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Abstract—Possibilistic networks are belief graphical models
based on possibility theory. This paper deals with a special
kind of possibilistic networks called three-valued possibilistic
networks where only three possibility levels are used to encode
uncertain information. The paper analyzes different semantics
of three-valued networks and provides precise relationships
relating the different semantics. More precisely, the paper
analyzes two categories of methods for deriving a three-valued
joint possibility distribution from a three-valued possibilistic
network. The first category of methods is based on viewing
the three-valued possibilistic network as a family of compatible
networks and defining combination rules for deriving the three-
valued joint distribution. The second category is based on
three-valued chain rules using three-valued operators inspired
from some three-valued logics. Finally, the paper shows that the
inference using the well-known Junction tree algorithm cannot
be extended to all the three-valued chain rules.
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I. INTRODUCTION

Possibility theory is a well-known framework for dealing
with uncertain and incomplete information. Possibilistic
networks [1] are powerful tools for compactly encoding joint
possibility distributions. They can be viewed as counterparts
of Bayesian networks using possibility theory. Several alter-
native frameworks are proposed to encode ill-known beliefs
like lower and upper probability expectations, belief func-
tions and evidence theory [2], fuzzy sets, imprecise prob-
abilities [3], etc. Interval-based representations are widely
adopted [4] but their major problem is their high computa-
tional complexity for inferring posterior probability intervals
while in practice the obtained intervals are often too large to
be exploited [5]. Min-based possibilistic networks can show
different behaviors due to the idempotence property of the
min and max operators.
In [6], we proposed three-valued possibilistic networks
where the only used possibility degrees are 0, 1 and another
value to encode uncertain beliefs. In the literature, especially
in three-valued logics, a third ”truth” value is used to encode
some special kinds of ignorance or ill-known beliefs. In [7],
the author addresses some issues and shows the limits of the
use of some three-valued logics for dealing with epistemic
uncertainty. Three-valued possibilistic networks encode un-
certain information and they are viewed in [6] as families of

compatible possibilistic networks while the extended three-
valued chain rule uses only Kleene’s conjunction operator.
In this paper, we go one step further. We provide semantics
analysis of three-valued possibilistic networks encoding im-
precise and ill-known beliefs. We provide two categories of
semantics: the first one is based on families of compatible
networks while the second one is based on extending the
chain rule to the three-valued setting. We analyze several
three-valued conjunction operators from well-known three-
valued logics and provide precise relationships between the
different semantics. Finally, the paper shows that inference
based on the well-known junction tree algorithm [13] cannot
be extended to all the three-valued chain rules. Before
presenting these results, let us provide brief refresher on
possibilistic networks.

II. BRIEF REFRESHER ON POSSIBILITY THEORY AND
POSSIBILISTIC NETWORKS

A. Possibility theory

Possibility theory [9][10] is an alternative uncertainty
theory suitable for dealing with uncertain and incomplete
knowledge. This framework uses two dual measures (possi-
bility and necessity) to assess the knowledge/ignorance. One
of the fundamental concepts of possibility theory is the one
of possibility distribution π which is a mapping from the
universe of discourse Ω to the interval [0, 1]. A possibility
degree π(wi) expresses to what extent an elementary event
ωi∈Ω can be the actual state of the world. Hence, π(wi)=1
means that wi is totally possible and π(wi)=0 denotes an
impossible event. The relation π(wi)>π(wj) means that wi
is more possible than wj . A possibility distribution π is
normalized if maxwi∈Ω π(wi)=1.
A possibility measure Π(φ) evaluates the possibility degree
relative to an event φ⊆Ω. It is defined as follows:

Π(φ) = max
wi∈φ

(π(wi)). (1)

The necessity measure evaluates the certainty entailed by the
current knowledge of the world encoded by the possibility
distribution π:

N(φ) = 1−Π(φ) = 1− max
wi 6∈φ

(π(wi)), (2)



where φ denotes the complementary of φ in Ω. In possibility
theory there are several interpretations for the scale [0,1].
Accordingly, there are two variants of possibility theory:
- Qualitative (or min-based) possibility theory where
the possibility measure is a mapping from the universe of
discourse Ω to an ”ordinal” scale where only the ”ordering”
of values is important.
- Quantitative (or product-based) possibility theory:
Here, the possibilistic scale [0,1] is numerical and possibility
degrees are like numeric values that can be manipulated
by arithmetic or comparative operators depending on the
interpretation of the unit scale.
This work focuses only on the qualitative setting.

B. Possibilistic networks

A possibilistic network ΠG=<G,Θ> is specified by:

i) A graphical component G consisting in a directed
acyclic graph (DAG ) where vertices represent vari-
ables of interest and edges represent direct dependence
relationships between these variables. Each variable Ai
is associated with a domain Di containing the values
ai that can be taken by the variable Ai.

ii) A quantitative component Θ allowing to quantify the
uncertainty relative to the relationships between domain
variables using local possibility tables (CPTs). The
possibilistic component or ΠG’s parameters consist in a
set of local possibility tables Θi={θai|ui

} where ai∈Di

and ui is an instance of Ui denoting the parent variables
of Ai in the network ΠG.

Note that all the local possibility distributions Θi

must be normalized, namely ∀i=1..n, ∀ui∈DUi
,

maxai∈Di
(θai|ui

)=1.

Example 1

Figure 1 gives an example of a possibilistic network
over four binary variables A, B, C and D.

A π(A)
a1 1
a2 .5
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A
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D

B A π(B|A)
b1 a1 1
b2 a1 1
b1 a2 .2
b2 a2 1

C A π(C|A)
c1 a1 1
c2 a1 .6
c1 a2 .2
c2 a2 1
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C

�
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B
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D B C π(D|BC)
d1 b1 c1 0
d2 b1 c1 1
d1 b1 c2 1
d2 b1 c2 .4
d1 b2 c1 .6
d2 b2 c1 1
d1 b2 c2 1
d2 b2 c2 .4
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Figure 1. Example of a possibilistic network.

In the min-based possibilistic setting, the joint possibility
distribution is factorized using the min-based chain rule
defined as follows:

π(a1, a2, .., an) =
n

min
i=1

(π(ai|ui)). (3)

Example 1 (continued)
For the network of Figure 1, the joint possibility distri-

bution is derived using the following formula:

π(A,B,C,D) = min(π(A), π(C|A), π(B|A), π(D|BC)). (4)

III. THREE-VALUED POSSIBILISTIC NETWORKS: BASIC
DEFINITIONS

In this section, we provide some definitions needed for
understanding the rest of the paper.

Definition 1: B-possibility distribution
A B-possibility distribution over a universe of discourse
Ω is a boolean possibility distribution where ∀ω∈Ω,
πB(ω)∈{0, 1}.
A boolean possibility distribution allows to encode only
fully accepted (completely possible) interpretations or fully
rejected (completely impossible) ones.

Definition 2: C-possibility distribution
A C-possibility distribution over a universe of discourse
Ω is a normalized possibility distribution where ∀ω∈Ω,
πC(ω)∈{0, 1, C} where C encodes conflicting or imprecise
beliefs.
In Definition 2, an interpretation ω can be associated with
a possibility degree of 0 (namely ω is excluded), 1 (namely
ω is fully accepted) or C meaning that the corresponding
information is imprecise or conflicting. For instance, in case
of multi-source information, one source may associate 0
with ω while another source may associate 1 with the same
interpretation ω. The underlying semantic is that we have
information but it is either imprecise or conflicting. Note
that the value C is not an intermediary value between 0 and
1. Let us now define the concept of compatible distribution.

Definition 3: Let πB be a boolean possibility distribution
over Ω. πB is compatible with a C-possibility distribution
πC iff:

Condition 1: ∀ω∈Ω, πB(ω)=cπC(ω).
Condition 2: maxω∈Ω(πB(ω))=1.

Condition 1 in Definition 3 ensures that the possibility
degree of any interpretation ω is among the ones allowed by
the C-possibility distribution πC . Namely, πB(ω)=cπC(ω)
means πB(ω)=1 if πC(ω)=1, πB(ω)=0 if πC(ω)=0 and
πB(ω)=1 or πB(ω)=0 if πC(ω)=C. Condition 2 ensures that
the compatible distribution πB is normalized.
As for a C-possibility distribution πC , it is said normalized
if it has at least one boolean distribution πB that is com-
patible with πC . In this paper, we consider only normalized
distributions.



Example 2

Let πC be a C-possibility distribution on
Ω={ω1, ω2, ω3}.

Ω πC(ω)

ω1 1
ω2 0
ω3 C

Ω π′B(ω)

ω1 1
ω2 0
ω3 1

Ω π′′B(ω)

ω1 1
ω2 0
ω3 0

Table I
EXAMPLE OF A C-POSSIBILITY DISTRIBUTION πC AND TWO

COMPATIBLE DISTRIBUTIONS π′B AND π′′B .

It is clear that with a C-possibility distribution containing
n entries having the value C, there are at most 2n com-
patible boolean distributions. In the following, we define
possibilistic networks allowing to encode uncertainty and
imprecise/conflicting beliefs.

IV. C-POSSIBILISTIC NETWORKS: SYNTAX AND
SEMANTICS

Three-valued possibilistic networks for encoding impre-
cise beliefs are originally proposed in [6]. In this paper,
we call such networks C-possibilistic networks1 which are
graphical belief models allowing a compact encoding of
imprecise joint possibility distributions. This is in the spirit
of multiple source possibilistic logic [11] where the uncer-
tainty associated with each formula is composed of all the
uncertainty degrees of the sources regarding this formula.

A. C-possibilistic networks

In C-possibilistic networks (C-PNs for short), the un-
certainty levels that are allowed are 0 (expressing the fact
that the agent believes that the event is impossible), 1 (to
encode totally possible events) and C to encode for instance
conflicting information. In [6], the C value is encoded by
{0, 1}. Recall that this value encodes the fact that the belief
degree is imprecise in the sense that it is either 0 or 1 but
there is no way to know it.

Definition 4: A three-valued C-possibilistic network
GC=<G,ΘC> is a graphical model such that

1) G=<V , E> is a directed acyclic graph (DAG) over
the set of variables V ={A1, .., An} and E denotes
edges between variables of V .

2) ΘC={θC1 , .., θCn } a set of local C-possibility tables
where each θCi denotes a local three-valued possibility
distribution associated with the variable Ai in the
context of its parents Ui. For each configuration ui
of Ui the parents of variable Ai, there exists at least
ai∈DAi

such that θCi (ai|ui)=1 or θCi (ai|ui)=C.
In Definition 4, the plausibility of any Ai’s value in the
context of any of its parents’ configuration, denoted θCai|ui

,

1In this paper, we prefer to use the value C to denote the set {0, 1} only
to simplify the notations.

can be either 0, 1 or C. If the network contains only values
0 and 1, then such a network is called a boolean network.

Example 3

Figure 2 gives an example of a C-PN over two variables
A and B.

A θC(A)
a1 1
a2 0
a3 C

����
A

B A θC(B|A)
b1 a1 0
b2 a1 1
b1 a2 C
b2 a2 1
b1 a3 0
b2 a3 1����

B
@
@R

Figure 2. Example of a C-PN.

In the following sections, we address two semantics
associated with C-PNs. The first semantics is to view a C-
PN as a set of compatible boolean possibilistic networks.
The second semantics is based on extending the min-based
chain rule of Equation 3 to the three-valued setting.

B. C-PNs as families of compatible boolean possibilistic
networks

A boolean possibilistic network GB is compatible with
the C-PN GC according to the following definition.

Definition 5: Let GC=<G,ΘC> be a C-PN. A boolean
network GB=<G,ΘB> is compatible with GC iff

1) GC and GB have exactly the same graph and
2) ∀θBai|ui

∈ΘB , θBai|ui
=cθCai|ui

with θCai|ui
∈ΘC .

According to Definition 5, a possibilistic network GB is
compatible with a C-PN GC if they have the same structure
and every local possibility distribution θBai|ui

of GB is
compatible with its corresponding local C-distribution θCai|ui

in GC .
Let us now consider how to compute the uncertainty degree
of any event φ⊆Ω from a C-PN. Namely, how to derive
a three-valued joint possibility distribution from a C-PN?
Recall that a C-PN is viewed as a collection of boolean
possibilistic networks Gi that are compatible with C-PN.
Hence, a joint C-based possibility distribution can be com-
puted from these compatible networks as follows:

Definition 6: Let C-PN be a C-possibilistic network and
let FC−PN={G1, G2,.., Gm} be the set of compatible
possibilistic networks with C-PN. Then ∀ω∈Ω,

πC(ω) =

{
πGi(ω) if ∀ Gi,Gj∈ FC−PN with i6=j, πGi(ω)=πGj (ω);
C otherwise.

(5)
where Gi and Gj are boolean possibilistic networks compat-
ible with the C-PN. Note that the set of compatible networks
is finite.
Equation 5 is based on a kind of a unanimity rule. Namely,
in case where all the compatible networks agree regarding
the possibility degree associated with a given interpretation
ω then πC associates the same degree to ω. In case of
disagreement, it is the value C that is associated with ω



in the joint distribution πC .
The C-joint distribution induced using Equation 5 is nor-
malized as stated by the following proposition:

Proposition 1: Let GC=<G,ΘC> be a C-PN. Let πC

the C-joint possibility distribution obtained from GC using
Equation 5. Let also FπC denote the set of boolean joint
distributions that are compatible with πC . Then,

FπC 6=∅.
Proof. It is not hard to find a normalized distribution πB

that is compatible with πC provided that πC is normalized.
One among such distributions is the one encoded by the
compatible possibilistic network where all the C values in
the C-PN GC are replaced by 1. �

C. From C-PNs to C-joint distributions using three-valued
chain rules

Another way to derive the C-joint distribution associated
with a C-PN consists in extending the min-based chain rule
of Equation 3 to our three-valued possibilistic setting. In
the following, we study if the conjunctive operators used in
some three-valued logics can suit our semantics of C-PNs
given in Definition 4.
Three-valued logics generally involve one truth value en-
coding true, a second value encoding false and a third
value encoding undefined, unknown, undecided, maybe, both
states, paradoxical or irrelevant state. These systems extend
boolean logic to represent and reason with some kinds of
incomplete information. The first works on three-valued
logics are due to Łukasiewicz in the 1920’s. In addition to
the values representation, the main differences between the
existing three-valued logics concern the interpretation asso-
ciated with the third value and the underlying connectives.
In [7], the author points out the limits of some three-valued
logics for dealing with beliefs and incomplete knowledge.
The author interprets the truth values as epistemic values
where the value true encodes the agent believes the propo-
sition p, the value false encodes the agent believes ¬p while
the third value encodes the agent is ignorant about p. Note
also that most of three-valued logics assume an ordering on
the truth values (the third truth value U is often considered
as intermediate between 0 and 1, namely 0≤U≤1).

1) Three -valued chain rule based on Kleene’s conjunc-
tion: : In Kleene’s three-valued logic (3K) [8], the used
values are {0, 1

2 , 1} where the value C denotes the third
truth value. To be coherent with our notations, we will use
the value C instead of 1

2 . The conjunction and disjunction
operators are defined as follows:

A
0 1 C

0 0 0 0
B 1 0 1 C

C 0 C C
A∧KB

A
0 1 C

0 0 1 C
B 1 1 1 1

C C 1 C
A∨KB

Note that in (3K), the interpretation of the C state is
an imprecise state. It is seen as a sealed box containing
either the value 0 or the value 1 but there is no means to
know it with certainty. Hence, the state C corresponds to the
value C in C-PNs. Note that the truth tables of Łukasiewicz
conjunction and disjunction and those of Gödel’s ones are
equivalent to Kleene’s ones.
Now using the ∧K operator, the min-based chain rule of
Equation 3 is extended to the 3V -based setting as follows:
Let ω=a1a2..an, then

πCK(a1, a2, .., an) =
K

min
i=1..n

(θCi (ai|ui)). (6)

Example 3 (continued)

Let us compute the C-joint distribution encoded by the
network of Figure 2 using the ∧K min-based chain rule of
Equation 6.

A B πCK(AB)
a1 b1 0
a2 b1 0
a3 b1 0
a1 b2 1
a2 b2 0
a3 b2 C

Table II
C-JOINT DISTRIBUTION ENCODED BY THE NETWORK OF FIGURE 2

USING EQUATION 6.

It is easy to show that there are two boolean distributions
which are compatible with the C-joint distribution of Table
II. These two distributions are exactly those boolean distri-
butions encoded by the compatible networks with the C-PN
of Figure 2. Note that several boolean networks can encode
the same joint distribution.
The C-joint distribution obtained with the three-valued chain
rule based on Kleene’s conjunction (using Equation 6) is
equivalent to the one obtained by Equation 5 as stated by
the following proposition:

Proposition 2: Let GC=<G,ΘC> be a C-PN. Let πC be
the C-joint possibility distribution obtained from GC using
Equation 5 and let πCK the C-joint possibility distribution
obtained from GC using Equation 6. Then, ∀ω=a1a2..an,

πC(a1a2..an)=πCK(a1a2..an).
Proof. Let ω=a1a2..an be an interpretation (an instantiation
of the network variables A1, A2.. An). Three cases can
occur:

• Case 1: πCK(a1a2..an)=0
In this case, according to the Kleene’s conjunction-
based chain rule of Equation 6, πCK(a1a2..an)=0 means
that ∃θCi ∈ΘC , θCi (ai|ui)=0. As a consequence, ev-
ery compatible network Gj with GC will have for
the variable Ai, θCi (ai|ui)=0. Hence, ∀Gj∈FGC , then
πGj

(a1a2..an)=0.



• Case 2: πCK(a1a2..an)=1
According to the chain rule of Equation 6,
πCK(a1a2..an)=1 means that ∀θCi ∈ΘC , θCi (ai|ui)=1.
So in every compatible network Gj with GC , we have
for the variable Ai, θCi (ai|ui)=1. Hence, ∀Gj∈FGC ,
then πGj

(a1a2..an)=1.
• Case 3: πCK(a1a2..an)=C

This case is found only if there exists at least
a local three-valued distribution θCi ∈ΘC such that
θCi (ai|ui)=C. Assume that θCi is the only local dis-
tribution such that θCi (ai|ui)=C. According to the
definition of compatible networks, there will be only
two compatible networks with GC which are G1

having θC1 (ai|ui)=0 and G2 having θC2 (ai|ui)=0.
Hence πG1(a1a2..an)=0 while πG2(a1a2..an)=1. Con-
sequently, πC(a1a2..an)=C.

Given that only these three cases can occur, then we can
assert that for every ω=a1a2..an, its possibility degree
πC(a1a2..an) computed using the combination rule of Equa-
tion 5 is equivalent to πCK(a1a2..an) computed using the
three-valued chain rule of Equation 6. �
Another important result is given in Proposition 5:

Proposition 3: Let FGC denote the set of joint distribu-
tions induced by the boolean networks that are compatible
with the C-PN GC . Let also FπC

K
denote the set of boolean

joint distributions πBi that are compatible with the C-joint
distribution πCK obtained using the 3V -based chain rule of
Equation 6. Then,

FGC ⊆ FπC
K

.
It is easy to show that any distribution π in FGC is also

in FπC
K

. The converse is false as it is shown in the following
counter-example.

Counter-example 1

Figure 3 gives an example of a C-PN over two binary
variables A and B with its C-joint possibility distribution
πK and a compatible joint distribution πB .

A θC(A)
a1 C
a2 1

����
A B A θC(B|A)

b1 a1 1
b2 a1 0
b1 a2 C
b2 a2 C����

B

@
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B A πC
K(AB)

b1 a1 C
b2 a1 0
b1 a2 C
b2 a2 C

Figure 3. Example of a C-PN with its C-joint possibility distribution πK .

Now, consider the distribution πB of Table III.

B A πB(AB)
b1 a1 1
b2 a1 0
b1 a2 0
b2 a2 0

Table III
B-JOINT DISTRIBUTION COMPATIBLE WITH THE C-JOINT
DISTRIBUTION ENCODED BY THE NETWORK OF FIGURE 3.

It is clear that πB is compatible with C-joint distribution
encoded by the network of Figure 3 but there is no compat-
ible network with the three-valued network of Figure 3 that
encodes πB .

2) Three-valued chain rule based on Bochvar’s conjunc-
tion: : Bochvar’s three-valued logic (3B) [12] interprets the
third truth value as ”meaningless”, ”paradoxical” or ”irrel-
evant”. This logic defines internal and external connectives
as follows:

A
0 1 C

0 0 0 C
B 1 0 1 C

C C C C
A∧BI B

A
0 1 C

0 0 1 C
B 1 1 1 C

C C C C
A∨BI B

A
0 1 C

0 0 0 0
B 1 0 1 0

C 0 0 0
A∧BE B

A
0 1 C

0 0 1 0
B 1 1 1 1

C 0 1 0
A∨BE B

In the above truth tables, ∧BI (resp. ∧BE ) denotes internal
(resp. external) conjunction and ∨BI (resp. ∨BE ) denotes
internal (resp. external) disjunction. Using the ∧BI min-
based operator, we define the ∧BI -based chain rule as
follow: Let ω=a1a2..an, then

πCBI
(a1, a2, .., an) =

BI

min
i=1..n

(θCi (ai|ui)). (7)

Example 3 (continued)

Let us now compute the C-joint distribution encoded by
the network of Figure 2 using the min-based chain rule of
Equation 7.

A B πCBI
(AB)

a1 b1 0
a2 b1 C
a3 b1 C
a1 b2 1
a2 b2 0
a3 b2 C

Table IV
C-JOINT DISTRIBUTION ENCODED BY THE NETWORK OF FIGURE 2

USING EQUATION 7.

The following proposition relates the compatible
distributions obtained using Kleene’s conjunction-based
chain rule and the one based on Bochvar’s internal
conjunction:

Proposition 4: Let FπC
K

denote the set of boolean joint
distributions πBi that are compatible with the C-joint dis-
tribution πCK obtained using the 3V -based chain rule of
Equation 6. Let also FπC

BI

denote the set of boolean joint



distributions π that are compatible with the C-joint distribu-
tion πCBI

obtained using the 3V -based chain rule of Equation
7. Then,

FπC
K
⊆ FπC

BI

.
Proof. Let us first show that every compatible distribution

πCK belonging to FπC
K

is necessarily in FπC
BI

and provide a
counter example to show that the converse is false.
• Let us show that if πCK∈FπC

K
then πCK∈FπC

BI

: Let
ω=a1a2..an be an interpretation. In order to show that
πCK∈FπC

K
then πCK∈FπC

BI

, the following cases are to be
considered:

1) If πCK(a1a2..an)=0 then according the defini-
tion of compatible distributions πK(a1a2..an)
is either 0 or C. Hence, ∃θCi ∈ΘC such that
θCi (ai|ui)=0 or θCi (ai|ui)=C. As a consequence,
πCBI

(a1a2..an)=0 or πCBI
(a1a2..an)=C. In both

cases, πCK(a1a2..an)=
c
πCBI

(a1a2..an).

2) Otherwise πCK(a1a2..an)=1 then according
the definition of compatible distributions
πK(a1a2..an)=1 or πK(a1a2..an)=C. This mean
that ∀θCi ∈ΘC , θCi (ai|ui)=1 or θCi (ai|ui)=C.
Then πCBI

(a1a2..an)=1 or πCBI
(a1a2..an)=C.

We conclude that if πCK∈FπC
K

then πCK∈FπC
BI

.

• Now, let us show that ∃πCK∈FπC
BI

and πCK /∈FπC
K

: It is
easy from Example of Table IV to find a compatible
distribution with πCBI

that is not included in FπC
K

.
For instance, the distribution of Table V which is
compatible with the one of Table IV obtained using
Bochvar’s internal based chain rule is not compatible
with the distribution of Table II obtained using Kleene’s
based chain rule. �

A B πCBI
(AB)

a1 b1 0
a2 b1 1
a3 b1 1
a1 b2 1
a2 b2 0
a3 b2 1

Table V
COUNTER-EXAMPLE SHOWING THAT FπC

BI

6⊆ FπC
K

.

In Bochvar’s three-valued logic, the third value encodes
ignorance and the internal conjunction operator is designed
to capture the fact that ignorance is contagious. As a
consequence, the obtained C-joint distribution contains more
imprecision/conflict, hence FπC

BI

is a superset of FπC
K

.
Let us now move to Bochvar’s external based chain rule.
We define now the ∧BE -based chain rule as follow: Let
ω=a1a2..an, then

πBE
(a1, a2, .., an) =

BE

min
i=1..n

(θCi (ai|ui)). (8)

Example 3 (continued)

Let us now compute the joint distribution encoded by
the network of Figure 2 using the min-based chain rule of
Equation 8.

A B πCBE
(AB)

a1 b1 0
a2 b1 0
a3 b1 0
a1 b2 1
a2 b2 0
a3 b2 0

Table VI
JOINT DISTRIBUTION ENCODED BY THE NETWORK OF FIGURE 2 USING

EQUATION 8.

The joint distribution obtained using the ∧BE -based chain
rule is a unique and boolean distribution and it is compatible
with the one obtained using Equation 6. Hence, we have the
following Proposition:

Proposition 5: Let FπC
K

denote the set of boolean joint
distributions π that are compatible with the C joint distribu-
tion πCK obtained using the 3V -based chain rule of Equation
6. Let also πBE

denote the boolean joint distribution ob-
tained using the ∧BE -based chain rule of Equation 8. Then,

πBE
∈ FπC

K
.

Proof. Let ω=a1a2..an be an interpretation. In order to show
that πBE

∈ FπC
K

, two cases are to be considered:

1) If πBE
(a1a2..an)=0 then ∃θCi ∈ΘC such

that θCi (ai|ui)=0 or θCi (ai|ui)=C. Hence,
πK(a1a2..an)=0 or πK(a1a2..an)=C.

2) Otherwise πBE
(a1a2..an)=1 requiring that ∀θCi ∈ΘC ,

θCi (ai|ui)=1 ensuring that πK(a1a2..an)=1. �
One can easily check that the distribution πBE

is the least
specific one that is compatible with πCK and it is obtained
by replacing all the C values in the C-PN by 0.
In the following section, we address the question whether the
well-known junction tree algorithm can be directly extended
to the three-valued setting.

V. JUNCTION TREE ALGORITHM IN THE THREE-VALUED
POSSIBILISTIC SETTING

The junction tree algorithm is a well-known and widely
used inference algorithm in Bayesian networks [13]. The
main idea of the junction tree algorithm is to decompose
the joint belief distribution into a combination of local
potentials (local joint distributions). In [6] an extension of
the well-known junction tree algorithm to the three-valued
possibilistic setting was proposed. In this section, we study
whether this extension suits all the three-valued operators
dealt with in the previous section. Namely, the question is
to study whether the extended junction tree can factorize
and recover a three-valued possibility distribution obtained
using three-valued chain rules. Let us first recall the basic



steps of this extension.
The graphical transformations (moralization and triangula-
tion) are exactly the same as in the probabilistic version of
the junction tree algorithm. Namely,
1) Moralization: In this step, a graphical transformation is
performed on the initial directed DAG where the parents of
each node are linked (married). After this step, the direction
of the arcs is removed and the obtained graph is called the
moralized graph.
2) Triangulation: In the moral graph, there may exist cycles
having a length (number of edges) greater than three. The
triangulation consists in adding edges to such cycles until
every cycle has exactly three edges.
3) Initialization: In this step, the triangulated graph is
compiled into a new data structure composed of clusters
of nodes and separators. This structure is a new undirected
graph where each node denotes a cluster of variables and
separators denote the set of variables in common between
two adjacent clusters. With each cluster or separator is as-
sociated a potential representing a kind of belief distribution
regarding the variables involved in that cluster or separator.
Initializing the clusters and separators is done as follows:
Let JT denote the junction graph obtained from the initial
C-PN. In the following, we will use min3V (resp. max3V ) to
denote a three valued min-based (resp. max-based) operator
among minK (resp. maxK), minBI (resp. maxBI ) and
minBE (resp. maxBE ).

• For each cluster Ci∈JT , initialize its C-based potential
θCCi

to 1 (namely, ∀ci∈DCi , θ
C
Ci

(ci)←1).
• For each separator Sj∈JT , initialize its C-based po-

tential θCSj
to 1 (namely, ∀sj∈DSj

, θCSj
(sj)←1).

• For each variable Ai∈V , integrate its local C-based
distribution θCAk|Uk

into the cluster Ci (or the separator)
containing Ak and its parents Uk. Namely,

∀ci∈DCi
, θCCi

(ci)←min3V (θCCi
(ci), θCak|uk

).
4) Stabilization: In order to guarantee that the marginal
distribution relative to a given variable appearing in two
adjacent clusters are the same, a stabilization operation
consisting in propagating marginals is performed. Namely,
the stabilization operation regarding two clusters Ci and Cj
sharing the separator Sij performs through two steps:
a) Collect evidence (separator update) : In this operation,
each separator Sij collects marginals from the clusters Ci
and Cj sharing Sij . This operation is done as follows:

θCSij
(sij)←min3V (θCCi

(ci/sij), θCCj
(cj/sij)),

where θCCi
(ci/sij) (resp. θCCj

(cj/sij) denotes the possibility
degree of ci (resp.cj), a configuration of the variables
involved in the cluster Ci (resp. Cj) without sij , a con-
figuration of the separator Sij . Note that the marginals are
computed using the three-valued max3V operator.
b) Distribute evidence (cluster update): Once the evidence is
collected by a separator Sij , it is distributed to the involved

clusters as follows:

θCCi
(ci)←min3V (θCCi

(ci), θCSij
(sij)),

θCCj
(cj)←min3V (θCCj

(cj), θCSij
(sij)).

A. Junction tree algorithm based on Kleene’s operators

It is shown in [6] that a C-based joint distribution ob-
tained using the Kleenes’ based chain rule of Equation 6
can be factorized using the minK and maxK operators in
the junction tree algorithm. Hence, we have the following
proposition:

Proposition 6: Let C-PN be a three-valued based possi-
bilistic network and JTC=<N , ΘC> be the junction tree
obtained from the network C-PN where N denotes the set
of clusters and separators and ΘC={θC1 , .., θCm} denotes the
local C-based joint distributions associated with the clusters
and separators. Then, for every variables’ configuration
a1, .., an,
πC(a1, .., an)=minKi=1..n(θC(ai|ui))=minKNi∈N (θCNi

(ni)),
where ni denotes the configuration of variables Ai in-

volved in the node Ni (a node in a junction tree can
be either a cluster or a separator). Proposition 6 states
that the joint C-based distribution computed using the C-
based chain rule of Equation 6 is equivalent to the one
computed using the C-based junction tree. The proof of this
proposition is based on the fact that the transformations of
the initialization and stabilization steps don’t change the C-
based joint distribution. However, as it will be shown in the
following, a C-based joint distribution obtained using the
three-valued chain rule based on Bochvar’s internal operators
is not guaranteed to be directly factorized using the extended
Junction tree algorithm.

B. Junction tree algorithm based on Bochvar’s operators

Regarding Bochvar’s operators, it is obvious that for
the external operators, the extension of the junction tree
algorithm correctly factorizes and recovers the C-based
joint distribution obtained using Equation 8 as stated in the
following proposition.

Proposition 7: Let C-PN be a three-valued based possi-
bilistic network and JTC=<N , ΘC> be the junction tree
obtained from the network C-PN where N denotes the set
of clusters and separators and ΘC={θC1 , .., θCm} denotes the
local C-based joint distributions associated with the clusters
and separators. Then, for every variables’ configuration
a1, .., an,

minBE
i=1..n(θC(ai|ui))=minBE

Ni∈N (θCNi
(ni)),

The result of Proposition 7 is straightforward since the
obtained distribution using Bochvar’s external operator is
a boolean possibility distribution. Now, using the internal
operators, it is not guaranteed that the factorized C-based
distribution is equivalent to the one obtained using Equation
7 as it is shown in the following counter-example.



Example 4

Let us illustrate this on the network of Figure 4.

A θC(A)
a1 1
a2 C ����

A
B A θC(B|A)
b1 a1 1
b2 a1 C
b1 a2 0
b2 a2 1 ����

B
�
�	

B A θC(C|A)
c1 a1 1
c2 a1 0
c1 a2 0
c2 a2 1����

C
@
@R

Figure 4. Example of a C-PN over three binary variables A, B and C.

The corresponding junction tree graph after the
initialization step is given in Figure 5.

��
��

A, B A ��
��

A, C

B A θ(AB)
b1 a1 1
b2 a1 C
b1 a2 0
b2 a2 1

C A θ(AC)
c1 a1 1
c2 a1 0
c1 a2 0
c2 a2 1

A θ(A)
a1 1
a2 C

Figure 5. Junction tree obtained after the initialization step from the
network of Figure 4.

After the stabilization step, we obtain the junction tree of
Figure 6.

��
��

A, B A ��
��

A, C

B A θ(AB)
b1 a1 C
b2 a1 C
b1 a2 C
b2 a2 C

C A θ(AC)
c1 a1 C
c2 a1 C
c1 a2 C
c2 a2 C

A θ(A)
a1 C
a2 C

Figure 6. Junction tree obtained after the stabilization step from the
network of Figure 4.

It is easy to see that using the junction of Figure 6, for
every interpretation ω=aibjck, we have πBI

JT (ω)=C. How-
ever, using the Bochvar’s internal chain rule of Equarion 7,
πBI

(a1b1c1)=1 and πBI
(a1b1c2)=0.

This result is not surprising since Bochvar’s internal con-
nectors are designed to make contagious ignorance (in our
case, imprecision/conflict). This is due to the fact that during
the stabilization step, collecting and distributing evidence
contaminates the values 0 and 1 by the C values. It is worth
pointing out that for the other connectors, the C-based joint
distribution can be factorized with the extended junction tree
algorithm without any loss.

VI. CONCLUSION

This paper dealt with special kinds of possibilistic net-
works suitable for encoding both uncertainty and impre-
cise/conflicting beliefs. More precisely, the paper proposed

and analyzed several semantics for three-valued possibilistic
networks and provided precise relations relating the different
semantics. We proposed two categories of semantics where
one consists in viewing a possibilistic network as a family of
compatible networks while the second is based on deriving a
three-valued joint distribution by extending the chain rule to
the three-valued setting. We showed that none of the studied
three-valued conjunction operators recovers the semantics
of C-PNs viewed as families of compatible networks. We
addressed inference in three-valued possibilistic networks
and showed that the direct extension of the junction tree
algorithm to the three-valued setting guarantees a correct
factorization of a C-joint distribution when using Kleene and
Bochvar’s external connectors but the situation is different
when using Bochvar’s internal connectors. Moreover, this
extension does not induce any extra computational complex-
ity in comparison to the standard possibilistic setting.

REFERENCES

[1] R. K. C. Borgelt, J. Gebhardt, “Possibilistic graphical mod-
els,” in Proceedings of International School for the Synthesis
of Expert Knowledge, pp. 51–68, Udine (Italy), 1998.

[2] G. Shafer, A Mathematical Theory of Evidence. Princeton:
Princeton University Press, 1976.

[3] P. Walley, “Statistical reasoning with imprecise probabilities,”
1991.

[4] C. P. de Campos, “New complexity results for map in
bayesian networks,” in Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Cat-
alonia, Spain, July 16-22, pp. 2100–2106, 2011.

[5] P. Guo and H. Tanaka, “Decision making with interval proba-
bilities,” European Journal of Operational Research, vol. 203,
no. 2, pp. 444 – 454, 2010.

[6] S. Benferhat and K. Tabia, “Three-valued possibilistic net-
works,” in ECAI 2012 - 20th European Conference on Arti-
ficial Intelligence., pp. 157–162, 2012.

[7] D. Dubois, “Reasoning about ignorance and contradiction:
many-valued logics versus epistemic logic.,” Soft Comput.,
vol. 16, no. 11, pp. 1817–1831, 2012.

[8] S. Kleene, Introduction to metamathematics. North-
Holland Publishing Company, 1952. Co-publisher: Wolters–
Noordhoff; 8th revised ed.1980.

[9] D. Dubois and H. Prade, Possibility theory. Plenium Press,
New-York, 1988.

[10] L. Zadeh, “Fuzzy sets as a basis for a theory of possibility,”
Fuzzy Sets and Systems, vol. 100, no. 0, pp. 9 – 34, 1999.

[11] D. Dubois, J. Lang, and H. Prade, “Dealing with multi-source
information in possibilistic logic,” in ECAI, pp. 38–42, 1992.

[12] D. A. Bochvar and M. Bergmann, “On a three-valued logical
calculus and its application to the analysis of the paradoxes
of the classical extended functional calculus,” History and
Philosophy of Logic, vol. 2, no. 1-2, pp. 87–112, 1981.

[13] F. V. Jensen, Bayesian networks and decision graphs. Statis-
tics for engineering and information science, New York, NY:
Springer, 2002.


