
Experiments with Massively Parallel Constraint Solving

Lucas Bordeaux, Youssef Hamadi and Horst Samulowitz
Microsoft Research Cambridge

{lucasb,youssefh,horsts}@microsoft.com

Abstract
The computing industry is currently facing a ma-
jor architectural shift. Extra computing power is
not coming anymore from higher processor fre-
quencies, but from a growing number of computing
cores and processors. For AI, and constraint solv-
ing in particular, this raises the question of how to
scale current solving techniques to massively par-
allel architectures.
While prior work focusses mostly on small scale
parallel constraint solving, we conduct the first
study on scalability of constraint solving on 100
processors and beyond in this paper. We propose
techniques that are simple to apply and show empir-
ically that they scale surprisingly well. These tech-
niques establish a performance baseline for parallel
constraint solving technologies against which more
sophisticated parallel algorithms need to compete
in the future.

1 Context and Goals of the Paper
A major achievement of the digital hardware industry in the
second half of the 20th century was to engineer processors
whose frequency doubled every 18 months or so. It has now
been clear for a few years that this period of ”free lunch”, as
put by [Sutter, 2005], is behind us. The forecast of the indus-
try is still that the available computational power will keep
increasing exponentially, but the increase will from now on
be in terms of number of processors available, not in terms of
frequency per unit. This shift from ever higher frequencies
to ever more processors1 is perhaps the single most signifi-
cant development in the computing industry today. Besides
the high-performance computing facilities readily accessible
by many AI practitioners in academia and the industry, novel
architectures provide large-scale parallelism:

• Multi-Core processors are now the norm. Chip makers
are predicting that the trend will from now on intensify
from just a few cores to many [Held et al., 2006], a shift
which raises significant challenges for software develop-
ment [Sutter, 2005].

1Unless otherwise stated in this paper the word processor refers
to an independent computing unit, whether it is a CPU or a core.

• Data-centers now offer truly massive infrastructures for
rent: Amazon offers a range of web services through
which computing and storage can be used on demand,
and Microsoft launched in 2008 its ”operating system in
the cloud”, Azure. With such facilities anyone can now
gain access to super-computing facilities at a moderate
cost2.

• Distributed Computing offers possibilities for groups of
users to put their computational resources in common
and effectively obtain massive capabilities. Examples
include Seti@home and Sharcnet.

The number of processors provided in each scenario is al-
ready high, and it is bound to grow significantly in the near
future. The main challenge raised by this new hardware is
therefore to scale, i.e., to cope with this growth.

Consequences for AI Compute-Intensive Techniques
How to utilize the computational power provided by new
hardware is a question of technology and engineering, and
one could argue that it is largely orthogonal to the scientific
questions that should be at the center of AI research—larger
machines will not magically provide us with a science of hu-
man intelligence.

However, what new hardware provides is increased scal-
ability, and this increased scalability has in the past years
directly contributed to the scalability of the core techniques
of AI. In return this contributed to a broader application of
AI and to some notable achievements such as Deep Blue, a
spectacular example in which powerful hardware was used
together with algorithmic innovations to defeat human intel-
ligence at chess.

In the context of Linear Programming, Bixby [Bixby,
2002] clarifies the respective roles of software and hardware
in the progress made from 1988 to 2002: software and hard-
ware both contributed a speed improvement of roughly 1,000.
For other constraint solving techniques, and other compute-
intensive methods in general, it seems safe to say that hard-
ware contributed at least as much as software to the progress

2At the time of this writing Amazon’s price calculator
(http://aws.amazon.com/ec2/) indicates for example that
a medium, high-CPU instance can be used for $0.20 per hour. Occa-
sionally renting resources can therefore become orders of magnitude
cheaper than buying and maintaining a dedicated cluster.



observed in the past decades3. In other words progress would
be considerably slower should we stop gaining from hardware
improvements; this in our view gives a strong motivation for
studying the question of parallel scalability.

Contributions and Outline of the Paper
There exists substantial prior work in parallel AI, e.g., [Waltz,
1993] but little work on massively parallel constraint solv-
ing [Jaffar et al., 2004]. Our paper extents the experimen-
tal study of massively parallel constraint solving and displays
both novel and promising results. We start by a brief overview
of parallel constraint solving in Section 2. From this overview
two particularly promising approaches are identified; we treat
them in order, propose new techniques for each approach, and
conduct experiments. These are reported in Section 3 for the
first selected approach (search-space splitting); and in Sec-
tion 4 for the second (portfolios). We draw conclusions and
elaborate upon the perspectives that arise from this work for
massively parallel constraint solving in Section 5.

2 Parallel Constraint Solving
We assume that the reader is familiar with constraint solving
in general. We are interested in all variants of constraint solv-
ing problems but will focus in most of the paper on propo-
sitional satisfiability (SAT). The reason is that the complex
mix of dynamic heuristics and other techniques used by SAT
solvers raises particularly interesting challenges for paral-
lelization.

The main approaches to parallel constraint solving can
roughly be divided into the following main categories:

Search Space Splitting strategies explore the parallelism
provided by the search space and are probably the approach
most commonly used [Pruul and Nemhauser, 1988], when
a branching is done the different branches can be explored
in parallel (”OR-parallelism”). One challenge with this ap-
proach is load balancing: the branches of a search tree are
typically extremely imbalanced and require a non-negligible
overhead of communication for work stealing. Recent works
based on this approach are e.g., [Zoeteweij and Arbab, 2004;
Jaffar et al., 2004; Michel et al., To appear].

Portfolios explore the parallelism provided by different
viewpoints on the same problem, for instance different algo-
rithms or parameter tunings. This idea has also been exploited
in a non-parallel context, e.g., [Gomes and Selman, 2001;
Xu et al., 2007]. One challenge here is to find a scalable
source of diverse viewpoints that provide orthogonal perfor-
mance and are therefore of complementary interest. A recent
solver based on this approach is [Hamadi et al., 2008].

Problem Splitting is another idea that relates to paral-
lelism, where the instance itself is split into pieces to be

3We feel that our remarks and conclusions on constraint solving
largely apply to a broader class of compute-intensive AI methods.
There is another category of AI techniques for which massive paral-
lelism is of considerable interest, namely data-intensive techniques
such as those of data-mining, and these are clearly beyond the scope
of this paper. Let us also insist that this paper is about one aspect
of AI progress only: the measurable progress in terms of speed of
these compute-intensive algorithms.

solved by each processor. One challenge here is that because
no processor has a complete view on the problem, it typically
becomes much more difficult to solve than in the centralized
case as reconciling the partial solutions obtained for each sub-
problem becomes challenging. Instance splitting typically re-
lates to distributed CSPs, a framework introduced in [Yokoo
et al., 1990] which assumes that the instance is naturally split-
ted between agents, for instance for privacy reasons.

Other Approaches can be thought of, typically based on
the parallelization of one key algorithm of the solver, for in-
stance constraint propagation. However parallelizing prop-
agation is challenging [Kasif, 1990] and the the scalability
of this approach is limited by Amdahl’s law: if propagation
consumes 80% of the runtime, then by parallelizing it, even
with a massive number of processors, the speed-up that can
be obtained will be under 5. Some other approaches focus on
particular topologies or make assumptions on the problem.

Based on these observations the search-space splitting and
portfolio approaches are in our opinion the most likely to of-
fer scalable speed-ups. In the following we propose an exper-
imental setting for both approaches. Note that even for these
approaches scalability issues are yet to be investigated: most
related works use a number of processors between 4 and 16;
the only exception we are aware of is [Jaffar et al., 2004] in
the context of search-space splitting.

One issue with parallelism is that all approaches may (and
a few must) resort to communication. Communication be-
tween parallel agents is of course costly in general: in shared-
memory models such as multi-core this typically means an
access to a shared data-structure for which some form of lock-
ing is usually unavoidable; the cost of message-passing cross-
CPU is even significantly higher. Communication addition-
ally makes it difficult to get insights on the solving process
since the executions are highly inter-dependent and under-
standing parallel executions is notoriously complex. In this
paper we simplify this by considering approaches in which
communication can be avoided.

3 Search-Space Splitting Strategies
Here we propose a simple approach to search-space splitting
that we call splitting by hashing. Let C denote the set of con-
straints of the problem. To split the search space of a prob-
lem into p parts one approach is to assign each processor i
an extended set of constraints C ∪Hi where Hi is a hashing
constraint, which constrains processor i to a particular subset
of the search space. The hashing constraints must necessarily
satisfy the following property:

sound: The hashing constraints must partition the search
space:

⋃
i∈0..p−1 Hi must cover the entire initial search

space, and
⋂

i∈0..p−1 Hi should preferably be empty.

We claim that the following qualities are desirable:

effective: The addition of the hashing constraints should ef-
fectively allow each processor to efficiently skip the por-
tions of the search space not assigned to it. Each proces-
sor should therefore solve a problem significantly easier
than the original problem.



balanced: The splitting should be balanced, i.e., all proces-
sors should be given about the same amount of work.

The most natural way to define such hashing constraints
is the following: we select a subset S of the variables of the
problem and define Hi as follows:∑

x∈S

x ≡ i (mod p)

This effectively decomposes a problem into p problems. Note
that p has to be within reasonable limits, e.g., it should be
smaller than the cardinality of the domain. (If no better choice
is obvious one can always choose p = 2, in which case the
sum imposes a parity condition, or XOR constraint.) There-
fore one hashing constraint does not necessarily suffice to
scale-up to an arbitrary number of processors—for this the
splitting can be repeated in an obvious way: each of the sub-
problems obtained by hashing can itself be hashed again. For
instance, by adding n parity constraints we scale to 2n pro-
cessors.

The splitting obtained with this approach is obviously
sound and it is important to note that it is also most likely
to be balanced: if we pick the variables in S at random we
have a good chance of summing variables that have no sig-
nificant correlation and for which the work on the even and
odd sides is comparable. In fact, balance is a well-known
theoretical property of parity constraints: if S is chosen large
enough it can be proved that the two sides are balanced with
very high probability [Valiant and Vazirani, 1985]. This prop-
erty was used successfully by recent SAT/CP research to ob-
tain fast approximate solution counts [Gomes et al., 2006]. It
seems to us that this technique is of interest in the context of
parallelism, but this has to our knowledge not been investi-
gated. One question that remains is nonetheless whether the
approach satisfies the third criterion and is effective; we can
answer this by experiments.

Experiments
In a first experiment4 we verify the effectiveness of this tech-
nique in a classic CSP setting: we consider the well-known
N-Queens problem (here N = 17) with a lexicographical
variable ordering strategy and with values enumerated in in-
creasing order. Here we enumerate the solutions to this prob-
lem and for enumeration the chosen heuristics are a reason-
able choice. We impose a hashing constraint on 30% of the
variables, picked at random, and we bias the static search
heuristic so that it branches on these variables first.

What is striking on this result is that our simple splitting
technique gives excellent results, with a linear speed-up for
up to 30 processors. It is interesting to note that most other
works that report similar results (e.g., [Zoeteweij and Arbab,
2004], where the maximum number of processors discussed
is 16; [Jaffar et al., 2004] who scale up to 60 processors)
use considerably more sophisticated parallel techniques and
require communication. Beyond 30 processors our approach
ceases to scale-up on this specific problem, but this is to a

4All experiments in this paper were run on a 16 node cluster;
each node having 2 Quad-Core AMD 2350 processors (2.0GHz)
and 16GB of memory.

 4

 8

 12

 16

 20

 24

 28

 32

 4  8  12  16  20  24  28  32  36  40  44  48  52  56  60  64

S
pe

ed
-U

p 
in

 R
un

tim
e 

co
m

pa
re

d 
to

 1
 C

or
e

Number of Cores

Speed-Up

Figure 1: Search-Space Splitting Strategy: The Queens

great extent explained by the fact that the instance consists
only of a few variables and the chosen XOR constraints are
not effective anymore.

The previous experimental setting is obviously in favor of
splitting by hashing for three main reasons: 1) the variable
ordering is static, 2) we are exploring a search space exhaus-
tively, and 3) the problem is highly symmetric.

For a more thorough assessment of the scalability of the
technique we use it in a very different setting: we use a re-
cent SAT solver5 and a recent selection of 100 industrial SAT
instances (those of the latest SAT race). Since the variable or-
dering in SAT is extremely dynamic, SAT solvers do not ex-
actly prove unsatisfiability by exhausting a search tree (clause
learning is also used), and industrial SAT instances normally
do not have a balanced search space, we avoid the three bi-
ases.

In this experiment we split each problem into 64 parts by
using six parity constraints. Each of them is encoded into
clauses in the natural way, and uses 3 variables picked at ran-
dom. This was tuned experimentally: constraints of size 2
prove too likely to select variables with natural correlations,
in which case hashing becomes imbalanced (one side is triv-
ially unsatisfiable); high sizes tend to decrease effectiveness
because propagation methods have difficulties with congru-
ence constraints of large arity (e.g., [Gomes et al., 2006]).

In Figure 2 we display the performance of MiniSAT with-
out and with added XOR constraints (curve ”XOR”) in terms
of number of instances solved in dependence of time. For
further comparison the figure also shows the curve obtained
when using the technique we introduce in the next section
(”fixed order”). We observe that even in an apparently un-
favorable setting this method is able to improve the perfor-
mance of the standard MiniSat solver (+7 instances solved),
albeit significantly less than the portfolio approach that we
discuss next. One reason why the gains are moderate is that
we cannot afford to bias the variable ordering, and may lose
effectiveness: dividing the search space by p using XORs
does not always make the problem p times easier.

5The experiments we report use Microsoft Solver Foundation for
CSP and MiniSAT 2.0 for SAT. Note also that MiniSAT is for now
used without preprocessor (Satelite).



 0

 10

 20

 30

 40

 50

 60

 0  100  200  300  400  500  600  700  800  900

N
um

be
r 

of
 in

st
an

ce
s 

so
lv

ed

Runtime (seconds) 

MiniSat 2.0 with fixed order on 64 cores
MiniSat 2.0 with XOR of length 3 on 64 cores

MiniSat 2.0

Figure 2: Search-Space Splitting Strategy on 100 SAT indus-
trial instances

Conclusions

Splitting strategies are perhaps the most natural approach to
parallel constraint solving and they remain of interest for
massive parallelism. Our view is however that we should dis-
tinguish between 2 cases.

A relatively simple case is when the heuristic is static, as
is most often assumed in parallel CSP works. Then the sim-
pler search tree structure is not too difficult to break down
into pieces, and this is therefore the setting in which most
of the positive results are reported [Perron, 1999; Zoeteweij
and Arbab, 2004; Michel et al., To appear]. In this case our
initial observation is that the speed-up can sometimes be re-
produced using a simple hashing technique; this technique is
therefore valuable as a baseline well worth considering be-
fore trying a more complex approach. We are confident that
the technique should scale-up, for instance for applications
like model counting.

A more challenging case however is with highly dynamic
heuristics, as used by SAT solvers but also increasingly by
sequential CP solvers. Our view is that splitting the search
space explored using such strategies is much more difficult.
Here the state-of the art is represented by the pMiniSAT
solver of [Chu and Stuckey, 2008], which also incorporates
other techniques such as an improved propagation. Judg-
ing from the SAT race 08 results, pMiniSAT is a powerful
solver which outperforms the best sequential solver, but is it-
self outperformed by portfolio approaches (pMiniSAT ranked
second of the race). Interestingly our experiments for fairly
large-scale parallelism show similar conclusions to those ob-
tained in the SAT race for small-scale parallelism (4 cores):
similarly we obtain moderate speed-ups with our splitting ap-
proach.

The particular technique we have experimented is simple
to apply and could conceivably be improved using communi-
cation to enable e.g., work stealing [Chu and Stuckey, 2008;
Jaffar et al., 2004]. However, the challenges raised by com-
munication, already complex and costly with small-scale par-
allelism, become daunting when the number of communicat-
ing processors gets large (e.g., 10,000 cores).

4 Portfolio Approaches
Portfolio approaches exploit the variability of performance
that is observed between several solvers, or several parameter
settings for the same solver. We find it convenient to distin-
guish between two aspects of parallel portfolios:

• If assumptions can be made on the number of processors
available then it is possible to handpick a set of solvers
and settings that complement each other optimally. The
SAT race 08 was using 4-core machines and the win-
ner, ManySAT [Hamadi et al., 2008], followed this ap-
proach, with some other improvements such as clause
exchange.
• If we want to face an arbitrarily high number of proces-

sors we need automated methods able to generate a port-
folio of any size on demand. Since there is always only
a finite set of solvers this calls for an approach that ex-
ploits complementary settings of another kind: the chal-
lenge is to find a source of variability that can be favor-
ably explored in parallel.

These two aspects are not totally orthogonal and should, in
fact, be seen as complementary: one could use an optimized
fixed-size portfolio as a basis which, given more processors,
could be scaled-up using an automated method suggested in
the second point. In this paper we focus on the second aspect.

While in general many sources of variability exist in con-
straint solvers, we are looking for variability sources with the
following qualities:

scalable: many settings should give many different runtimes
(otherwise there exist limitations to the number of set-
tings that can be tried in parallel).

favorable: moving away from the default sequential setting
should not systematically worsen the performance; it
should have a probability of improving it.

solver-independent: each and every solver usually has a
number of specific parameters (ratios, limits, frequen-
cies, etc.) whose setting affects the performance. We do
not explore this direction for purposes of reusability.

The best study of variability we are aware of is recent work
on mixed integer programming [Danna, 2008], and we have
essentially considered the same sources: permutating some of
the data of the instance, and changing the random seed used
by the solver. Our experience is that the variability offered
by different random seeds is not scalable enough and this pa-
rameter is also hardly solver-independent (the use of random
seeds varies among solvers—some do not employ random-
ness at all).

While permutations appear to be more promising with re-
spect to solver-independence and scalability, it is the case
that several types of permutations are clearly not very favor-
able: for example permutations of the constraints of an in-
stance tend to separate constraints that are naturally grouped
together in the encoding, leading to disadvantageous mem-
ory/caching and heuristic effects [Danna, 2008]. However,
permutations of variable orderings are closer to the desired
effect of exploring diverse viewpoints on a problem. It is
well-known that variable ordering heuristics have a dramatic



impact on the performance of resolution. While we can ex-
pect a high variability, it remains unclear if this variability
can be exploited favorably. One challenge that we want to
test is if this source of variability works well with solvers that
use complex and dynamic variable ordering heuristics: we
cannot simply randomize the variable ordering and force the
solver to follow it statically. In our studies the most effective
variant6 of permutation we discovered is to partially fix the
variable ordering: we pick a small quantity q of variables at
random and bias the search process so that these variables are
always branched on first (using e.g., a randomized polarity);
the solver then continues branching with its normal strategy.
It is the case that the solver can backtrack over those fixed
variables if this is logically implied. Hence, the solver re-
mains complete.

In Figure 3 we show for a sample of instances the vari-
ability in runtimes obtained when trying 500 different ways
to fix just q = 1 variable (note the log-scale). Clearly, the
variability is extremely high: by fixing a variable we obtain
many runtimes significantly lower and higher than without.
The technique seems to be favorable and satisfy the qualities
we are looking for.

 1

 10

 100

 1000

9vliw
-bug1

9vliw
-bug2

9vliw
-bug3

9vliw
-bug4

9vliw
-bug5

9vliw
-bug9

A
P

ro07-04

A
P

ro07-11

eq.9.unsat

m
izh-47-3

m
izh-47-4

m
izh-47-5

m
izh-35-2

m
izh-35-4

m
od2-9-12

m
od2-9-14

m
od2c-190-3

m
od2c-220-2

m
od2-210-1

m
od2-210-2

m
od2-220-1

m
od2-220-2

m
od2-230-2

m
od2-240-3

m
od2-250-3

m
od2-280-1

Q
G

7aukn5

Q
G

7icl1

Q
G

8ukn5

Q
G

brn8

Q
G

icl3

S
G

I-70-26-60-3

S
G

I-80-15-90-4

total-10-11-u

total-5-17-s

uts-l05-h26

uts-l05-h27

uts-l06-h28

uts-l06-h34

uts-l06-h35

vm
pc-21

vm
pc-22

vm
pc-23

vm
pc-25

vm
pc-26

R
un

tim
e 

(s
ec

on
ds

) 

MiniSat 2.0
MiniSat 2.0 - 1 Fixed Variable Maximal Runtime
MiniSat 2.0 - 1 Fixed Variable Minimal Runtime

Figure 3: Variability of runtimes when using partially fixed
variable orderings

The reasons why fixing a particular variable speed-up the
resolution seem difficult to analyze: we tried to correlate the
variable responsible for the best runtime with syntactic and
topological features of the instance—without success. This
absence of correlation made our idea to employ machine
learning techniques to predict ”good” variables fail.

Experiments
To evaluate our approach we conducted experiments in the
context of SAT (same instances as before). Here we use a
partially fixed variable ordering of q = 3 variables, which
was set empirically. The obtained results are in our view very
encouraging and for this technique we have therefore pushed
the experiments up to 128 processors, following our initial
goal of experimenting beyond 100 processors.

6A number of other variants remain of potential interest. No-
tably with solvers that use activity-based heuristics one can force the
initial ordering to follow a randomly generated order by assigning
initial activities at random. The solver then continues unimpaired.

 0

 10

 20

 30

 40

 50

 60

 0  100  200  300  400  500  600  700  800

N
um

be
r 

of
 in

st
an

ce
s 

so
lv

ed

Runtime (seconds) 

MiniSat 2.0 with fixed order on 4 cores
MiniSat 2.0 with fixed order on 8 cores

MiniSat 2.0 with fixed order on 16 cores
MiniSat 2.0 with fixed order on 32 cores
MiniSat 2.0 with fixed order on 64 cores

MiniSat 2.0 with fixed order on 128 cores
MiniSat 2.0

Figure 4: Partially Fixed Variable Ordering on 100 SAT in-
dustrial instances

In Figure 4 we compare the standard MiniSat solver with
MiniSat employing the fixed variable strategy on 4, 8, .., 128
processors. Again, we display the number of solved instances
in dependence of time. We note that the technique scales very
well in the sense that utilizing more processors consistently
helps solving more instances. In addition, it is also the case
that the increase in performance is quite significant. For ex-
ample, on 128 cores we are able to solve 21 (+55%) more
instances than standard MiniSat. In order to further analyze
the quality of this techniques we address the following ques-
tions. First, one natural claim could be that the technique is
strongly biased towards improving the solver on satisfiable
instances. Detailed figures show that such is not the case,
and that the gains of parallelism are quite balanced between
satisfiable and unsatisfiable instances:

Number of cores 1 4 8 16 32 64 128
]solved SAT instances 19 25 25 28 29 30 32
]solved UNSAT inst. 19 20 21 24 25 25 27

Second, it is a legitimate question whether the effects of
this approach are easily subsumed by other solving tech-
niques. To address this point we considered the employment
of the state of the art “Satelite” preprocessor for MiniSat.
The corresponding results are displayed in Fig. 5 (l). While
the improvements slightly decrease in this setting, we still
observe a significant improvement in performance (+33%
solved). Third, although our primary goal is to speed-up the
resolution of practical problems we have experimented with
random instances to verify if our conclusions on the respec-
tive merits of our techniques would be fundamentally differ-
ent. The results are reported in Fig. 5 (r), which shows similar
trends to Fig. 2. However, one important difference is that on
random instances both of the techniques we propose seem to
bring gains on satisfiable instances only.

Conclusions
The interest of portfolio approaches for parallel constraint
solving was if needed evidenced by the fact that the winner of
the parallel SAT race used this approach. Our findings con-
firm this and reveal that portfolios can be also scale-up to high



 0

 10

 20

 30

 40

 50

 60

 70

 0  100  200  300  400  500  600  700  800

N
um

be
r 

of
 in

st
an

ce
s 

so
lv

ed

Runtime (seconds) 

MiniSat 2.0 + SATELITE with fixed order on 128 cores
MiniSat 2.0 + SATELITE

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700  800  900

N
um

be
r 

of
 in

st
an

ce
s 

so
lv

ed

Runtime (seconds) 

MiniSat 2.0 with fixed order on 64 cores
MiniSat 2.0 with XOR of length 3 on 64 cores

MiniSat 2.0

Figure 5: Detailed analysis: Satelite (l); random instances (r)

numbers of processors.
A major advantage of portfolio approaches is that each pro-

cessor has a global view on the whole problem and its entire
search space. Since all processors run a complete search with
different viewpoints, the parallel search terminates as soon as
one processor has finished, whether the instance is satisfiable
or unsatisfiable. This is an important difference to the split-
ting approach, where the unsatisfiability of all parts have to
be proven before we can terminate the resolution of an unsat-
isfiable instance. This makes the portfolio approach appeal-
ing when the goal is to determine satisfiability, as opposed
to enumerating solutions. Our technique has the important
advantage of obviously being extremely fault-tolerant: failed
machines do not prevent the others from making progress.

Last, note that our approach wants to establish a bottom
line performance which can be improved; in particular we
have stated that adding communication does not come with-
out major challenges—but it is surely worth further research.

5 Conclusion
The significant improvements obtained in Section 4 should
ideally be contrasted with the fact that 128 processors are mo-
bilized; this is obviously vastly more energy-consuming and
the gains have to be compared against this consumption. Un-
fortunately when we reach a certain scale it becomes difficult
to evaluate speed-ups: for the more challenging problems es-
timating the resolution times on a single processor is simply
not always feasible. Our approach was therefore to focus on
numbers of solved instances. This is justified by the fact that
in general solving new problems matters more than reducing
the runtimes of instances already solvable. However our feel-
ing is that energy efficiency will become a growing concern
in massively parallel computing (it is already a major one for
data-centers); future research could develop methodologies
and metrics to measure energy efficiency.

We wanted this paper to represent a step towards answering
the question: Which approaches scale with massively parallel
architectures? A promising approach, based on our experi-
ments, are portfolios: the technique we proposed of partially
fixing variables showed very encouraging results and there
seems to be plenty of room to improve it. From our conclu-
sions, whether search-space splitting techniques can scale-up
well is unclear. These techniques have potential when reason-
ably static heuristics are used, and in this respect one of our
contributions was to show that a simple technique of hashing
sometimes suffices to obtain an excellent scalability. With
complex heuristics we obtain encouraging results but the ap-
proach raises challenges: naturally improving our baseline

approach would require communication, which can get in-
tractable for massive parallelism.

References
[Bixby, 2002] R. Bixby. The new generation of Integer Pro-

gramming codes. In CP-AI-OR, 2002. Invited talk.
[Chu and Stuckey, 2008] G. Chu and P. J. Stuckey. PMin-

iSAT: a parallelization of MiniSAT 2.0. In SAT race, 2008.
[Danna, 2008] E. Danna. Performance variability in mixed

integer programming. In 5th Workshop on Mixed Integer
programming (MIP). 2008.

[Gomes and Selman, 2001] C. Gomes and B. Selman. Algo-
rithm portfolios. Artif. Intel., 126(1-2):43–62, 2001.

[Gomes et al., 2006] C. Gomes, A. Sabharwal, and B. Sel-
man. Model counting: A new strategy for obtaining good
bounds. In Nat. Conf. on AI (AAAI), 2006.

[Hamadi et al., 2008] Y. Hamadi, S. Jabbour, and L. Saı̈s.
ManySAT: Solver description. In SAT race, 2008.

[Held et al., 2006] J. Held, J. Bautista, and S. Koehl. From
a few cores to many: A tera-scale computing research
overview. Technical report, Intel Corp., 2006.

[Jaffar et al., 2004] J. Jaffar, A. Santosa, R. Yap, and K. Zhu.
Scalable distributed depth-first search with greedy work
stealing. In Tools with AI (ICTAI), pages 98–103, 2004.

[Kasif, 1990] S. Kasif. On the parallel complexity of discrete
relaxation in constraint satisfaction networks. Artif. Intel.,
45(3):99–118, 1990.

[Michel et al., To appear] L. Michel, A. Su, and P. Van hen-
tenryck. Transparent parallelization of constraint program-
ming. INFORMS J. on Computing, To appear.

[Perron, 1999] L. Perron. Search procedures and parallelism
in constraint programming. In Principles and Practice of
Constraint Programming (CP), pages 346–360. 1999.

[Pruul and Nemhauser, 1988] E. A. Pruul and G. L.
Nemhauser. Branch-and-bound and parallel computation:
A historical note. O. R. Letters, 7(2), 1988.

[Sutter, 2005] H. Sutter. The free lunch is over: A funda-
mental turn towards concurrency in software. Dr. Dobb’s
Journal, 30(3), 2005.

[Valiant and Vazirani, 1985] L. Valiant and V. Vazirani. NP
is as easy as detecting unique solutions. In ACM Symp. on
Theory of Computing (STOC), pages 458–463, 1985.

[Waltz, 1993] D. L. Waltz. Massively parallel AI. Int. J. of
High Speed Computing, 5(3):491–501, 1993.

[Xu et al., 2007] L. Xu, F. Hutter, H. Hoos, and K. Leyton-
Brown. SATzilla: Portfolio-based algorithm selection for
SAT. J. of AI Research (JAIR), 32:565–606, 2007.

[Yokoo et al., 1990] M. Yokoo, T. Ishida, and K. Kubawara.
Distributed constraint satisfaction for DAI problems. In
Workshop on Distributed Artif. Intel., 1990.

[Zoeteweij and Arbab, 2004] P. Zoeteweij and F. Arbab. A
component-based parallel constraint solver. In Coordina-
tion Models and Languages, pages 307–322. 2004.


