘�consistency measure, since the
base K

L

is maximally (n � 1)/n�consistent1. So with three tickets the base is max-
imally 2/3�consistent, and with a million tickets we are very close to maximally
1�consistent.

Example 2 Let K1 = {a, b,¬a_¬b}. Since, we can reflect a distribution over models
by P (a ^ b) =

1
3 , P (a ^ ¬b) = 1

3 , and P (¬a ^ b) =

1
3 . We get P (a) =

2
3 , P (b) =

2
3 ,

and P (¬a _ ¬b) = 2
3 . As a result, K1 is maximally 2

3�consistent.
Let K2 = {a^b,¬a^¬b, a^¬b}. K2 is maximally 1

3�consistent, whereas
each subbase of cardinality 2 is maximally 1

2�consistent.

For minimal inconsistent sets of formulae, computing this inconsistency measure
is easy:

Proposition 1 ([Kni02]) If K 0 2 MI(K), then K

0 is maximally |K0|�1
|K0| �consistent.

But in general this measure is harder to compute than the case considered above.
However it is possible to compute it using the simplex method [Kni02].

1Unless stated otherwise, we consider in the examples that the set of propositional symbols P of the
language is exactly the set of propositional symbols that appear in the base K.
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4 Inconsistency Measures based on Variables
Another method to evaluate the inconsistency of a belief base is to look at the pro-
portion of the language concerned with the inconsistency. To this end, it is clearly
not possible to use classical logics, since the inconsistency contaminates the whole
language. But if we look at the two bases K3 = {a ^ ¬a ^ b ^ c ^ d} and K4 =

{a ^ ¬a ^ b ^ ¬b ^ c ^ ¬c ^ d ^ ¬d}, we can observe that in K3 the inconsistency is
mainly about the variable a, whereas in K4 all the variables are touched by a contra-
diction. This is the kind of distinction that these approaches allow.

One way to circumscribe the inconsistency only to the variables directly concerned
is to use multi-valued logics, and especially three-valued logics, with the third “truth
value” denoting the fact that there is a conflict on the truth value (true-false) of the
variable.

We do not have space here to detail the range of different measures that have been
proposed. See [Gra78, Hun02, KLM03, HK05, GH06] for more details on these ap-
proaches. We only give one such measure, that is a special case of the degrees of con-
tradiction defined in [KLM03]. The idea of the definition of these degrees in [KLM03]
is, given a set of tests on the truth value of some formulae of the language (typically
on the variables), the degree of contradiction is the cost of a minimum test plan that
ensures recovery of consistency.

The inconsistency measure we define here is the (normalized) minimum number
of inconsistent truth values in the LP

m

models [Pri91] of the belief base. Let us first
introduce the LP

m

consequence relation.

• An interpretation ! for LP
m

maps each propositional atom to one of the three
“truth values” F,B,T, the third truth value B meaning intuitively “both true and
false”. 3P is the set of all interpretations for LP

m

. “Truth values” are ordered as
follows: F <

t

B <

t

T. The interpretations are extended to formulae as follows:

– !(>) = T, !(?) = F
– !(¬↵) = B iff !(↵) = B
!(¬↵) = T iff !(↵) = F

– !(↵ ^ �) = mint(!(↵),!(�))

– !(↵_ �) = maxt(!(↵),!(�))

• The set of models of a formula ' is:

Mod

LP

(') = {! 2 3

P | !(') 2 {T,B}}

Define !! as the set of “inconsistent” variables in an interpretation !, i.e.

!! = {x 2 P | !(x) = B}

Then the minimal models of a formula are the “most classical” ones (i.e. the
models with the largest subset by set inclusion of atoms assigned either T or F):

min(Mod

LP

(')) = {! 2 Mod

LP

(') | @!0 2 Mod

LP

(') s.t. !0
! ⇢ !!}

The LP

m

consequence relation is then defined by:

K |=
LPm ' iff min(Mod

LP

(K)) ✓ Mod

LP

(')
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So ' is a consequence of K if all the “most classical” models of K are models of '.
Then let us define the LP

m

measure of inconsistency [KLM03], noted I

LPm , as:

Definition 3 Let K be a belief base. I
LPm(K) =

min

!2ModLP (K){| !! |}
| P |

So, with I

LPm , the measure of inconsistency of a base is basically the number of
“inconsistent” variables in the most classical models.

Example 3 K5 = {a^¬a, b,¬b, c}. The “most classical” LP model of K5 is ! with
!(a) = B, !(b) = B, !(c) = T. So with 2 of the 3 variables being B, this gives
I

LPm(K5) =
2
3

In this example one can see the advantage in these kinds of measures compared to
measures based on formulae since this base is maximally 0�consistent because of the
contradictory formula a ^ ¬a. But there are also non-trivial formulae in the base, and
this base is not totally inconsistent according to I

LPm .
Conversely, measures based on variables like this one are unable to take into ac-

count the distribution of the contradiction among formulae. In fact the result would be
exactly the same with K

0
5 = {a ^ ¬a ^ b ^ ¬b ^ c}. This can be sensible in some

applications, but in some cases this can also be seen as a drawback. In particular when
the formulae represent different pieces of information (that can come from different
sources for instance). See [KLM05] for a related discussion.

5 Dimensions for Measuring Inconsistency
From the discussion in the previous sections, we can regard the measures of proposi-
tional inconsistency (so far) as falling into one or other of the following two classes.

Formula-centric measures These measures take into account the number of formu-
lae required for inconsistency: Fewer formulae means higher degree of inconsis-
tency. This is exemplified by the notion of ⌘�consistent.

Atom-centric measures These measures take into account the proportion of the lan-
guage affected by inconsistency: More propositional variables involved in incon-
sistency means higher degree of inconsistency. This is exemplified by the I

LPm

measure of inconsistency.

We can also note that the measures defined in the previous sections provide a mea-
sure of inconsistency for the whole base. But we can consider another type of measure,
and this leads us to the following two classes of measures.

Inconsistency measures (Base-level measures) These measures provide a measure
of inconsistency to the beliefbase as a whole. They do not assign a measure
of inconsistency to individual formulae.
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Inconsistency values (Formula-level measures) These values provide a measure of
inconsistency to the formulae in a beliefbase, and in a sense assign the degree of
blame or responsibility that can be ascribed to the formulae for the inconsisten-
cies arising in the beliefbase.

The measures reviewed up to now are all inconsistency measures (base-level mea-
sures). The aim of this paper is to present and investigate inconsistency values (formula-
level measures), and to show that they can be very useful for a lot of reasoning appli-
cations such as belief revision, inference, negotiation, etc.

In order to explore the notion of an inconsistency value, we first consider a simple
option for such a value.

Definition 4 For an inconsistency measure on beliefbases, I : }(L) 7! [0, 1], a base
K ✓ L and ↵ 2 K, the simple assignment to formulae, MK

I

: L 7! [0, 1], is as
follows,

M

K

I

(↵) = I(K)� I(K \ {↵})

Let us see an example when we take as inconsistency measure the simplest possible
option:

Definition 5 The drastic inconsistency value is defined as:

I

d

(K) =

⇢
0 if K is consistent
1 otherwise

Example 4 For this example, let us use the drastic inconsistency value I

d

, and con-
sider K6 = {a, a ^ b,¬a}. Hence, we get the following.

M

K

Id
(a) = 0 M

K

Id
(a ^ b) = 0 M

K

Id
(¬a) = 1

In this example, we see that all the blame is assigned to the formula that is in both
minimal inconsistent subsets, and none is assigned to either of the formulae which
appear in only one of the minimal inconsistent subsets. This is clearly a significant
shortcoming with the simple assignment since at least some of the blame should be
assigned to a and to a ^ b, and hence they should each have a non-zero evaluation.

We see in the following example that by taking a more refined inconsistency mea-
sure on beliefbases, we get a better assignment to formulae.

Definition 6 The MI inconsistency measure is defined as the number of minimal in-
consistent sets of K, i.e. :

I

MI

(K) = |MI(K)|

Example 5 K6 = {a, a ^ b,¬a}. Hence, we get the following.

M

K

IMI
(a) = 1 M

K

IMI
(a ^ b) = 1 M

K

IMI
(¬a) = 2

However, even with this more refined inconsistency measure on beliefbases, we
still can find problematical examples, such as the “lottery example” (Example 1). Let
us see what this example gives here:
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Example 6 For this example, let I
MI

(K) = |MI(K)| and let

K

L

= {¬w1, . . . ,¬wn

, w1 _ . . . _ w

n

}

Hence, for each ↵ 2 K

L

, we get MK

IMI
(↵) = 1.

The problem with the above example is that as n increases, we expect the assign-
ment to each individual formula should decrease. Moreover, we want the distribution
to individual formulae to be undertaken according to some well-understood principles.
In other words, we do not want an “ad hoc” distribution. To address this need, we turn
to game theory in the next section to provide a well-behaved and principled solution.

6 Games in Coalitional Form - Shapley Value
In this section we give the definitions of games in coalitional form and of the Shapley
value.

Definition 7 Let N = {1, . . . , n} be a set of n players. A game in coalitional form is
given by a function v : 2

N ! IR, with v(;) = 0.

This framework defines games in a very abstract way, focusing on the possible
coalition formations. A coalition is just a subset of N . This function gives what payoff
can be achieved by each coalition in the game v when all its members act together as a
unit.

There are numerous questions that are worthwhile to investigate in this framework.
One of these questions is to know how much each player can expect in a given game v.
This depends on her position in the game, i.e. what she brings to different coalitions.

Often the games are super-additive.

Definition 8 A game is super-additive if for each T, U ✓ N with T \ U = ;,

v(T [ U) � v(T ) + v(U)

In super-additive games when two coalitions join, then the joined coalition wins
at least as much as (the sum of) the initials coalitions. In particular, in super-additive
games, the grand coalition N is the one that brings the higher utility for the society N .
The problem is how this utility can be shared among the players2.

Example 7 Let N = {1, 2, 3}, and let v be the following coalitional game:

v({1}) = 1 v({2}) = 0 v({3}) = 1

v({1, 2}) = 10 v({1, 3}) = 4 v({2, 3}) = 11

v({1, 2, 3}) = 12

2One supposes the transferable utility (TU) assumption, i.e. the utility is a common unit between the
players and sharable as needed (roughly, one can see this utility as some kind of money).
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This game is clearly super-additive. The grand coalition can bring 12 to the three
players. This is the highest utility achievable by the group. But this is not the main
aim for all the players. In particular one can note that two coalitions can bring nearly
as much, namely {1, 2} and {2, 3} that gives respectively 10 and 11, that will have to
be shared only between 2 players. So it is far from certain that the grand coalition will
form in this case. Another remark on this game is that all the players do not share the
same situation. In particular player 2 is always of a great value for any coalition she
joins. So she seems to be able to expect more from this game than the other players.
For example she can make an offer to player 3 for making the coalition {2, 3}, that
brings 11, that will be split into 8 for player 2 and 3 for player 3. As it will be hard for
player 3 to win more than that, she will certainly accept.

A solution concept has to take into account these kinds of arguments. It means that
one wants to solve this game by stating what is the payoff that is “due” to each agent.
That requires being able to quantify the payoff that an agent can claim with respect to
the power that her position in the game offers (for example if she always significantly
improves the payoff of the coalitions she joins, if she can threaten to form another
coalition, etc.).

Definition 9 A value is a function that assigns to each game v a vector S(v) in IRn.
S

i

(v) stands for player i’s payoff in the game.

This function gives the payoff that can be expected by each player i for the game
v, i.e. it measures i’s power in the game v.

Shapley proposes a beautiful solution to this problem [Sha53]. Basically the idea
can be explained as follows: considering that the coalitions form according to some
order (a first player enters the coalition, then another one, then a third one, etc), and
that the payoff attached to a player is its marginal utility (i.e. the utility that it brings to
the existing coalition), so if C is a coalition (subset of N ) not containing i, player’s i
marginal utility is v(C [ {i})� v(C). As one can not make any hypothesis on which
order is the correct one, suppose that each order is equally probable. This leads to
the following definition of the Shapley value of a game. For this definition, let � be a
permutation on N , with �

n

denoting all the possible permutations on N . Let us note

p

i

�

= {j 2 N | �(j) < �(i)}

That means that pi
�

represents all the players that precede player i for a given order �.

Definition 10 The Shapley value of a game v is defined as:

S

i

(v) =

1

n!

X

�2�n

v(p

i

�

[ {i})� v(p

i

�

)

The Shapley value can be directly computed from the possible coalitions (without
looking at the permutations), with the following expression [Sha53]:

S

i

(v) =

X

C✓N

(c� 1)!(n� c)!

n!

(v(C)� v(C \ {i}))

where c is the cardinality of C.
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Example 8 The Shapley value of the game defined in Example 7 is ( 176 ,

35
6 ,

20
6 ).

These values show that it is player 2 that is the best placed in this game, according
to what we explained when we presented Example 7.

Besides this value, Shapley proposes axiomatic properties a value should have.

•
P

i2N

S

i

(v) = v(N) (Efficiency)
• If i and j are such that for all C s.t. i, j /2 C, v(C [ {i}) = v(C [ {j}), then
S

i

(v) = S

j

(v) (Symmetry)
• If i is such that 8C v(C [ {i}) = v(C), then S

i

(v) = 0 (Dummy)
• S

i

(v + w) = S

i

(v) + S

i

(w) (Additivity)

These four axioms seem quite sensible. Efficiency states that the payoff available
to the grand coalition N must be efficiently redistributed to the players (otherwise
some players could expect more than what they have). Symmetry ensures that it is
the role of the player in the game in coalitional form that determines her payoff, so it
is not possible to distinguish players by their name (as far as payoffs are concerned),
but only by their respective merits/possibilities. So if two players always are identical
for the game, i.e. if they bring the same utility to every coalition, then they have
the same value. The dummy player axiom says simply that if a player is of no use
for any coalition, this player does not deserve any payoff. And additivity states that
when we join two different games v and w in a whole super-game v + w (v + w is
straightforwardly defined as the function that is the sum of the two functions v and w,
that means that each coalition receives as payoff in the game v +w the payoff it has in
v plus the payoff it has in w), then the value of each player in the supergame is simply
the sum of the values in the compound games.

These properties look quite natural, and the nice result shown by Shapley is that
they characterize exactly the value he defined [Sha53]:

Proposition 2 The Shapley value is the only value that satisfies all of Efficiency, Sym-
metry, Dummy and Additivity.

This result supports several variations : there are other equivalent axiomatizations
of the Shapley value, and there are some different values that can be defined by relaxing
some of the above axioms (see [AH02]).

7 Inconsistency Values using Shapley Value
Given an inconsistency measure, the idea is to take it as the payoff function defining a
game in coalitional form, and then using the Shapley value to compute the part of the
inconsistency that can be imputed to each formula of the belief base.

This allows us to combine the power of inconsistency measures based on variables
and hence discriminating between singleton inconsistent belief base (like the test ac-
tion values of [KLM03], the Inc measure in [GH06], or the Concordance measure in
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[BHK07]), and the use of the Shapley value for knowing what is the responsibility of a
given formula in the inconsistency of the belief base.

We just require some basic properties on the underlying inconsistency measure.

Definition 11 An inconsistency measure I is called a basic inconsistency measure if it
satisfies the following properties, 8K,K

0 2 KL, 8↵,� 2 L:

• I(K) = 0 iff K is consistent (Consistency)
• I(K [K

0
) � I(K) (Monotony)

• If ↵ is a free formula of K, then I(K) = I(K \ {↵})
(Free Formula Independence)

• If ↵ ` � and ↵ 0 ?, then I(K [ {↵}) � I(K [ {�}) (Dominance)

We ask for few properties on the underlying inconsistency measure. The consis-
tency property states that a consistent base has a null inconsistency measure. The
monotony property says that the amount of inconsistency of a belief base can only
grow if one adds new formulae (defined on the same language). The free formula inde-
pendence property states that adding a formula that does not cause any inconsistency
cannot change the inconsistency measure of the base. The dominance property states
that logically stronger formulae bring (potentially) more conflicts.

We could also ask for the following normalization property of the inconsistency
measure, as it can be used for simplification purposes. However, we do not regard it as
mandatory.

• 0  I(K)  1 (Normalization)

Now we are able to define the Shapley inconsistency value.

Definition 12 Let I be a basic inconsistency measure. We define the corresponding
Shapley Inconsistency Value (SIV), noted S

I , as the Shapley value of the coalitional
game defined by the function I , i.e. let ↵ 2 K :

S

I

↵

(K) =

X

C✓K

(c� 1)!(n� c)!

n!

(I(C)� I(C \ {↵}))

where n is the cardinality of K and c is the cardinality of C.

Note that this SIV gives a value for each formula of the base K, so if one considers
the base K as the vector K = (↵1, . . . ,↵n

), then we will use S

I

(K) to denote the
vector of corresponding SIVs, i.e.

S

I

(K) = (S

I

↵1
(K), . . . , S

I

↵n
(K))

This definition allows us to define to what extent a formula inside a belief base is
concerned with the inconsistencies of the base. It allows us to draw a precise picture of
the contradictions occurring in the base.

12



From this value, one can define an inconsistency value for the whole belief base as
in the next definition which essentially says that a base is as bad as its worst element.

Definition 13 Let K be a belief base, ˆSI

(K) = max

↵2K

S

I

↵

(K)

One can identify other aggregation functions to define the inconsistency measure
of the belief base from the inconsistency measure of its formulae, such as the leximax
for instance. Leximax is a refinement of max, and roughly it consists in ordering the set
of values in a decreasing order, and to compare the ordered lists lexicographically. See
[KLM04] for instance for a formal definition. Taking the maximum will be sufficient
for us to have valuable results and to compare this with the existing measures from the
literature. Note that taking the sum as the aggregation function is not a good choice
here, since as shown by the Distribution property of Proposition 6 this equals I(K),
“erasing” the use of the Shapley value.

We think that the most interesting measure is SI , since it describes more accurately
the inconsistency of the base. But we define ˆ

S

I since it is a more concise measure, and
since it is of the same type as existing ones (it associates a real to each base), that is
convenient to compare our framework with existing measures.

Let us now see three instantiations of SIVs.

7.1 Drastic Shapley Inconsistency Value
We will start this section with the simplest inconsistency measure one can define, that
is the drastic inconsistency value of definition 5:

I

d

(K) =

⇢
0 if K is consistent
1 otherwise

This measure is not of great interest by itself, since it corresponds to the usual
dichotomy of classical logic. But it will be useful to illustrate the use of the Shap-
ley inconsistency values, since, even with this over-simple measure, one will produce
interesting results.

Proposition 3 The drastic inconsistency value is a basic inconsistency measure.

Let us now illustrate the behaviour of this value on some examples.

Example 9 K7 = {a,¬a, b}. As b is a free formula, it has a value of 0, the two
other formulae are equally responsible for the inconsistency. Then I

d

({a,¬a}) =

I

d

({a,¬a, b}) = 1, and the value is SId
(K7) = (

1
2 ,

1
2 , 0). So ˆ

S

Id
(K7) =

1
2 .

Example 10 K8 = {a, b, b ^ c,¬b ^ d}. The last three formulae are the ones that
belong to some inconsistency, and the last one is the one that causes the most problems
(indeed removing only this formula restores the consistency of the base). As a result,
the value is SId

(K8) = (0,

1
6 ,

1
6 ,

4
6 ). And ˆ

S

Id
(K8) =

2
3 .

Example 11 K5 = {a ^ ¬a, b,¬b, c}. The value is S

Id
(K5) = (

4
6 ,

1
6 ,

1
6 , 0). So

ˆ

S

Id
(K5) =

2
3 .

13



Contradictory formulae (like a ^ ¬a) are the most problematical ones, but they are
not the only source of conflict in the base. This is exactly what is expressed in the
values obtained in the above example.

7.2 MI Shapley Inconsistency Value
We now consider another syntactic inconsistency measure which, in a sense, is sensitive
to the “number of conflicts” in the base. That is the MI inconsistency measure defined
in definition 6:

I

MI

(K) = |MI(K)|

So this measure evaluates the amount of conflict of the base as the number of min-
imal inconsistent subsets of this base, so it computes in a sense the number of different
conflict points in the base.

It is easy to check that:

Proposition 4 The MI inconsistency measure is a basic inconsistency measure.

Let us illustrate the behaviour of this value on some examples.

Example 12 K7 = {a,¬a, b}. As b is a free formula, it has a value of 0, the two
other formulae are equally responsible for the inconsistency. Then I

MI

({a,¬a}) =

I

MI

({a,¬a, b}) = 1, and the value is SIMI
(K7) = (

1
2 ,

1
2 , 0). So ˆ

S

IMI
(K7) =

1
2 .

Example 13 K8 = {a, b, b ^ c,¬b ^ d}. The last three formulae are the ones that
belong to some inconsistency, and the last one is the one that causes the most problems
(removing only this formula restores the consistency). Then the value is SIMI

(K8) =

(0,

1
2 ,

1
2 , 1). So ˆ

S

IMI
(K8) = 1.

Example 14 K5 = {a ^ ¬a, b,¬b, c}. The value is S

IMI
(K5) = (1,

1
2 ,

1
2 , 0). So

ˆ

S

IMI
(K5) = 1.

Example 15 K9 = {a^¬a, b,¬b^ c,¬b^d}. The value is SIMI
(K9) = (1, 1,

1
2 ,

1
2 ).

So ˆ

S

IMI
(K9) = 1.

The last two examples above show that this measure is very sensitive to contradic-
tory formulae, since as soon as the base contains a contradictory formula, the inconsis-
tency measure of the base is maximum.

Example 16 K10 = {a,¬a^b,¬a^c,¬a^d}. The value is SIMI
(K10) = (

3
2 ,

1
2 ,

1
2 ,

1
2 ).

So ˆ

S

IMI
(K10) =

3
2 .

Example 17 K11 = {a,¬a ^ b,¬a _ c,¬c}. The value is SIMI
(K11) = (

5
6 ,

1
2 ,

1
3 ,

1
3 ).

So ˆ

S

IMI
(K11) =

5
6 .
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7.3 LPm Shapley Inconsistency Value
Let us turn now to a value that use the I

LPm inconsistency measure (defined Section
4).

Unfortunately the I

LPm inconsistency measure is not a basic inconsistency mea-
sure, since it does not satisfy the free formula independence property. Let us show
this on an example.

Example 18 Consider K16 = {((a^¬b)_(b^a^¬a))^c^¬c} and ↵ = b. ↵ is a free
formula of K16[{↵} since the unique formula of K16 is already a contradiction, but it
increases the inconsistency value since I

LPm(K16) =
1
3 , whereas I

LPm(K16[{↵}) =
2
3 .

To not satisfy free formula independence is problematic since this property ex-
presses a kind of independence between the amount of information and the amount of
contradiction of a base. The aim is to ensure that adding new formulas that do not enter
into any contradiction/conflict do not change the inconsistency measure.

On the other hand, one argument against free formula independence is that it
considers the contradiction/conflict only at the level of the subsets (since being a free
formula means that it does not introduce any new minimal inconsistent subset). What
the previous example shows is that a formula that does not induce any minimal incon-
sistent subset can still increase the conflicts in existing minimal inconsistent subsets.

So, in some cases, this property can be considered as too strong. To address this,
we can define a weaker family of inconsistency measures.

Definition 14 For ↵ 2 K, ↵ is a safe formula in K iff Atoms(↵)\Atoms(K) = ; and
↵ 6` ?.

Using this definition, we can introduce the following property of safe formula in-
dependence (also called weak independence by Thimm [Thi09]).

• If ↵ is a safe formula of K, then I(K) = I(K \ {↵})
(Safe Formula Independence)

Obviously safe formula independence is a (logically) weaker notion than free
formula independence. The idea is similar, meaning that if we add new pieces of
information that have no relation with the existing conflicts of the base, then the incon-
sistency measure does not change.

Definition 15 An inconsistency measure I is called a weak inconsistency measure if it
satisfies consistency, monotony, dominance, and safe formula independence.

So now we can show that:

Proposition 5 The I

LPm inconsistency measure is a weak inconsistency measure.

Now let us see the behaviour of this value on some examples.
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Example 19 Let K5 = {a ^ ¬a, b,¬b, c}
and K

0
5 = {a ^ ¬a ^ b ^ ¬b ^ c}.

Then S

ILPm
(K5) = (

1
3 ,

1
6 ,

1
6 , 0), and ˆ

S

ILPm
(K5) =

1
3 .

Whereas SILPm
(K

0
5) = (

2
3 ) and ˆ

S

ILPm
(K

0
5) =

2
3 .

As we can see on this example, the SIV value allows us to make a distinction be-
tween K5 and K

0
5, since ˆ

S

ILPm
(K

0
5) =

2
3 whereas ˆ

S

ILPm
(K5) =

1
3 . This illustrates

the fact that the inconsistency is more distributed in K5 than in K

0
5. This distinction

is not possible with the original I
LPm value. Note that with Knight’s coherence value

one can not distinguish the two bases either, since the two bases have the worst incon-
sistency value (maximally 0�consistent).

So this example illustrates the improvement brought by this work, compared to
inconsistency measures on formulae and to inconsistency measures on variables, since
neither of them was able to make a distinction between K5 and K

0
5, whereas for ˆ

S

ILPm

K5 is more consistent than K

0
5.

Let us see a more striking example.

Example 20 Let K12 = {a, b, b ^ c,¬b ^ ¬c}.
Then S

ILPm
(K12) = (0,

1
18 ,

4
18 ,

7
18 ), and ˆ

S

ILPm
(K12) =

7
18 .

In this example one can easily see that it is the last formula that is the most prob-
lematic, and that b ^ c brings more conflict than b alone, which is perfectly expressed
in the obtained values.

8 Logical Properties of SIV
Let us see now some properties of the defined values.

Proposition 6 Assume a given basic inconsistency measure I . Every Shapley Incon-
sistency Value S

I satisfies:
•
P

↵2K

S

I

↵

(K) = I(K) (Distribution)
• If ↵,� 2 K are such that for all K 0 ✓ K s.t. ↵,� /2 K

0, I(K 0[{↵}) = I(K

0[{�}),
then S

I

↵

(K) = S

I

�

(K) (Symmetry)

• If ↵ is a free formula of K, then S

I

↵

(K) = 0 (Minimality)
• If ↵ ` � and ↵ 0 ?, then S

I

↵

(K) � S

I

�

(K) (Dominance)

The distribution property states that the inconsistency values of the formulae sum to
the total amount of inconsistency in the base (I(K)). The symmetry property ensures
that only the amount of inconsistency brought by a formula matters for computing
the SIV. As one would expect, a formula that is not embedded in any contradiction
(i.e. does not belong to any minimal inconsistent subset) will not be blamed by the
Shapley inconsistency values. This is what is expressed in the minimality property.
The dominance property states that logically stronger formulae bring (potentially) more
conflicts.
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The first three properties are a restatement in this logical framework of the proper-
ties of the Shapley value. One can note that the Additivity axiom of the Shapley value
is not translated here, since it makes little sense to add different inconsistency values
that are two different views of the same subject: It is like trying to add the tempera-
ture of an object measured in degrees Fahrenheit to the temperature of the same object
measured in degrees Celsius. We will elaborate more on this point in the next section.

Let us turn now to the properties of the measure on belief bases.

Proposition 7
• ˆ

S

I

(K) = 0 if and only if K is consistent (Consistency)
• If ↵ is a free formula of K [ {↵}, then ˆ

S

I

(K [ {↵}) = ˆ

S

I

(K)

(Free Formula Independence)
• ˆ

S

I

(K)  I(K) (Upper Bound)
• ˆ

S

I

(K) = I(K) > 0 if and only if 9↵ 2 K s.t. ↵ is inconsistent and 8� 2 K, � 6= ↵,
� is a free formula of K (Isolation)

The first two properties are the ones given in Definition 11 for the basic inconsis-
tency measures. As one can easily note an important difference is that the monotony
property and the dominance property do not hold for the SIVs on belief bases. It is
sensible since distribution of the inconsistencies matters for SIVs. The upper bound
property shows that the use of the SIV aims at looking at the distribution of the in-
consistencies of the base, so the SIV on belief bases is always less or equal to the
inconsistency measure given by the underlying basic inconsistency measure. The iso-
lation property details the case where the two measures are equals. In this case, there is
only one inconsistent formula in the whole base, and all the other formulas are jointly
consistent.

Let us see, on Example 21, counter-examples to monotony and dominance for SIV
on belief bases:

Example 21 Let K13 = {a,¬a,¬a ^ b},
K14 = {a,¬a,¬a ^ b, a ^ b},

and K15 = {a,¬a,¬a ^ b, b}.
We then obtain:
S

Id
(K13) = (

2
3 ,

1
6 ,

1
6 ), S

Id
(K14) = (

1
4 ,

1
4 ,

1
4 ,

1
4 ), and S

Id
(K15) = (

2
3 ,

1
6 ,

1
6 , 0)

So:
ˆ

S

Id
(K13) =

2
3 , ˆSId

(K14) =
1
4 , ˆSId

(K15) =
2
3 .

This example shows that monotony is not satisfied by SIV on belief bases. Clearly
K13 ⇢ K14, but ˆ

S

Id
(K13) >

ˆ

S

Id
(K14). This is explained by the fact that the incon-

sistency is more diluted in K14 than in K13. In K13 the formula a is the one that is the
most blamed for the inconsistency (SId

a

(K13) =

ˆ

S

Id
(K13) =

2
3 ), since it appears in

all inconsistent sets. Whereas in K14 inconsistencies are equally caused by a and by
a ^ b, that decreases the responsibility of a, and the whole inconsistency value of the
base.

For a similar reason dominance is not satisfied, we clearly have a ^ b ` b (and
a ^ b 0 ?), but ˆ

S

Id
(K14) <

ˆ

S

Id
(K15).
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9 Logical Characterization of SIMI

In this Section we give a complete characterization of the Shapley Inconsistency Value
based on the MI inconsistency measure (SIMI ).

We first show that this measure can be alternatively defined from a function based
on minimal inconsistent sets, before stating additional logical properties of this mea-
sure, and finally stating the logical characterization.

9.1 SIMI as a Minimal Inconsistent Set Value
As minimal inconsistent sets are the places in the bases where the inconsistencies lie
in, they can be a good starting point to define inconsistency values.

Consider the following inconsistency value (for more details on measures based on
minimal inconsistent sets see [HK08]).

Definition 16 MIV

C

is defined as follows:

MIV

C

(K,↵) =

X

M2MI(K)s.t.↵2M

1

|M |

Basically for each formula belonging to a minimal inconsistent set M the formula
receives a penalty (i.e. blame or responsibility) inversely proportional to its size ( 1

|M | ).
So the value associated to a formula is the sum of all these local penalties.

And in fact this method that computes the value of each formula by looking suc-
cessively (and uniquely) to all minimal inconsistent subsets is an alternative definition
of the SIV S

IMI .

Proposition 8 S

IMI
↵

(K) = MIV

C

(K,↵)

This result is interesting since computing Shapley values is a computationally dif-
ficult task. And this alternative definition can give us an efficient practical way to
compute the result of SIMI . Based on SAT solvers, different works have studied the
problem of identifying minimal inconsistent subsets (called in these works Minimally
Unsatisfiable Subformulas or MUS). Although the identification problem is computa-
tionally hard, since checking whether a set of clauses is a MUS or not is DP-complete,
and checking whether a formula belongs to the set of MUSes of a base, is in ⌃

P

2

[EG92]; it seems that finding each MUS can be practically feasible [GMP07, GMP09].
The other interest of this result is that it is useful to state the logical characterization

of SIMI .

9.2 Logical Properties of IMI

First let us remark that the I

MI

basic inconsistency measure satisfies two additional
properties:
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Proposition 9 I

MI

satisfies:

• If MI(K [K

0
) = MI(K)�MI(K

0
), then I(K [K

0
) = I(K) + I(K

0
)

(MinInc Separability)
• If M 2 MI(K), then I(M) = 1 (MinInc)

The first property basically expresses the fact that the inconsistency measure de-
pends only on the minimal inconsistent subsets, so that if we can partition the belief
base in two subbases without “breaking” any minimal inconsistent subset, then the
global inconsistency measure is the sum of the inconsistency measure of the two sub-
bases.

The second property really depicts the MI inconsistency measure behaviour, ex-
pressing the fact that all minimal inconsistent subset are considered equally.

9.3 On the Additivity axiom
We wrote in Section 8 that a direct translation of the Additivity axiom of Shapley’s
characterization has little meaning for inconsistency values. Let us recall this axiom.
Let v and w be two coalitional games:

• S

i

(v + w) = S

i

(v) + S

i

(w) (Additivity)

As in this work we use basic inconsistency measures instead of coalitional games,
a direct translation of this property would give (let I and J be two basic inconsistency
measures):

• S

I+J

↵

(K) = S

I

↵

(K) + S

J

↵

(K) (Add1)

But first, it is strange to add different measures of inconsistency that give different
evaluation of a same situation, so the addition S

I

↵

(K)+S

J

↵

(K) has little meaning. But
also it is hard to find a definition of what could be the added measure “I + J”. So this
translation seems to lead nowhere.

Still, we can express another kind of additivity property:

• S

I

↵

(K [K

0
) = S

I

↵

(K) + S

I

↵

(K

0
) (Add2)

So this translation considers the “addition” of two different bases (the set union).
But this formulation is not satisfactory because it forgets the fact that new conflicts can
appear when making the union of the two bases.

So we want this property to hold only when joining two bases does not create any
new inconsistencies. This leads to the following Pre-Decomposability property3:

3The property of Pre-Decomposability was called Decomposability in [HK08]
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• If MI(K [K

0
) = MI(K)�MI(K

0
), then S

I

↵

(K [K

0
) = S

I

↵

(K) + S

I

↵

(K

0
)

(Pre-Decomposability)

The condition ensures that there will be no new conflicts (minimal inconsistent
sets) when the two bases are joined. When this is the case, then we ask this additivity
property to hold.

This property is useful only when one can split a base into two subbases without
breaking minimal inconsistent sets. This is not always possible. So we need a slighly
more general property:

• If |MI(K1 [ . . . [K

n

)| = |MI(K1)|+ . . .+ |MI(K

n

)|,
then S

I

↵

(K1 [ . . . [K

n

) = S

I

↵

(K1) + . . .+ S

I

↵

(K

n

)

(Decomposability)

The Decomposability property says that if we can split the minimal inconsistent
sets into several subbases, then we can apply additivity on these subbases.

It is easy to see that the Pre-Decomposability property is implied by the Decom-
posability property.

Note that this possibility of interaction between the subgames that is not taken into
account in the usual Additivity condition, is one of the criticisms about this condition.
Let us quote for instance the following paragraph from [LR57]:

The last condition is not nearly so innocent as the other two. For although

v + w is a game composed from v and w, we cannot in general expect

it to be played as if it were the two separate games. It will have its own

structure which will determine a set of equilibrium outcomes which may

be different from those for v and w. Therefore, one might very well argue

that its a priori value should not necessarily be the sum of the values of

the two component games. This strikes us as a flaw in the concept value,

but we have no alternative to suggest.

In our framework the interaction between the bases is simply the new logical con-
flicts that appears when joining the bases, that allows us to say when this addition can
hold, and when it is not sensible.

9.4 Logical characterization of SIMI

We can now state the logical characterization of SIMI .

Proposition 10 An inconsistency value satisfies Distribution, Symmetry, Minimality,
Decomposability and MinInc if and only if it is the MI Shapley Inconsistency Value
S

IMI
↵

.

This result means that the Shapley Inconsistency Value SIMI
↵

is completely charac-
terized by five simple and intuitive axioms.

Note that Dominance, although satisfied by SIV, is not required for stating this
proposition.
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10 Applications of the SIVs
As the measures we define allow us to associate with each formula its degree of re-
sponsibility for the inconsistency of the base, they can be potentially useful for a lot of
different reasoning or deliberative tasks. They can be in particular used to guide any
paraconsistent reasoning, or any repair of the base. Let us quote three such possible
uses for inference and belief change operators. The first example is for paraconsistent
inference. The second one is about belief revision and the last one for negotiation.

10.1 Reasoning with Inconsistent Beliefbases
We show in this section how we can take an inconsistent beliefbase, and use the mea-
sure of inconsistency to prioritize the formulae in the beliefbase, so that a paraconsis-
tent consequence relation can be used with the belief.

There are some, but not many, inference relations from maximal consistent subsets
where the base is not stratified. The main ones are skeptical, credulous and argumen-
tative inference relations. See [BDP97] for a survey. There are more possibilities
when the bases are stratified, with some formulas being more important than others
[Bre89, BDP93, DLP94]. But these approaches need an additional kind of informa-
tion: the stratification. It is not a problem when such information is available from the
application. But when the only information is a non-stratified base, i.e. a set of formu-
las, these approaches are of no use. In order to use them we need a means to induce a
stratification from the flat (non-stratified) base. One approach to induce a stratification
from a flat base is based on the specificity principle used for defaults such as in ratio-
nal closure [LM92] and in System Z [Pea90]. But this process gives a special status
to implication, that is considered as a default rule, so it is not syntax independent (a
formula a ! b will be treated differently than the formula ¬a _ b). Another approach
is to use a tuple of formulae as input (as in knowledge merging) where each formula
can occur multiple times in the tuple (see for example [DDL06, HL09]). For this, a
merged knowledge base is obtained by taking into account the degree of support that
each candidate for the merged knowledge base receives from input formulae. Further-
more, this degree of support gives a preference (or priority) over the formulae in the
merged knowledge that can be used to stratify them in the output.

However, there does not appear to be proposal for stratifying a set of formulae
where the input is a set of formulae of propositional logic. But Shapley Inconsistency
Values can be used to define such a stratification. The idea is simple: take the set of
formulae and compute their Shapley Inconsisteny Values. This allows us to define a
stratification from less inconsistent formulas to more inconsistent ones. Then this strat-
ification can be used as input for one of the numerous inference relations for stratified
bases [Bre89, BDP93, DLP94]. This allows us to extend the usual approaches to rea-
soning with inconsistency in a very natural way, and to define a whole set of different
inference relations for flat bases by choosing one Shapley Inconsistency Value and one
(stratified) inference relation.

21



10.2 Iterated Revision and Transmutation Policies
The problem of belief revision is to incorporate a new piece of information that is more
reliable than (and conflicting with) the old beliefs of the agent. This problem has re-
ceived a nice answer in the work of Alchourron, Gardenfors, Makinson [AGM85] in
the one-step case. But when one wants to iterate revision, there are numerous problems
and no definitive answer has been reached in the purely qualitative case [DP97, FH96].
Using a partially quantitative framework, some proposals have given interesting results
(see e.g. [Wil95, Spo87]). Here “partially quantitative” means that the incoming piece
of information needs to be labeled by a degree of confidence denoting how strongly
we believe it. The problem in this framework is to justify the use of such a degree,
what does it mean exactly and where does it come from. One possibility is to use an
inconsistency measure (or a composite measure computed from an information mea-
sure [Loz94, Kni03, KLM03] and an inconsistency measure) to determine this degree
of confidence. We can then use the partially quantitative framework to derive revision
operators with a nice behaviour (w.r.t. [DP97, BM06, JT07]). In this setting, since the
degree attached to the incoming information is not a given data, but computed directly
from the information itself and the agent policy (behaviour with respect to information
and contradiction, encoded by a composite measure) then the problem of the justifica-
tion of the meaning of the degrees is avoided.

Another possible use of the inconsistency measures for belief revision is that they
allow to define non-prioritized belief revision operators [Han98]. One can define sev-
eral revision policies for the agent. We can for instance decide that an agent accepts a
new piece of information only if it brings a lot of information and few contradictions,
etc.

10.3 Negotiation
The problem of negotiation has been investigated recently under the scope of belief
change tools [Boo01, Boo02, Boo06, ZFMK04, MFZK04, Kon04, GKM05]. The prob-
lem is to define operators that take as input belief profiles (vectors of formulae4) and
that produce a new belief profile that aims to be less conflicting. We call these kind
of operators conciliation operators. The idea followed in [Boo02, Boo06, Kon04] to
define conciliation operators is to use an iterative process where at each step a set of
formulae is selected. These selected formulae are logically weakened. The process
stops when one reaches a consensus, i.e. a consistent belief profile5. Many interesting
operators can be defined when one fixes the selection function (the function that se-
lects the formulae that must be weaken at each round) and the weakening method. In
[Kon04] the selection function is based on a notion of distance. It can be sensible if
such a distance is meaningful in a particular application. If not, it is only an arbitrary
choice. It would then be sensible to choose instead one of the inconsistency measures
we defined in this paper. So the selection function would choose the formulae with the
highest inconsistency value. These formulae are clearly the more problematic ones.

4More exactly belief profiles are vectors of belief bases. We use this simplifying assumption just for
avoiding technical details here.

5A belief profile is consistent if the conjunction of its formulae is consistent.
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More generally SIVs can be used to define new belief merging methods, and guide
other negotiation-like operators.

11 Conclusion
We have proposed in this paper a new framework for defining inconsistency values.
The SIV values we introduce allow us to take into account the distribution of the in-
consistency among the formulae of the belief base and the variables of the language.
This is, as far as we know, the only definition that allows us to take both types of infor-
mation into account, thus allowing to have a more precise picture of the inconsistency
of a belief base. The perspectives of this work are numerous. First, as sketched in the
previous section, the use of inconsistency measures, and especially the use of Shapley
inconsistency values, can be valuable for several belief change operators, for instance
for modeling of negotiation. The Shapley value is not the only solution concept for
coalitional games, so an interesting question is to know if other solution concepts (for
a review of other values see [MS02]) can be sensible as a basis for defining other in-
consistency measures. But the main way of research opened by this work is to study
more closely the connections between other notions of (cooperative) game theory and
the logical modeling of belief change operators.
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12 Proofs
Proof of Proposition 3 : Clearly consistency is satisfied by definition.

To show monotony is direct. If K [K

0 is consistent, then K alone is also consistent,
so I

d

(K [K

0
) = I

d

(K) = 0, otherwise K [K

0 is not consistent, so I

d

(K [K

0
) = 1

by definition, so I

d

(K [K

0
) � I

d

(K). So in either case I

d

(K [K

0
) � I

d

(K).

To show free formula independence proceed by cases: If K is consistent, then I

d

(K) =

I

d

(K \ {↵}) = 0 by definition, otherwise K is not consistent, but as by hypoth-
esis ↵ is a free formula of K, this implies that K \ {↵} is not consistent. Then
I

d

(K) = I

d

(K \ {↵}) = 1 by definition. So in either case I

d

(K) = I

d

(K \ {↵}).
To show dominance, first if K [ {�} is consistent, then I

d

(K [ {�}) = 0, so I

d

(K [
{↵}) � I

d

(K [ {�}). Now, if K [ {�} is not consistent. By hypothesis ↵ ` �, this
implies that Cn(K [ {�}) ✓ Cn(K [ {↵}). So K [ {↵} is not consistent too. Then
I

d

(K [ {↵}) = I

d

(K [ {�}) = 1. So also in this case we have I

d

(K [ {↵}) �
I

d

(K [ {�}).
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⇤

Proof of Proposition 4 : To show consistency, note that K is consistent if and only
if MI(K) = ;. So K is consistent if and only if I

MI

(K) = |MI(K)| = 0.

To show monotony, note that if M 2 MI(K), then for any K

0, M 2 MI(K [K

0
). So

|MI(K)|  |MI(K [K

0
)|. That means I

MI

(K)  I

MI

(K [K

0
).

For free formula independence, if ↵ is a free formula of K, this means that ↵ does
not belong to any minimal inconsistent set of K. So MI(K) = MI(K \ {↵}). So
I

MI

(K) = I

MI

(K \ {↵}).
For dominance, as ↵ ` �, then for any M 2 MI(K [ {�}), either � 62 M or � 2 M .
If � 62 M , then M 2 MI(K), and so M 2 MI(K [ {↵}). Otherwise � 2 M , and so
M \ {�}[ {↵} 2 MI(K [ {↵}). So this means that |MI(K [ {↵})| � |MI(K [ {�})|,
or equivalently I

MI

(K [ {↵}) � I

MI

(K [ {�}).
⇤

Proof of Proposition 5 : For consistency note that if K is consistent, then
K has at least one (classical) model. This model is also a LP

m

model of K. So
min

!2ModLP (K){| !! |} = 0 since this classical model does not map any variable to
the inconsistent truth value. So I

LPm(K) = 0. If K is not consistent, then K has no
classical model. So any LP

m

model of K maps at least one variable to the inconsistent
truth value, so min

!2ModLP (K){| !! |} � 1, so I

LPm(K) 6= 0.

For monotony, note that by definition of LP
m

models Mod

LP

(K[K 0
) ✓ Mod

LP

(K).
So min

!2ModLP (K[K

0){| !! |} � min

!2ModLP (K){| !! |}. So I

LPm(K [ K

0
) �

I

LPm(K).

For dominance, if ↵ ` �, this means that Mod

LP

(K[{↵}) ✓ Mod

LP

(K[{�}). So
min

!2ModLP (K[{↵}){| !! |} � min

!2ModLP (K[{�}){| !! |}, and I

LPm(K [{↵}) �
I

LPm(K [ {�}).
For safe formula independence, for each model, w 2 Mod

LP

(K \ {↵}) such that
|w!| is minimal, there is a model w0 2 Mod

LP

(K) such w and w

0 agree on the atoms
occuring in K \ {↵} and for the atoms not occuring in K \ {↵} (i.e. those occuring
in ↵), the assignment by w

0 is in {T,F} (i.e. w

0 does not assign B to these atoms
by), and hence, |w!| = |w0

!|. Furthermore, for each w

0 2 Mod(K) such that |w0
!| is

minimal, there is a model w 2 Mod(K) such w and w

0 agree on the atoms occuring
in K \ {↵} and for the atoms not occuring in K \ {↵}, the assignment by w

0 is in
{T,F}, and hence, |w!| = |w0

!|. Therefore, if ↵ is a safe formula in K, then I

LPm(K)

= I

LPm(K \ {↵}).
⇤

Proof of Proposition 6 : To show distribution, let us recall that

S

I

↵

(K) =
P

C✓K

(c�1)!(n�c)!
n! (I(C)� I(C \ {↵}))

= 1
n!

P
�2�n

I(p

↵

�

[ {↵})� I(p

↵

�

)

where �
n

is the set of possible permutations on K, and p

↵

�

= {� 2 K | �(�) < �(↵)}.
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Now

P
↵2K

S

I

↵

(K) =

P
↵2K

1
n!

P
�2�n

I(p

↵

�

[ {↵})� I(p

↵

�

)

= 1
n!

P
�2�n

P
↵2K

I(p

↵

�

[ {↵})� I(p

↵

�

)

Now note that we can order the elements of K accordingly to � when computing the
inside sum, and this gives:

= 1
n!

P
�2�n

[I({↵
�(1), . . . ,↵�(n)})

�I({↵
�(1), . . . ,↵�(n�1)})]

+[I({↵
�(1), . . . ,↵�(n�1)})
�I({↵

�(1), . . . ,↵�(n�2)})]
+ . . .+ [I({↵

�(1)})� I(;)]
= 1

n!

P
�2�n

I({↵
�(1), . . . ,↵�(n)})� I(;)

= 1
n! n! I(K)

= I(K)

To show symmetry, assume that there are ↵,� 2 K s.t. for all K 0 ✓ K s.t. ↵,� /2 K

0,
I(K

0 [ {↵}) = I(K

0 [ {�}).
Now by definition

S

I

↵

(K) =

X

C✓K

(c� 1)!(n� c)!

n!

(I(C)� I(C \ {↵}))

Let us show that SI

↵

(K) = S

I

�

(K) by showing (by cases) that the elements of the sum
are the same:

• If ↵ 62 C and � 62 C, then I(C) = I(C \ {↵}) = I(C \ {�}), so I(C)� I(C \
{↵}) = I(C)� I(C \ {�}).

• If ↵ 2 C and � 2 C, then note that by hypothesis, as ↵,� /2 C \ {↵,�}, we
deduce that I(C\{↵}) = I(C\{�}). So I(C)�I(C\{↵}) = I(C)�I(C\{�}).

• If ↵ 2 C and � 62 C. Then I(C)�I(C\{�}) = 0, and let us denote I(C)�I(C\
{↵}) = a. Let us denote C = C

0[{↵} with C

0\{↵} = ;, and C

00
= C

0[{�}.
Now notice that C 00

= C

00 \ {↵} so I(C

00
)� I(C

00 \ {↵}) = 0. We can deduce
I(C

0 [ {↵}) = I(C

0 [ {�}) by the hypothesis, and hence I(C) = I(C

00
). Also

we can deduce I(C \{↵}) = I(C

00 \{�}) by the hypothesis. Therefore, we also
have I(C

00
)� I(C

00 \ {�}) = a.

Hence there is a bijection F : }(K) 7! }(K) such that if ↵ 2 C and � 62 C,
then F (C) = C \ {↵} [ {�} otherwise F (C) = C. So using this bijection, we
have that for all C ✓ K, I(C) � I(C \ {↵}) = I(F (C)) � I(F (C) \ {�}). Hence,P

C✓K

I(C) � I(C \ {↵}) =
P

C✓K

I(F (C)) � I(F (C) \ {�}). Also, since F is a
bijection on }(K),

P
C✓K

I(C)� I(C \ {�}) =
P

C✓K

I(F (C))� I(F (C) \ {�}).
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Therefore,
P

C✓K

I(C)�I(C \{↵}) =
P

C✓K

I(C)�I(C \{�}). Hence, SI

↵

(K) =

S

I

�

(K).

To show the minimality property, just note that if ↵ is a free formula of K, then by
the free formula independence property of the basic inconsistency measure we have
that for every C ✓ K, such that ↵ 2 C, I(C) = I(C \ ↵), so I(C) � I(C \ ↵) = 0.
Straightforwardly if ↵ 62 C, I(C) = I(C \ ↵). So the whole expression S

I

↵

(K) =P
C✓K

(c�1)!(n�c)!
n! (I(C)� I(C \ {↵})) sums to 0.

Finally, to show dominance we will proceed in a similar way as to show symme-
try. Assume that ↵,� 2 K are such that ↵ ` � and ↵ 0 ?. Then, by the domi-
nance property of the underlying basic inconsistency measure, we know that for all
C ✓ K, I(C [ {↵}) � I(C [ {�}). Now by definition of the SIV S

I

↵

(K) =P
C✓K

(c�1)!(n�c)!
n! (I(C)� I(C \ {↵})). Let us show that S

I

↵

(K) � S

I

�

(K) by
showing (by cases) that the elements of the first sum are greater or equal to the cor-
responding elements of the second one:

• If ↵ 62 C and � 62 C, then I(C) = I(C \ {↵}) = I(C \ {�}), so I(C)� I(C \
{↵}) � I(C)� I(C \ {�}).

• If ↵ 2 C and � 2 C, then let us define C 0 to be such that C\{↵} = C

0[{�}. So
we also have C \ {�} = C

0 [ {↵}. Now note that by hypothesis I(C 0 [ {�}) 
I(C

0 [ {↵}), so I(C \ {↵})  I(C \ {�}). Hence I(C) � I(C \ {↵}) �
I(C)� I(C \ {�}).

• If ↵ 2 C and � 62 C. Then I(C) � I(C \ {�}) = 0. Let us denote C =

C

0 [ {↵} where C

0 \ {↵} = ;, and C

00
= C

0 [ {�}. Now notice that I(C 00
)�

I(C

00 \ {↵}) = 0. So I(C

00
) � I(C

00 \ {↵}) � I(C) � I(C \ {�}). Note that
I(C

00 \ {�}) = I(C \ {↵}) = I(C

0
). As we can deduce I(C) � I(C

00
) by the

hypothesis, we also have I(C)� I(C \ {↵}) � I(C

00
)� I(C

00 \ {�}).

As with symmetry, we can then obtain a bijection that allows us to show dominance. ⇤

Proof of Proposition 7 : To prove consistency note that if K is consistent, then for
every C ✓ K, I(C) = 0 (this is a direct consequence of the consistency property of the
underlying basic inconsistency measure). Then for every ↵ 2 K, SI

↵

(K) = 0. Hence
ˆ

S

I

(K) = max

↵2K

S

I

↵

(K) = 0. For the only if direction, by contradiction, suppose
that ˆ

S

I

(K) = 0 and that K is not consistent. As K is not consistent, then by the
consistency property of the underlying basic inconsistency measure I(K) = a 6= 0.
By the distribution property of the SIV we know that

P
↵2K

S

I

↵

(K) = a 6= 0, then
9↵ 2 K such that SI

↵

(K) > 0, so ˆ

S

I

(K) = max

↵2K

S

I

↵

(K) > 0. Contradiction.

To show the free formula independence property, just notice that for any formula �

that is a free formula of K [ {�}, it is also a free formula of every one of its sub-
sets. It is easy to see from the definition that for any ↵ 2 K, SI

↵

(K) = S

I

↵

(K [
{�}). This is easier if we consider the second form of the definition: S

I

↵

(K) =

1
n!

P
�2�n

I(p

↵

�

[ {↵})� I(p

↵

�

) where �

n

is the set of possible permutations on K.
Now note that for SI

↵

(K [ {�}), the free formula does not bring any contradiction,
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so it does not change the marginal contribution of any other formula. Let us call the
extensions of a permutation � on K by �, all the permutations of K [ {�} whose re-
striction on elements of K is identical to �, i.e. an extension of � = (↵1, . . . ,↵n

) by
� is a permutation �

0
= (↵1, . . . ,↵i

,�,↵

i+1, . . . ,↵n

). Now note that there are n + 1

such extensions, and that if �0 is an extension of �, I(p↵
�

[ {↵}) � I(p

↵

�

) = I(p

↵

�

0 [
{↵}) � I(p

↵

�

0). So S

I

↵

(K [ {�}) =

1
(n+1)! (n + 1)

P
�2�n

I(p

↵

�

[ {↵})� I(p

↵

�

) =

1
n!

P
�2�n

I(p

↵

�

[ {↵})� I(p

↵

�

) = S

I

↵

(K). Since for any ↵ 2 K, we have S

I

↵

(K) =

S

I

↵

(K [ {�}), we can also get ˆ

S

I

↵

(K [ {↵}) = ˆ

S

I

(K).

The upper bound property is stated by rewriting I(K) as
P

↵2K

S

I

↵

(K) with the dis-
tribution property of the SIV, and by recalling the definition of ˆ

S

I

(K) as max

↵2K

S

I

↵

(K).
Now by noticing that for every vector a = (a1, . . . , an), max

ai2a

a

i


P

ai2a

a

i

, we
conclude max

↵2K

S

I

↵

(K) 
P

↵2K

S

I

↵

(K), i.e. ˆ

S

I

(K)  I(K).

To show isolation the if direction is straighforward: As ↵ is inconsistent, K is incon-
sistent, and by the consistency property of the underlying basic inconsistency measure
we know that I(K) > 0. By the free formula property of SIV, for every free formula �
of K we have S

I

�

(K) = 0. As by the distribution property we have
P

↵2K

S

I

↵

(K) =

I(K), this means that SI

↵

(K) = I(K), and that ˆSI

(K) = max

↵2K

S

I

↵

(K) = S

I

↵

(K).
So ˆ

S

I

(K) = I(K) > 0. For the only if direction suppose that ˆ

S

I

(K) = I(K), that
means that max

↵2K

S

I

↵

(K) = I(K). But, by the distribution property we know that
I(K) =

P
↵2K

S

I

↵

(K). So it means that max

↵2K

S

I

↵

(K) =

P
↵2K

S

I

↵

(K) = I(K).
There exists ↵ such that SI

↵

(K) = I(K) (consequence of the definition of the max),
and if there exists a � 6= ↵ such that SI

�

(K) > 0, then
P

↵2K

S

I

↵

(K) > I(K). Con-
tradiction. So it means that there is ↵ such that SI

↵

(K) = I(K) and for every � 6= ↵,
S

I

�

(K) = 0. That means that every � is a free formula, and that ↵ is inconsistent.

⇤

Proof of Proposition 8 : Let us first show the following lemma that will be useful
in the proof.

Lemma 1 If a simple game in coalitional form on a set of players N = {1, . . . , n} is
defined by a single winning coalition C

0 ✓ N , i.e:

v(C) =

⇢
1 if C 0 ✓ C

0 otherwise

Then the corresponding Shapley value is:

S

i

(v) =

⇢
0 if i 62 C

0
1

|C0| if i 2 C

0

Proof of Lemma 1 : By (Dummy) we get that if i 62 C

0, then S

i

(v) = 0. By
(Efficiency) we know that the outcome of the grand coalition N must be shared in the
sum of the Shapley values of the players:

P
i2N

S

i

(v) = 1. Since for players i 62 C

0

we know that S
i

(v) = 0, it means that this has to be split between the members of
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C

0. So
P

i2C

0 S
i

(v) = 1. Now by (Symmetry) we get that for all i, j 2 C

0, we have
S

i

(v) = S

j

(v). So this implies that if i 2 C

0, then S

i

(v) =

1
|C0| . ⇤

Let us now state the result. First suppose that ↵ is a free formula of K, then we
have immediately by (Minimality) that SIMI

↵

(K) = 0. We also have immediately by
definition that MIV

C

(K,↵) = 0. So the equality is satisfied in this case.

Now suppose that ↵ is not a free formula of K. First remark that I
MI

can be de-
composed in I

MI

(C) =

P
M2MI(K)

ˆ

M(C), where ˆ

M is the following characteristic
function

ˆ

M(C) =

⇢
1 if M ✓ C

0 otherwise

Let us denote by ˆ

M(K) the game in coalitional form defined from K and the charac-
teristic function ˆ

M .

So now let us start from the MI Shapley Inconsistency Value:
SIMI
↵ (K)

=
X

C✓K

(c� 1)!(n� c)!
n!

(IMI(C)� IMI(C \ {↵}))

=
X

C✓K

(c� 1)!(n� c)!
n!

(
X

M2MI(K)

M̂(C)

�
P

M2MI(K) M̂(C \ {↵}))

=
X

C✓K

(c� 1)!(n� c)!
n!

(
X

M2MI(K)

(M̂(C)� M̂(C \ {↵})))

=
X

C✓K

X

M2MI(K)

(c� 1)!(n� c)!
n!

(M̂(C)� M̂(C \ {↵}))

=
X

M2MI(K)

X

C✓K

(c� 1)!(n� c)!
n!

(M̂(C)� M̂(C \ {↵}))

=
X

M2MI(K)

S↵(M̂(K))

Now note that by Lemma 1 we have S

↵

(

ˆ

M(K)) =

1
|M | .

That gives SIMI
↵

(K) =

X

M2MI(K)

1

|M | = MIV

C

(K,↵).

⇤

Proof of Proposition 10 : To prove that the MI Shapley Inconsistency Value satisfies
the logical properties is easy. (Distribution), (Symmetry), (Minimality) are satisfied
by all Shapley Inconsistency Values (Proposition 6).

So it remains to show (Decomposability) and (MinInc). (MinInc) is satisfied by defi-
nition since I

MI

(M) = |MI(M)| = 1 for any M 2 MI(K).

For (Decomposability), note that the hypothesis |MI(K1 [ . . . [K

n

)| = |MI(K1)| +
. . .+ |MI(K

n

)| implies that every minimal inconsistent set of K1 [ . . .[K

n

is exactly
in one K

i

. So for each M 2 MI(K1 [ . . .[K

n

), then 9i s.t. M 2 MI(K

i

) and 8j 6= i
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M /2 MI(K

j

). So from the hypothesis we obtain
X

M2MI(K1[...[Kn)

1

|M | =
X

M2MI(K1)

1

|M | + . . .+

X

M2MI(Kn)

1

|M | (1)

And from Proposition 8 we know that

S

IMI
↵

(K) =

X

M2MI(K)s.t.↵2M

1

|M |

That means that equation 1 is equivalent to

S

IMI
↵

(K1 [ . . . [K

n

) = S

IMI
↵

(K1) + . . .+ S

IMI
↵

(K

n

)

For the converse implication suppose that we have an inconsistency value that satisfies
(Distribution), (Symmetry), (Minimality), (Decomposability) and (MinInc). We
want to show that it is the MI Shapley Inconsistency Value. From the use of (Minimal-
ity) and (Decomposability) we have that

S

I

↵

(K) =

X

M2MI(K)

S

I

↵

(M)

Now for each M if ↵ 62 M we have by (Minimality) that SI

↵

(M) = 0. And if ↵ 2 M

then we have by (Distribution)
P

↵2M

S

I

↵

(M) = I(M). And by (Symmetry) we
have that 8↵,� 2 M , SI

↵

(M) = S

I

�

(M). So we obtain that

8↵ 2 M, S

I

↵

(M) =

I(M)

|M |

and therefore
S

I

↵

(K) =

X

M2MI(K)s.t.↵2M

I(M)

|M |

Now by (MinInc) we know that for all M 2 MI(K), I(M) = 1. That gives

S

I

↵

(K) =

X

M2MI(K)s.t.↵2M

1

|M |

That is the definition of MI Shapley Inconsistency Value.
⇤
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