
Control-based Clause Sharing in Parallel SAT Solving

Youssef Hamadi
Microsoft Research

7 J J Thomson Avenue, CB3 0FB Cambridge,
United Kingdom, youssefh@microsoft.com

Said Jabbour and Lakhdar Sais
CRIL-CNRS, Université d’Artois

Rue Jean Souvraz SP18, F-62307 Lens,
France, {jabbour,sais}@cril.fr

Abstract

Conflict driven clause learning, one of the most
important component of modern SAT solvers, is
also recognized as very important in parallel SAT
solving. Indeed, it allows clause sharing between
multiple processing units working on related (sub-
)problems. However, without limitation, shar-
ing clauses might lead to an exponential blow up
in communication or to the sharing of irrelevant
clauses. This paper, proposes two innovative poli-
cies to dynamically adjust the size of shared clauses
between any pair of processing units. The first ap-
proach controls the overall number of exchanged
clauses whereas the second additionally exploits
the relevance quality of shared clauses. Experi-
mental results show important improvements of the
state-of the-art parallel SAT solver.

1 Introduction
The recent successes of SAT solvers in traditional hardware
and software applications have extended their applicability to
important new domains. Today, they represent essential low
level reasoning components used in general theorem proving,
computational biology, AI, etc. This popularity gain is related
to their breakthrough on real world instances involving mil-
lion of clauses and hundred of thousands of variables. These
solvers, called modern SAT solvers [Moskewicz et al., 2001;
Eén and Sörensson, 2003], are based on a nice combi-
nation of (i) clause learning [Marques-Silva and Sakallah,
1996; Moskewicz et al., 2001], (ii) activity-based heuristics
[Moskewicz et al., 2001], and (iii) restart policies [Gomes
et al., 1998] enhanced with efficient data structures (e.g.
watched-literals [Moskewicz et al., 2001]). This architecture
is now standard, and today only minor improvements have
been observed (cf. SAT competitions). Therefore, it seems
difficult to bet on others orders of magnitude gains without a
radical algorithmic breakthrough.

Fortunately, the recent generalization of multicore hard-
ware gives parallel processing capabilities to standard PCs.
This represents a real opportunity for SAT researchers which
can now consider parallel SAT solving as an obvious way to-
ward substantial efficiency gains.

Recent works on parallel SAT are all based on the modern
SAT architecture [Moskewicz et al., 2001], and therefore sys-
tematically exploit clause learning as an easy way to extend
the cooperation between processing units. When a unit learns
a new clause, it can share it with all other units in order to
prune their search spaces. Unfortunately, since the number
of potential conflicts is exponential, the systematic sharing
of learnt clauses is not practically feasible. The solution is
to exchange up to some predefined size limit. This has the
advantage of reducing the overhead of the cooperation while
focusing the exchange on short clauses, recognized as more
powerful in term of search pruning.

In this work, our goal is to improve the clause sharing
scheme of modern parallel SAT solvers. Indeed, the ap-
proach based on some predefined size limit has several flaws.
The first and most apparent being that an overestimated value
might induce a very large cooperation overhead, while an un-
derestimated one might completely inhibit the cooperation.
The second flaw comes from the observation that the size of
learnt clauses tends to increase over time (see section 3.1),
leading to an eventual halt of the cooperation. The third flaw
is related to the internal dynamic of modern solvers which
tend to focus on particular subproblems thanks to the activ-
ity/restart mechanisms. In parallel SAT, this can lead two
search processes toward completely different subproblems
where clause sharing becomes pointless.

We propose a dynamic clause sharing policy which uses
pairwise size limits to control the exchange between any pair
of processing units. Initially, high limits are used to en-
force the cooperation, and allow pairwise exchanges. On
a regular basis, each unit considers the number of foreign
clauses received from other units. If this number is be-
low/above a predefined threshold, the pairwise limits are in-
creased/decreased. This mechanism allows the system to
maintain a throughput. It addresses the flaws one and two.
To address the last flaw related to the poor relevance of the
shared clauses, we extend our policy to integrate the qual-
ity of the exchanges. Each unit evaluates the quality of the
received clauses, and the control is able to selectively in-
crease/decrease the pairwise limits based on the underlying
quality of the recently communicated clauses. The rationale
being that the information recently received from a particular
source is qualitatively linked to the information which could
be received from it in the very near future. The evolution

of the pairwise limits w.r.t., the throughput or quality cri-
terion follows an AIMD (Additive-Increase-Multiplicative-
Decrease) feedback control-based algorithm [Chiu and Jain,
1989].

The paper is organized as follows. After some prelimi-
naries (section 2), our dynamic control-based clause sharing
policies are motivated and presented in section 3. The section
4 presents extensive experimental evaluation of our policies
as opposed to a standard static one. The section 5 details pre-
vious parallel SAT works. Finally, we conclude by providing
some interesting future paths of research.

2 Technical background
In this section, we introduce the computational features of
modern SAT solvers. Then, we briefly describe the princi-
ple of the AIMD feedback control-based algorithm usually
applied to solve TCP congestion control problems.

2.1 Computational features of modern SAT solvers
Most of the state of the art SAT solvers are based on the
Davis, Putnam, Logemann and Loveland procedure, com-
monly called DPLL [Davis et al., 1962]. DPLL is a back-
track search procedure; at each node of the search tree, a de-
cision literal is chosen according to some branching heuris-
tic. Its assignment to one of the two possible values (true or
false) is followed by an inference step that deduces and prop-
agates some forced unit literal assignments. The assigned lit-
erals (decision literal and the propagated ones) are labeled
with the same decision level starting from 1 and increased at
each decision (or branching) until finding a model or reach-
ing a conflict (or a dead end). In the first case, the formula
is answered to be satisfiable, whereas in the second case, we
backtrack to the last decision level and assign the remaining
value to the last decision literal. After backtracking, some
variables are unassigned, and the current decision level is de-
creased accordingly. The formula is answered to be unsat-
isfiable when backtracking to level 0 occurs. In addition to
this basic scheme, modern SAT solvers use additional impor-
tant component such as restart policy, conflict driven clause
learning and activity based heuristics. Let us give some de-
tails on these last two important features. First, to learn from
conflict, they maintain a central data-structure, the implica-
tion graph, which records the partial assignment that is under
construction together with its implications. When a dead end
occurs, a conflict clause (called asserting clause) is generated
by resolution following a bottom-up traversal of the implica-
tion graph. The learning process stops, when a conflict clause
containing only one literal from the current decision level is
generated. Such a conflict clause (or learnt clause) expresses
that such a literal is implied at a previous level. Modern SAT
solvers backtrack to the implication level and assign that lit-
eral to true. Let us mention, that the activity of each variable
encountered during such resolution process is increased. The
variable with greatest activity is selected to be assigned next.

As the number of learnt clauses can grow exponentially,
even in the sequential case, modern SAT solvers regularly re-
duce the data-base of learnt clauses. In the SAT solver Min-
isat [Eén and Sörensson, 2003], such a reduction (called re-
duceDB) is achieved as follows. When the size of the learnt

data base exceeds a given upper bound (B), it is reduced by
half. The set of deleted clauses corresponds to the less active
ones. Initially, B is set to 1

3 × |F|) where |F| is the number
of clauses in the original formula F . At each restart, B is
increased by 10%.

2.2 AIMD feedback control based algorithm
The Additive Increase/Multiplicative Decrease (AIMD) algo-
rithm is a feedback control algorithm used in TCP congestion
avoidance. The problem solved by AIMD is to guess the com-
munication bandwidth available between two communicating
nodes. The algorithm performs successive probes, increasing
the communication rate w linearly as long as no packet loss
is observed, and decreasing it exponentially when a loss is
encountered. More precisely, the evolution of w is defined by
the following AIMD(a, b) formula:

• w = w − a× w, if loss is detected

• w = w + b
w , otherwise

Different proposals have been made in order to prevent
congestion in communication networks based on different
numbers for a and b. Today, AIMD is the major component
of TCP’s congestion avoidance and control [Jacobson, 1988].
On probe of network bandwidth increasing too quickly will
overshoot limits (underlying capacities). On notice of con-
gestion, decreasing too slowly will not be reactive enough.

In the context of clause sharing, our control policies want
to achieve a particular throughput or a particular throughput
of maximum quality. Since any increase in the size limit
can potentially generate a very large number of new clauses,
AIMD’s slow increase can help us to avoid a quick overshoot
of the throughput. Similarly, in case of overshooting, aggres-
sive decrease can help us to quickly reduce clause sharing by
a very large amount.

3 Control-based clause sharing in parallel
SAT solving

3.1 Motivation
To motivate further our proposed framework, we conducted a
simple experiment using the standard Minisat algorithm [Eén
and Sörensson, 2003]. In figure 1 we show the evolution of
the percentage of learnt clauses of size less than or equal to 8
on a particular family of 16 industrial instances AProVE07 *.
This limit represents the default static clause sharing limit the
ManySAT parallel solver [Hamadi et al., 2009].

This percentage is computed every 10000 conflicts, and as
it can be observed, it decreases over time1. Initially, nearly
17% of the learnt clauses could be exchanged but as search
goes on, this percentage falls below 4%. Our observation is
very general and can be performed on different instances with
similar or different clause size limits. It illustrates the second
flaw reported above: the size of learnt clauses tends to in-
crease over time. Consequently, in a parallel SAT setting, any
static limit might lead to an halt of the clause sharing process.
Therefore, if one wants to maintain a quantity of exchange

1The regular small raises are the result of the cyclic reduction of
the learnt base through reduceDB.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2e+05 4e+05 6e+05 8e+05 1e+06 1.2e+06

%
 o

f l
ea

rn
t c

la
us

es
 w

ith
 s

ize
 <

=
8

#conflicts

AProVE07_* family

Figure 1: Evolution of the percentage of learnt-clauses with
size ≤ 8

over time, there does not exist an optimal static policy for
that. This clearly shows the importance of a dynamic control
clause sharing policy.

3.2 Throughput and quality based control policies
In this section, we describe our dynamic control-based clause
sharing policies which control the exchange between any pair
of processing units through dynamic pairwise size limits.

The first policy controls the throughput of clause shar-
ing. Each unit considers the number of foreign clauses re-
ceived from other units. If this number is below/above a pre-
defined throughput-threshold, the pairwise limits are all in-
creased/decreased using an AIMD feedback algorithm. The
second policy is an extension of the previous one. It intro-
duces a measure of the quality of foreign clauses. With this
information, the increase/decrease of the pairwise limits be-
come proportional to the underlying quality of the clauses
shared by each unit. The first (respectively second) pol-
icy allows the system to maintain a throughput (respectively
throughput of better quality).

We consider a parallel SAT solver with n different pro-
cessing units. Each unit ui corresponds to a SAT solver with
clause learning capabilities. Each solver can either work on
a subspace of the original instance as in divide-and-conquer
techniques, or on the full problem, as in ManySAT (see de-
tails in sections 5 and 4.1). We assume that these different
units communicate through a shared memory (as in multicore
architectures).

In our control strategy, we consider a control-time se-
quence as a set of steps tk with t0 = 0 and tk = tk−1 + α
where α is a constant representing the time window defined
in term of number of conflicts. The step tk of a given unit ui
corresponds to the conflict number k × α encountered by the
solver associated to ui. In the sequel, when there is no ambi-
guity, we sometimes note tk simply k. Then, each unit ui can
be defined as a sequence of states Ski = (F ,∆k

i , R
k
i), where

F is a CNF formula, ∆k
i the set of its proper learnt clauses

andRki the set of foreign clauses received from the other units
between two consecutive steps k−1 and k. The different units
achieve pairwise exchange using pairwise limits. Between
two consecutive steps k − 1 and k, a given unit ui receives
from all the other remaining units uj where 0 ≤ j < n and
j 6= i a set of learnt clauses ∆k

j→i of length less or equal to

a size limit ekj→i i.e., ∆k
j→i = {c ∈ ∆k

j / |c| ≤ ekj→i}. Then,
the set Rki can be formally defined as ∪0≤j<n,j 6=i∆k

j→i.
Using a fixed throughput threshold T of shared clauses, we

describe our control-based policies which allow each unit ui
to guide the evolution of the size limit ej→i using an AIMD
feedback mechanism.

Throughput based control
As illustrated in figure 2, at step k a given unit ui checks
whether the throughput is exceeded or not. if |Rki | < T

(respectively |Rki | > T) the size limit ek+1
j→i is additively

increased (respectively multiplicatively decreased). More
formally, the upper bound ek+1

j→i on the size of clauses that
a solver j shares with the solver i between k and k + 1 are
changed using the following AIMD function:

aimdT (Rki){
∀j|0 ≤ j < n, j 6= i

ek+1
j→i =

{
ekj→i + b

ek
j→i

, if(|Rki | < T)

ekj→i − a× ekj→i, if(|Rki | > T)
} where a

and b are positive constants.

�

	

�
-

S
S
S
S
S
S
S
S
S
S
Sw

@
@
@
@
@
@
@@R

�

�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
��7

�
��

�
��
�*

Z
Z
Z
Z
Z
Z
ZZ~

J
J
J
J
J
J
J
J
J
J
JĴ

6

�
�
�
�
�
�
��>

- -

PPPPPPq

u0

u1

ui

un−1

ui−1

uj

(ek
j→i, ∆k

j→i)

ui+1

ek+1
j→i = aimdT (Rk

i)

Figure 2: Throughput based control policy

Throughput and quality based control
In this policy, to control the throughput of a given unit ui,
we introduce a quality measure Qkj→i (see definition 1) to
estimate the relative quality of the clauses received by ui from
uj . In the throughput and quality based control policy, the
evolution of the size limit ekj→i is related to the estimated
quality.

Our quality measure is defined using the activity of the
variables at the basis of VSIDS heuristic [Moskewicz et al.,
2001] another important component of modern SAT solvers.
The variables with greatest activity represent those involved
in most of the (recent)-conflicts. Indeed, when a conflict oc-
curs, the activity of the variables whose literals appear in the
clauses encountered during the generation of a learnt clause
are updated. The most active variables are those related to
the current part of the search space. Consequently, our qual-
ity measure exploits these activities to quantify the relevance
of a clause learnt by unit uj to the current state of a given
unit ui. To define our quality measure, suppose that, at any

time of the search process, we have Amaxi the current maxi-
mal activity of ui’s variables, and Ai(x) the current activity
of a given variable x.
Definition 1 (Quality) Let c be a clause and LAi(c) =
{x/x ∈ c s.t. Ai(x) ≥ Amax

i

2 } the set of active literals of
c with respect to unit ui. We define Pkj→i = {c/c ∈ ∆k

j→i
s.t. |LAi

(c)| ≥ Q} be the set of clauses received by i from j
between steps k − 1 and k with at least Q active literals. We
define the quality of clauses sent by uj to ui at a given step k

as Qkj→i = |Pk
j→i|+1

|∆k
j→i|+1

Our throughput and quality based control policy change
the upper bound ek+1

j→i on the size of clauses that a solver
j shares with the solver i between k and k + 1 using the
following AIMD function:

aimdTQ(Rki){
∀j|0 ≤ j < n, j 6= i

ek+1
j→i =

ekj→i + (Q

k
j→i

100)× b
ek

j→i

, if(|Rki | < T)

ekj→i − (1− Qk
j→i

100)× a× ekj→i, if(|Rki | > T)

} where a and b are positive constants.

As shown by the AIMD function of the throughput and
quality based control policy, the adjustment of the size limit
depends on the quality of shared clauses. Indeed, as it can
be seen from the above formula, when the exchange qual-
ity between uj and ui (Qkj→i) tends to 100% (respectively
0%), then the increase in the limit size tends to be maximal
(respectively minimal) while the decrease tends to be mini-
mal (respectively maximal). Our aim in this second policy is
to maintain a throughput of good quality. The rationale be-
ing that the information recently received from a particular
source is qualitatively linked to the information which could
be received from it in the very near future.

4 Evaluation
4.1 The parallel SAT solver
Our policies were implemented and tested on top of the
ManySAT parallel SAT solver [Hamadi et al., 2009] which
won the parallel track of the 2008 SAT-Race2. ManySAT in-
cludes all the classical features like two-watched-literal, unit
propagation, activity-based decision heuristics, lemma dele-
tion strategies, and clause learning. In addition to the classi-
cal first-UIP scheme, it incorporates a new technique which
extends the classical implication graph used during conflict-
analysis to exploit the satisfied clauses of a formula [Aude-
mard et al., 2008].

Unlike others parallel SAT solvers, ManySAT does not im-
plement a divide-and-conquer strategy based on some dy-
namic partitioning of the search space. At contrary, it uses
a portfolio philosophy which lets several sequential DPLLs
compete and cooperate to be the first to solve the common in-
stance. These DPLLs are differentiated in many ways. They

2http://baldur.iti.uka.de/sat-race-2008/

use different and complementary restart strategies, VSIDS
and polarity heuristics, and learning schemes. Additionally,
all the DPLLs are exchanging learnt clauses up to some static
size limit.

4.2 Experiments
Our tests were done on Intel Xeon Quadcore machines with
16GB of RAM running at 2.3Ghz. We used a timeout of 1500
seconds for each problem. ManySAT was used with 4 DPLLs
strategies each one running on a particular core (unit). To
alleviate the effects of unpredictable threads scheduling, each
problem was solved three times and the average was taken.

Our dynamic clause sharing policies were added to
ManySAT and compared against ManySAT with its default
static policy ManySAT e=8 which exchanges clauses up to
size 8. Remark that since each pairwise limit is read by a
unit, and updated by another one, our proposal can be inte-
grated without any lock.

We have selected a = 0.125, b = 8 for aimdT and aimdTQ,
associated to a time window of α = 10000 conflicts. The
throughput T is set to α

2 and the upper bound Q on the num-
ber of active literals per clause c is set to |c|3 (see definition 1).
Each pairwise limit ej→i was initialized to 8.

4.3 Industrial problems
The Table 1 presents the results on the 100 industrial prob-
lems of the 2008 SAT-Race. The problem set contains fami-
lies with several instances or individual instances.

From left to right we present, the family/instance name,
the number of instances per family. Results associated to the
standard ManySAT, with the number of problems solved be-
fore timeout, and the associated average runtime. The right
part reports results for the two dynamic policies. For each
dynamic policy we provide ē, the average of the ej→i ob-
served during the computation. The last row provides for
each method, the total number of problems solved, and the
cumulated runtime. For the dynamic policies, it also presents
the average of the ē values.

At that point we have to stress that the static policy (e = 8)
is optimal in the way that it gives the best average perfor-
mance on this set of problems. We can observe that the static
policy solves 83 problems while the dynamic policies aimdT
and aimdTQ solve respectively 86 and 89 problems. Except
on the ibm * and manol * families, the dynamic policies al-
ways exhibit a runtime better or equivalent to the static one.
Unsurprisingly, when the runtime is significant but does not
drastically improve over the static policy, the values of ē are
often close to 8, i.e., equivalent to the static size limit. When
we consider the last row, we can see that the aimdT is faster
than the aimdTQ. However, this last policy solves more prob-
lems. We can explain this as follows. The quality-based pol-
icy intensifies the search by favoring the exchange of clauses
related to the current exploration of each unit. This inten-
sification leads to the resolution of more difficult problems.
However, it increases the runtime on easier instances where a
more diversified search is often more beneficial. Overall these
results are very good since our dynamic policies are able to
outperform the best possible static tuning.

ManySAT e=8 ManySAT aimdT ManySAT aimdTQ
family/instance #inst #Solved time(s) #Solved time(s) ē #Solved time(s) ē

ibm * 20 19 204 19 218 7 19 286 6
manol * 10 10 117 10 117 8 10 205 7
mizh * 10 6 762 7 746 6 10 441 5
post * 10 9 325 9 316 7 9 375 7
velev * 10 8 585 8 448 5 8 517 7
een * 5 5 2 5 2 8 5 2 7
simon * 5 5 111 5 84 10 5 59 9
bmc * 4 4 7 4 7 7 4 6 9
gold * 4 1 1160 1 1103 12 1 1159 12
anbul * 3 2 742 3 211 11 3 689 11
babic * 3 3 2 3 2 8 3 2 8
schup * 3 3 129 3 120 5 3 160 5
fuhs * 2 2 90 2 59 11 2 77 10
grieu * 2 1 783 1 750 8 1 750 8
narain * 2 1 786 1 776 8 1 792 8
palac * 2 2 20 2 8 3 2 54 7
aloul-chnl11-13 1 0 1500 0 1500 11 0 1500 10
jarvi-eq-atree-9 1 1 70 1 69 25 1 43 17
marijn-philips 1 0 1500 1 1133 34 1 1132 29
maris-s03-gripper11 1 1 11 1 11 10 1 11 8
vange-col-abb313gpia-9-c 1 0 1500 0 1500 12 0 1500 12

Total/(average) 100 83 10406 86 9180 (10.28) 89 9760 (9.61)

Table 1: SAT-Race 2008, industrial problems

4.4 Crafted problems
We present here results on the crafted category (201 prob-
lems) of the 2007 SAT-competition. These problems are hand
made and many of them are designed to beat all the existing
SAT solvers. It contains for example Quasi-group instances,
forced random SAT instances, counting, ordering and peb-
bling instances, social golfer problems, etc.

The scatter plot (in log scale) given in figure 3 (left hand
side) illustrates the comparative results of the static and dy-
namic throughput version of ManySAT. The x-axis (resp. y-
axis) corresponds to the CPU time tx (resp. ty) obtained
by ManySAT e=8 (resp. ManySAT aimdT). Each dot with
(tx, ty) coordinates corresponds to a SAT instance. Dots be-
low (resp. above) the diagonal indicate that ManySAT aimdT
is faster (resp. slower) than ManySAT e=8. The results
clearly exhibit that the throughput based policies outperform
the static policy on the crafted category. These improve-
ments are illustrated in the figure 3 (right hand side) which
shows the time in seconds needed to solve a given number
of instances (#instances). We can observe that both aimdT
(ē = 23.14 with a peak at 94) and aimdTQ (ē = 26.17 with
a peak at 102) solve 7 more problems than the static policy.
Like for the previous problem category, aimdT remains faster
than aimdTQ. We can explain this as follows. It seems that
since by definition, these problems do not have a structure
which can be advantageously exploited by an intensification
process, the higher diversification provided by aimdT allows
better performances.

4.5 The dynamic of ē
It is interesting to consider the evolution of ē, the average of
the ej→i observed during the computation. In Figure 1 it was
shown on the 16 instances of the AProVE07 * family that the
size of learnt clauses was increasing over time.

We present in figure 4 the evolution of ē with ManySAT
aimdT on the same family. The evolution is given for each
unit (core0 to core3), and the average of the units is also pre-

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2e+05 4e+05 6e+05 8e+05 1e+06 1.2e+06

av
er

ag
e

siz
e

lim
it

#conflcits

core0
core1
core2
core3

average

Figure 4: ManySAT aimdT : ē on the AProVE07 * family

sented (average). We can see that our dynamic policy over-
comes the disappearing of “small” clauses by the incremental
raising of the pairwise limits. It presents a typical saw tooth
behavior that represents the probe for throughput T . This
Figure and our results on the industrial and crafted problems
show that the evolution of the pairwise limits if not bounded,
does not reach unacceptable levels.

5 Previous works
We do not present parallel SAT solvers which predate the
introduction of the modern DPLL architecture since these
works did not use clause sharing.

The first parallel SAT solver based on a modern DPLL
is Gradsat [Chrabakh and Wolski, 2003] which extends the
zChaff solver with a master-slave model, and implements
guiding-paths to divide the search space of a problem. These
paths are represented by a set of unit clauses added to the
original formula. Additionally, learned clauses are exchanged
between all clients if they are smaller than a predefined limit
on the number of literals.

[Blochinger et al., 2003] uses an architecture similar to

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

M
an

yS
AT

 a
im

dT

ManySAT e=8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80

tim
e

(s
ec

on
ds

)

#instances

ManySAT e=8
ManySAT aimdT

ManySAT aimdTQ

Figure 3: SAT-Competition 2007, crafted problems

Gradsat. However, a client incorporates a foreign clause if
it is not subsumed by the current guiding-path constraints.

MiraXT is designed for shared memory multiprocessors
systems [Lewis et al., 2007]. It uses a divide and conquer ap-
proach where threads share a unique clause database which
represents the original and the learnt clauses. Therefore in
this system all the learnt clauses are shared.

pMiniSat uses a standard divide-and-conquer approach
based on guiding-paths [Chu and Stuckey, 2008]. It exploits
these paths to improve clause sharing. When considered with
the knowledge of the guiding path of a particular thread, a
clause can become small and therefore highly relevant. This
allows pMiniSat to extend the sharing of clauses since a large
clause can become small in another search context.

Let us remark that pMiniSat and MiraXT were respec-
tively ranked second and third of the 2008 SAT-Race while
ManySAT (presented in section 4.1) finished first.

6 Conclusion
We have presented two dynamic clause sharing policies for
parallel SAT solving. They use an AIMD feedback control-
based algorithm to dynamically adjust the size of shared
clauses between any pair of processing units. Our first policy
maintains an overall number of exchanged clauses (through-
put) whereas the second additionally exploits the relevance
quality of shared clauses. These policies have been devised
as an efficient answer to the various flaws of the classical
static size limit policy. The experimental results comparing
our proposed dynamic policies against the static policy show
important improvements for the state-of the-art parallel SAT
solver ManySAT. It allows this solver to solve 6 more indus-
trial and 7 more crafted problems. Our proposed framework
opens interesting perspectives. For example, the design of
new relevant quality measures for clause sharing is of great
importance. It could benefit to sequential solver to improve
their learnt base reduction strategy and as demonstrated by
this work have an important impact in parallel SAT solving.

References
[Audemard et al., 2008] G. Audemard, L. Bordeaux,

Y. Hamadi, S. Jabbour, and L. Sais. A generalized

framework for conflict analysis. In Proc. of SAT, pages
21–27, 2008.

[Blochinger et al., 2003] W. Blochinger, C. Sinz, and
W. Küchlin. Parallel propositional satisfiability checking
with distributed dynamic learning. Parallel Computing,
29(7):969–994, 2003.

[Chiu and Jain, 1989] D-M Chiu and R. Jain. Analysis of the
increase and decrease algorithms for congestion avoidance
in computer networks. Comp. Networks, 17:1–14, 1989.

[Chrabakh and Wolski, 2003] W. Chrabakh and R. Wolski.
GrADSAT: A parallel sat solver for the grid. Technical
report, UCSB CS TR N. 2003-05, 2003.

[Chu and Stuckey, 2008] G. Chu and P. J. Stuckey. Pminisat:
a parallelization of minisat 2.0. Technical report, SAT-
Race 2008, solver description, 2008.

[Davis et al., 1962] M. Davis, G. Logemann, and D. W.
Loveland. A machine program for theorem-proving.
Comm. of the ACM, 5(7):394–397, 1962.

[Eén and Sörensson, 2003] N. Eén and N. Sörensson. An ex-
tensible sat-solver. In Proc. of SAT’03, pages 502–518,
2003.

[Gomes et al., 1998] C. P. Gomes, B. Selman, and H. Kautz.
Boosting combinatorial search through randomization. In
Proc. AAAI’98, pages 431–437, 1998.

[Hamadi et al., 2009] Y. Hamadi, S. Jabbour, and L. Sais.
ManySAT: a parallel SAT solver. Journal on Satisfiabil-
ity, Boolean Modeling and Computation (JSAT), to appear,
2009.

[Jacobson, 1988] V. Jacobson. Congestion avoidance and
control. In Proc. SIGCOMM ’88, pages 314–329, 1988.

[Lewis et al., 2007] M. Lewis, T. Schubert, and B. Becker.
Multithreaded sat solving. In Proc. ASP DAC’07, 2007.

[Marques-Silva and Sakallah, 1996] J. P. Marques-Silva and
K. A. Sakallah. GRASP - A New Search Algorithm for
Satisfiability. In Proc. of IEEE/ACM CAD’96, pages 220–
227, 1996.

[Moskewicz et al., 2001] M.W. Moskewicz, C.F. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In DAC’01, pages 530–535, 2001.

