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Part 1
Introduction
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General setting

Planning:

▶ one or several agents
▶ in some environment
▶ with goals/missions
▶ with actuators and sensors

Goal: compute plan of actions
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Offline and online phases

Planning problem (offline):

▶ input: initial state(s), actions, goal
▶ output: π = plan/policy of actions to take from initial state(s) to goal

Execution of π (online):

1. execute first action prescribed by π

2. observe information about environment

3. execute action prescribed by π for history of information so far

4. if goal not reached, goto 2

Important note: planning and execution may well be interleaved
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Classical planning

▶ Initial state fully known
▶ Goal = set of states
▶ Only actuators, no sensor
▶ Effects of actuators deterministic
▶ Effects of actuators fully known

Typically offline planning: ahead of mission start
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Adding nondeterminism

Outcome of action cannot be fully predicted even if state fully known

One of the possible outcomes arises each time the action is taken

Examples:

Two versions: nondeterministic and probabilistic

→ Conformant planning
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Adding sensing

⇒

Using sensor:
▶ gives information about current state

▶ but imperfect/noisy in general

Together with nondeterminism:
▶ current state cannot be tracked exactly
▶ plan⇒ policy of actions
▶ policy contingent on sensor observations

→ Contingent planning
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Adding time

Durative actions:
▶ execution not instantaneous in general
▶ real problems have deadlines

▶ parallel execution may be required

Temporal planning
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Adding contingencies

Exogenous events, other agents. . . :
▶ constrain the plan
▶ agent does not control

▶ when they occur
▶ what they do

▶ plan must adapt to actual occurrences

→ Flexible planning
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Adding other agents

Many combinations:
▶ plan execution centralized/decentralized
▶ plan computation centralized/decentralized
▶ agents collaborate/compete/both
▶ agents have/do not have explicit communication
▶ effects are from individual/joint actions
▶ effects are deterministic/nondet./stochastic
▶ etc.

→
Multiagent path finding, decentralized (PO)MDPs,
extensive-form games, stochastic games. . .
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Adding theory of mind

Some problems involve knowledge/beliefs:
▶ goals to learn sth
▶ goals to make other agents believe or know sth

Plans may require to sense others’ beliefs/knowledge act on others’ beliefs/knowledge

→ Epistemic planning
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Focus of this tutorial

Classical Epistemic

Temporal flexible Multiagent

Contingent
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Introduction Languages for planning Main algorithms for plan synthesis GRAPHPLAN SATPLAN

Part 2
A little history: classical planning
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The classical framework

The general problem of the synthesis of a solution plan is very complex because planning
involves three stages:
▶ the selection of applicable actions (among the many actions available)
▶ the choice among them of relevant actions to move towards the goal (which requires

reasoning about their causal dependencies)
▶ reasoning on their interactions to obtain an executable scheduling of these actions
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Section 2

Languages for planning
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Languages for planning

The STRIPS language: example of the “domain of cubes”
▶ STRIPS representation of the problem: initial state and goal

▶ STRIPS representation of operators (two are required)
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Languages for planning

ADL language
Subset of first order logic: an operator o is represented by its name and a doublet
⟨preconditions, effects⟩. Additions and deletes are grouped in the effects (additions: positive
literals, deletes: negative literals). ADL allows one to use logical connectors and quantifiers.
▶ in Pre(o) and Eff(o), ∧ represents a conjunction of formulas
▶ in Eff(o),→ makes it possible to represent a conditional effect
▶ in Pre(o) and in the antecedent of conditional effects, ∨ allows us to represent a

disjunctive precondition
▶ in Pre(o) and Eff(o), ∀ and ∃ represent universal quantification and existential

quantification
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Languages for planning

ADL language: example of the “BlocksWorld”
▶ ADL representation of operators (one is enough)
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Languages for planning

PDDL language
▶ Taking into account: durations, time-dependent effects, continuous resources, etc.
▶ typing
▶ equality constraints
▶ conditional effects
▶ disjunctive preconditions
▶ universal quantification
▶ updating state variables. . .
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Section 3

Main algorithms for plan synthesis
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Main algorithms for plan synthesis
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Classification of interactions

▶ Positive interactions:
▶ Multiple effects: action that produces several fluents: action a1
▶ Add/Add: ∃f , f ∈ Add(a1) ∩ Add(a2): fluent c
▶ Add/Prec: ∃f , f ∈ Add(a1) ∩ Prec(a2): fluent d

▶ Negative interactions:
▶ Contradictory effects: ∃f , f ∈ Add(a1) ∩ Del(a2): fluent e
▶ Cross interactions: ∃f , f ∈ Del(a2) ∩ Prec(a1): fluent b

a +c −b
a1 +d d a2 +c

b +e −e
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Independent actions

▶ Two actions a1, a2 are independent (denoted a1#a2) if they have no negative
interactions, i.e.:

a1 x // +y −z

a2 t // +u −v
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Independent actions

▶ Two actions a1, a2 are independent (denoted a1#a2) if they have no negative
interactions, i.e.:
▶ Del(a1) ∩ (Prec(a2) ∪ Add(a2)) = ∅ and
▶ Del(a2) ∩ (Prec(a1) ∪ Add(a1)) = ∅

a1 x // +y −z

a2 t // +u −v
▶ Set of independent actions:

▶ Q is a set of independent actions or independent set iff all the actions ai which compose it
are independent 2 by 2;

▶ Application of an independent set of actions (forward chaining):
▶ an independent set Q is applicable to a state E iff:

⋃
Prec(ai) ∈ E

▶ the resulting state is the set of fluents:

E ↑ Q = (E −
⋃

Del(ai)) (
⋃

Add(ai))
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Introduction Languages for planning Main algorithms for plan synthesis GRAPHPLAN SATPLAN

Algorithms for plan synthesis (state-spaces)

A : a → +b
B : a → +c –a
C : b c → +d �� ��a
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Solution plan = {Actions,Constraints}
Actions = {A ,B ,C}
Constraints = {(A ,B), (A ,C), (B ,C)}
post-treated, gives: ⟨A ,B ,C⟩
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Section 4

GRAPHPLAN
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Principles of the planner GRAPHPLAN

▶ GRAPHPLAN separates planning into two procedures:
▶ construction of the planning graph (polynomial complexity in time and space compared to

the size of the problem data);
▶ search for a potential solution in the subtree extracted from this graph (NP), which can be

carried out by different methods.

▶ The graph provides a lot of information which can be used as domain-independent
heuristics for classic methods (search in state spaces...), it can also be adapted to take
into account resources and time.
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Definitions

▶ In GRAPHPLAN, two actions at the same level in the graph are mutually exclusive
(mutex) iff:
▶ they are not independent or,
▶ they have mutex preconditions at the previous level (so they cannot be triggered at the

same time): ∃(p, q) ∈ Prec(a1) × Prec(a2), such that p and q are mutexes.

▶ Two fluents p and q are mutexes at level i iff all pairs of actions which produce them at
this same level are mutexes (there is no pair of non-mutex actions which produce them
at this level): ∀a1, a2/p ∈ Add(a1), q ∈ Add(a2), a1 and a2 mutexes.
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Algorithm of GRAPHPLAN

A : a → +b
B : a → +c –a
C : b c → +d
NoOps{a, b , c, d}
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Solution plan: ⟨{A ,Na}, {Nb ,B}, {C} ⟩
post-treated, gives: ⟨A ,B ,C⟩
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Section 5

SATPLAN
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SAT Encodings for Classical Planning

Several different encoding have been proposed:
▶ State spaces encodings
▶ Plan spaces encodings
▶ Planning graph encodings

In the sequel, we present the state spaces encoding with explanatory frame-axioms.
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SAT Encodings for Classical Planning

S0(Init)▶ x1 ≡ S1 ▶ x2 ≡ S2 ▶ x3 ≡ S3 ▶ x4 ≡ S4 ▶ x5 ≡ S5 ▶ x6 ≡ S6 ▶ x7 ≡ S7 ▶S8(Goal)

Figure: Transitions of an 8-step plan in SAT encoding

Each step i is associated with a set of propositional variables Xi = XA ,i ∪ XF ,i where
▶ XA ,i = {a1

i , a
2
i . . . , a

m
i } is a set of propositional variables for actions;

▶ XF ,i = {f1
i , f

2
i , . . . , f

n
i } is a set of propositional variables for fluents
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SAT Encoding: Initial State and Goal

Initial state:

∧
f∈I

f0

 ∧  ∧
f∈F\I

¬f0



Goal:
∧
f∈G

flength
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SAT Encoding: Conditions and Effects of Actions

∧
i∈[1..length]

∧
a∈O

ai ⇒


 ∧

f∈Conda

fi−1

 ∧
 ∧

f∈Adda

fi

 ∧
 ∧

f∈Dela

(¬fi)




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SAT Encoding: Explanatory Frame-Axioms

∧
i∈[1..length]
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f∈F

(¬fi−1 ∧ fi)⇒


∨
a∈O
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ai
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
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SAT Encoding: Negative Interactions (Mutex)

∧
i∈[1..length]

∧
a1∈O

∧
f∈Conda1

∧
a2∈O

(a1,a2)
(f∈Dela2)

(¬a1i ∨ ¬a2i)

goal

goal

removed by

r¬r

p

p

¬p

condition for

red

blue

Unexpected
behaviour!
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Part 3
Epistemic planning with DEL
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Motivation
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Overview I

Classical planning:
▶ One agent.
▶ Completely known and observable environment.
▶ Deterministic.
▶ Example: Sokoban

Carloseow at English Wikipedia, CC BY 3.0, via Wikimedia Commons
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Overview II

Epistemic planning:
▶ Several agents.
▶ Partially observable environment.
▶ Coordination sometimes necessary.
▶ Still deterministic.
▶ Examples:

▶ “Epistemic” blocks world.
▶ Cooperative card games.
▶ Several robots in a warehouse with walls.
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Hanabi

Mannivu, CC BY-SA 4.0, via Wikimedia Commons
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A cooperative task

Pico-Hanabi1 (modified). Three cards of the same color. Two players. No tokens.

Initial state:
▶ One card for each player + one card on the deck.
▶ Players cannot see their own cards.
▶ Each player can see all other player’s cards.

Turn-based.

Actions:
▶ Make an announcement about the partner’s cards (only once during the whole game).
▶ Try to play a card on the table (own card, or from the deck):

▶ If the card is on the right order, it’s placed on the table and the player gets the other card.
▶ Otherwise, the game is over (and lost).

Goal: Place all three cards on the table on the right order.
1[Engesser et al., 2021]
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Initial epistemic state

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

▶ Agent 1 is the one who plans.
▶ 1 sees that 2 has card B.
▶ 1 does not know her hand, nor the deck.
▶ 1 knows that if she plays a card, they can loose the game.
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First move

What happens if 1 announces “2 does not have card A”?

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

=⇒

ABC

w ′0

ACBw ′1

BCAw ′2

CBA w ′5

2

1

1

▶ The states where 2 has card A are removed.
▶ 2 learns that she should not play her card,
▶ but 2 still does not know her card.
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Second move

Then, what happens if 2 announces “1 has card A”?

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

=⇒

ABC

w ′0

ACBw ′1

BCAw ′2

CBA w ′5

2

1

1

=⇒

ABC

w ′′0

ACBw ′′1

2

▶ The states where 1 does not have card A are removed.
▶ 1 learns that she can play her card,
▶ but, on the next move, 2 must take a random decision.
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A better first move

What if 1 announces “agent 2 has card B”?

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

=⇒

ABC

w ′0

CBA w ′5

1

▶ The states where 2 does not have card B are removed.
▶ 2 learns her hand.
▶ Now, if 2 plays well, they can win the game. . .
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Epistemic planning

Epistemic planning = planning + theory of mind (ToM).2

Definition (Epistemic planning)

A planning task is a triple T = ⟨s0,A, γ⟩ where:
▶ s0: initial epistemic state;
▶ A: a finite set of epistemic actions;
▶ γ: an epistemic formula describing the goal.

Definition (Solution)

A solution of a (sequencial) planning task T = ⟨s0,A, γ⟩ is a sequence of actions α, . . . , αn of
A such that, for all 1 ≤ k ≤ n, α is applicable in s0 ⊗ α1 ⊗ . . . ⊗ αk−1 and:

s0 ⊗ α1 ⊗ . . . ⊗ αn |= γ

2[Bolander et al., 2020]
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Representation choice

Syntactic approach
States are represented by formulas.

Semantic approach.
States are represented by epistemic models (Kripke structures).

Explicit approach.
The set of states is given (eg.: ATEL3, CSL4).

Implicit approach.
The set of states is induced by the initial state and the set of actions (eg.: STRIPS/PDDL).

Epistemic planning based on DEL uses the semantic and implicit approaches.5

3[van der Hoek and Wooldridge, 2002]
4[Jamroga and Aagotnes, 2007]
5[Bolander and Andersen, 2011]
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Section 7

Epistemic logic
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Syntax

Vocabulary:
▶ P: a countable non-empty set of propositional variables.
▶ A: a finite non-empty set of agents.

Language L:
φF ⊤ | p | ¬φ | φ ∧ φ | Kiφ

where p ∈ P and i ∈ N.

Abbreviation:
▶ K iφ

def
= ¬Ki¬φ

Meanings:
▶ Kiφ: agent i knows that φ.
▶ K iφ: agent i considers it possible that φ.
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Semantics I

Definition (Epistemic model)

A (Kripke) structureM = ⟨W ,R ,V⟩, where:
▶ W is a set of possible worlds.
▶ R : N→ (W ×W) associates an accessibility relation to each agent.
▶ V : P→ 2W associates a set of states to each propositional variable.

Each accessibility relation is an equivalence class, i.e.:
▶ Reflexive: ⟨w,w⟩ ∈ R(i).
▶ Euclidean: ⟨w,w′⟩, ⟨w,w′′⟩ ∈ R(i) implies ⟨w′,w′′⟩ ∈ R(i).
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Semantics II

Definition (Epistemic state – internal approach)

A pair s = ⟨M,Wd⟩, where:
▶ M: an epistemic model.
▶ Wd ⊆ W : a set of possible worlds called ‘designated world’.

The set of designated worlds:
▶ Corresponds to the world considered possible by the planning agent.
▶ Contains the actual world.
▶ In the initial state, it coincides with the set of accessible worlds from the actual world for

the planning agent.
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Semantics III

Definition (Satisfaction relation)

M,Wd |= φ iff M,w |= φ, for all w ∈ Wd

M,w |= ⊤

M,w |= p iff w ∈ V(p)

M,w |= ¬φ iff M,w ̸|= φ

M,w |= φ1 ∧ φ2 iff M,w |= φ1 andM,w |= φ2

M,w |= Kiφ iff M,w′ |= φ, for all w′ ∈ W s.t. ⟨w,w′⟩ ∈ R(i)

Meanings:
▶ M,Wd |= φ: the planning agent knows that φ at planning time.
▶ M,w |= Kiφ: agent i knows that φ at execution time.
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Example: Pico-Hanabi

▶ Agents: 1 and 2

▶ Propositional variables:
▶ pA ,1: “1 has card A”

. . .
▶ pC ,e : “C is in the deck”

▶ Abbreviations:
▶ A1

def
= (pA ,1 ∧ ¬pA ,2 ∧ ¬pA ,e): “A is only with player 1”

. . .
▶ Ce

def
= (pC ,e ∧ ¬pC ,1 ∧ ¬pC ,2): “C is only on the deck”

▶ ABC def
= A1 ∧ B2 ∧ Ce

. . .
▶ CBA def

= C1 ∧ B2 ∧ Ae

▶ A desirable state (some kind of “intermediate goal”):
▶ H1

def
= K1A1 ∨ K1B1 ∨ K1C1: “1 knows her own hand”

▶ H2
def
= K2A2 ∨ K2B2 ∨ K2C2: “2 knows her own hand”
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Example: Pico-Hanabi

M:

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

M′:

ABC

w ′0

CBA w ′5

1

(M,w0) |= K1A1 ∧ K1C1 (M′, {w′0,w
′
5}) |= K1A1 ∧ K1C1

(M,w0) |= K2B2 ∧ K2C2 (M′,w′0) |= K2ABC
(M, {w0,w5}) |= ¬H1 ∧ ¬H2 (M′,w′5 |= K2CBA

(M′, {w′0,w
′
5}) |= ¬H1 ∧ H2
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Remark

Epistemic logic permits the verification of the epistemic states of the system.

However, the execution of an action in an epistemic state is not always evident.

For example, what is the effect of the following STRIPS action in the initial state of
Pico-Hanabi?

PRE : K1A1

ADD : ∅

DEL : ∅

This action does not seem useful (because there is no physical effect).

However, this a communication action!

In addition, we want to be able to encode partially observable actions.
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Section 8

Dynamic epistemic logics
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Public announcements

Language L:
φF ⊤ | p | ¬φ | φ ∧ φ | Kiφ | ⟨!φ⟩φ

where p ∈ P and i ∈ N.

Abbreviation:
▶ [!ψ]φ

def
= ¬⟨!ψ⟩¬φ

Meanings:
▶ ⟨!ψ⟩φ: ψ is true and φ is true after the announcement of ψ.
▶ [!ψ]φ: if ψ is true, then φ is true after the announcement of ψ.

Example:
▶ ⟨!p⟩Kip: p is true and i knows that p after the announcement of p.

Tiago de Lima, Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 64 / 193



Motivation Epistemic logic Dynamic epistemic logics Some open questions References

Semantics

Update: (M,Wd) ⊗ !φ = (M′,W ′
d), where:6

▶ M′ = ⟨W ′,R ′,V ′⟩
▶ W ′ = {w | (M,w) |= φ}

▶ R ′(i) = R(i) ∩ (W ′ ×W ′)

▶ V ′(p) = V(p) ∩W ′

▶ W ′
d = Wd ∩W ′

That is, remove the worlds where φ is false.

Satisfaction relation:

(M,w) |= ⟨!ψ⟩φ iff (M,w) |= ψ and (M,w) ⊗ !ψ |= φ

(M,w) |= [!ψ]φ iff (M,w) |= ψ implies (M,w) ⊗ !ψ |= φ

6[Plaza, 1989, Plaza, 2007]
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Example: Pico-Hanabi

1 announces “2 does not have card A” (the bad move)
2 announces “1 has card A”

M:

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

!K1¬A2
=⇒ M′:

ABC

w ′0

ACBw ′1

BCAw ′2

CBA w ′5

2

1

1

!K2A1
=⇒ M′′:

ABC

w ′′0

ACBw ′′1

2

(M, {w0,w5}) |= [!K1¬A2][!K2A1](H1 ∧ ¬H2) (M′′, {w′′0 }) |= H1 ∧ ¬H2

(M′, {w′0}) |= [!K2A1](H1 ∧ ¬H2) (M′′, {w′′0 }) |= K1A1 ∧ ¬K2B2
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Example: Pico-Hanabi

1 announces “2 has card B” (the good move)
2 announces “1 has card A”.

M:

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

!K1B2
=⇒ M′:

ABC

w ′0

CBA w ′5

1

!K2A1
=⇒ M′′:

ABC

w ′′0

(M, {w0,w5}) |= [!K1B2][!K2A1](H1 ∧ H2) (M′′, {w′′0 ,w
′′
5 }) |= H1 ∧ H2

(M′, {w′0,w
′
5}) |= [!K2A1](H1 ∧ H2) (M′′, {w′′0 }) |= K1A1 ∧ K2B2
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Reasoning methods

▶ Reduction axioms (sub-optimal):

⟨!ψ⟩p ↔ (ψ ∧ p)

⟨!ψ⟩¬φ↔ (ψ ∧ ¬⟨!ψ⟩φ)

⟨!ψ⟩(φ1 ∨ φ2)↔ (⟨!ψ⟩φ1 ∨ ⟨!ψ⟩φ2)

⟨!ψ⟩K̂iφ↔ (ψ ∧ K̂i⟨!ψ⟩φ)

▶ Optimal reduction7

▶ Tableaux8

7[Lutz, 2006]
8[Balbiani et al., 2010]

Tiago de Lima, Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 68 / 193



Motivation Epistemic logic Dynamic epistemic logics Some open questions References

Assignments

Addition of assignments to the language:9

▶ ⟨σ⟩φ: φ is true after the assignment σ.

where:
σ : P→ L

Update: (M,Wd) ⊗ σ = (M′,W ′
d), where:

▶ M′ = ⟨W ′,R ′,V ′⟩
▶ W ′ = W
▶ R ′(i) = R(i)
▶ V ′(p) = {w | M,w |= σ(p)}
▶ W ′

d = Wd ∩W ′

9[van Ditmarsch et al., 2005]
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Reasoning methods

▶ Reduction axioms (sub-optimal):

⟨σ⟩p ↔ (p)σ

⟨σ⟩¬φ↔ ¬⟨σ⟩φ

⟨σ⟩(φ1 ∨ φ2)↔ (⟨σ⟩φ1 ∨ ⟨σ⟩φ2)

⟨σ⟩Kiφ↔ Ki⟨σ⟩φ

▶ Optimal reduction10

10[van Ditmarsch et al., 2012]
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Events

It is possible to encode STRIPS actions with public announcements and assignments.

However, this complicates the task for the user.

It is simpler to create actions that have both announcements and assignments together.
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Events

An event is a structure e = ⟨pre(e), eff(e)⟩, where:
▶ pre(e) ∈ L: the event pre-condition.
▶ eff(e) ∈ (P→ L): the event effects.

Update: (M,Wd) ⊗ e = (M′,W ′
d), where:

▶ M′ = ⟨W ′,R ′,V ′⟩
▶ W ′ = {w | M,w |= pre(e)}
▶ R ′(i) = R(i) ∩ (W ′ ×W ′)

▶ V ′(p) = {w | M,w |= σ(p)} ∩W ′

▶ W ′
d = Wd ∩W ′

Therefore, we now have public announcements and assignments together.
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Applicability and coordination

Definition (Applicability)

An action α is applicable for agent i in a state s iff for each designated world w there is a
designated event e such that w |= pre(e).

Definition (Implicit coordination)

Each action of the event must be applicable for the acting agent.
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STRIPS actions

Events permit the encoding of STRIPS actions.

Action:

PRE : φ

ADD : p

DEL : q

Encoding:

e = ⟨pre(e), eff(e)⟩

pre(e) = φ

eff(e) = p ← ⊤, q ← ⊥

Therefore, an action without physical effect is a public announcement!
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Partially observable actions

How to encode (semi-) private actions?

E.g.: 1 peeks.

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

=⇒

ABC

w ′0

ACBw ′1

BCAw ′2

BAC

w ′3

CAB w ′4

CBA w ′5

2

2

2

▶ At planning time:
▶ 1 and 2 do not know their hands, nor the deck.

▶ At execution time:
▶ 1 will know the card on the deck as well as her hand.
▶ 2 will not know her hand, nor the card on the deck.
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Event models

Definition (Event models)

A (Kripke) structure E = ⟨E,Q , pre, eff⟩, where:11

▶ E: set of events.
▶ Q : N→ (E × E): associates a accessibility relation to each agent.
▶ pre : E → L: associates a formula to each event (pre-condition).
▶ eff : E → (P→ L): associates an assignment to each event (effects).

As before, each accessibility relation is an equivalence relation.

Update: (M,Wd) ⊗ (E,Ed) = (M′,W ′
d), where:

▶ W ′ = {(w, e) | M,w |= pre(e)}
▶ R ′(i) = {⟨(w, e), (w′, e′)⟩ | ⟨w,w′)⟩ ∈ R(i) and ⟨e, e′)⟩ ∈ Q(i)}
▶ V ′(i) = {(w, e) | M,w |= eff(e)(p)} ∩W ′

▶ W ′
d = {(w, e) ∈ Wd × Ed} ∩W ′

11[Baltag et al., 1998, Baltag and Moss, 2004, van Ditmarsch et al., 2007]
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Partially observable action

Agent 1 peeks (to see the card on the deck).

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

⊗
Ce , ∅

e0

Be , ∅e1 Ae , ∅ e2

2

2

2 =

ABC

(w0, e0)

ACB(w1, e1)

BCA(w2, evt2)

BAC

(w3, e0)

CAB (w4, e1)

CBA (w5, e2)

2

2

2
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Private action

2 quits the room. During that period, 1 sees her own hand, but agent 2 suspects that 1 did
that.12

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

=⇒

ABC

w0,0

ACBw1,1

BCAw2,2

BAC

w3,0

CABw4,1

CBAw5,2

2

2

2
ACB w1,3

ABC

w0,3

BCA w2,3

BAC

w3,3

CAB w4,3

CBA w5,3

2

1

2 1

2

1

12Agent 2 must suspects of the result, otherwise we get out from the logic of “knowledge”.
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Private action

ABC

w0

ACBw1

BCAw2

BAC

w3

CAB w4

CBA w5

2

1

2 1

2

1

⊗

A1, ∅

e0

B1, ∅e1 C1, ∅ e2

⊤, ∅

e3

2 2

2 2

=

ABC

(w0, e0)

ACB(w1, e1)

BCA(w2, e2)

BAC

(w3, e0)

CAB(w4, e1)

CBA(w5, e2)

2

2

2
ACB (w1, e3)

ABC

(w0, e3)

BCA (w2, e3)

BAC

(w3, e3)

CAB (w4, e3)

CBA (w5, e3)

2

1

2 1

2

1

This kind of action can duplicate the size of the model.

This is why computational complexity of epistemic planning is high, when it is decidable.
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Reasoning methods

▶ Reduction13

▶ Tableaux14

▶ Symbolic model checking15

13[van Benthem et al., 2006]
14[Aucher and Schwarzentruber, 2013]
15[van Benthem et al., 2018, Gamblin et al., 2022]
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Section 9

Some open questions
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Decidability

Epistemic planning is undecidable in Kn, KTn, K4n, K45n, KT4n et KT5n.16

Recently, several fragments have been studied:17

without eff with eff
d = 0 PSPACE-complete decidable
d ≤ 1 ? undecidable
d ≤ 2 undecidable undecidable
not bound undecidable undecidable

16[Aucher and Bolander, 2013]
17[Charrier et al., 2016]
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Some open questions

▶ Circumvent undecidability. 18

▶ Find compact representations for models. 19

▶ Find representation languages for actions. 20

▶ Model belief (instead of knowledge). 21

▶ Propose heuristics for epistemic planning.

18[Bolander et al., 2020, Cooper et al., 2021]
19[Charrier and Schwarzentruber, 2017, van Benthem et al., 2018, Gamblin et al., 2022]
20[Baral et al., 2022]
21[Balbiani et al., 2012, Caridroit et al., 2016]
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Part 4
Contingent Planning with Belief States
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Setting

Nondeterministic actions

Partial observability Uncertain state
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Section 11

One Agent, No Probabilities
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Minesweeper Instance

? ? ?

? 1 ?

? 2 ?

? ? ?

Instance:
▶ states = all possible grids with 2 mines
▶ actions = {click(i, j) | i, j}
▶ observations = {0, 1, 2, . . . , 8} ∪ { }
▶ initial belief state = all states consistent with numbers revealed

Note: adversarial/robust version
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Example Winning Policy

? ? ?

? 1 ?

? 2 ?

? ? ?

1, 1

1, 2
0

1, 3
0

2, 10
2, 30 3, 11 4, 1; 4, 20

4, 31 4, 21

4, 122, 31

3, 30 4, 2; 4, 30

4, 11 4, 20

4, 31
1, 31

2, 11

3, 10 3, 3; 4, 1; 4, 20

3, 31 4, 2; 4, 31

4, 1; 4, 32

1, 2
1

1, 31 2, 30 3, 10 3, 3; 4, 1; 4, 21

3, 32 4, 2; 4, 30

4, 1; 4, 31
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Formal Setting

Contingent planning instance:
▶ sets S (states), A (actions), Ω (observations)
▶ transition function T : S × A → P(S)

▶ goal states G ⊆ S
▶ observation function: O : S × A × S → P(Ω)
▶ initial belief: B0 ⊆ P(S)

Strong cyclic policy:
▶ mapping π : Ω∗ → A
▶ value: 1 (winning) if ∀ω1, ω2, . . . , policy π reaches goal , else 0
▶ note: winning policy existence decidable (finite space)
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And/Or Search

Finding strong policy for contingent planning = and/or search:
▶ root = B0

▶ or-nodes = possible actions
▶ and-node = possible observations
▶ leaves = goal states
▶ policy = strategy in And/Or graph

Tiago de Lima, Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 98 / 193



One Agent, No Probabilities One Agent, Probabilities Knowledge-Based Policies Several Agents, Probabilities References

Belief States

? ? ?

? 1 ?

? 2 ?

? ? ?

1, 1

1, 2
0

1, 3
0

2, 10
2, 30 3, 11 4, 1; 4, 20

4, 31 4, 21

4, 122, 31

3, 30 4, 2; 4, 30

4, 11 4, 20

4, 31
1, 31

2, 11

3, 10 3, 3; 4, 1; 4, 20

3, 31 4, 2; 4, 31

4, 1; 4, 32

1, 2
1

1, 31 2, 30 3, 10 3, 3; 4, 1; 4, 21

3, 32 4, 2; 4, 30

4, 1; 4, 311 1 0
1 0

2 2 0
1 0

1 1 0
1 0

2 2 1
1 1

1 1 0
1 0

1 2 1
0 1

Tiago de Lima, Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 99 / 193



One Agent, No Probabilities One Agent, Probabilities Knowledge-Based Policies Several Agents, Probabilities References

Progression in Belief Space

In histories:

1 1 0
? 1 0
? 2 ?

? ? ?

click(3,1)
=⇒

1 1 0
? 1 0
1 2 ?

? ? ?

or
1 1 0
? 1 0
2 2 ?

? ? ?

In belief space:

1 1 0
1 0

1 2 1
0 1

1 1 0
1 0

2 2 0
1 0

1 1 0
1 0

2 2 1
1 1

click(3,1)
=⇒

1 1 0
1 0

1 2 1
0 1

or

1 1 0
1 0

2 2 0
1 0

1 1 0
1 0

2 2 1
1 1
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Belief Space Fully Observable Problem

Progression: prog(B , a, ω) := {s′ ∈ S | ∃s ∈ B : s′ ∈ T(s, a), ω ∈ O(s, a, s′)}

Belief space transformation ·B for contingent instance I = (S,A ,T ,R ,Ω,O ,B0):
▶ SB := P(S)

▶ AB := A
▶ TB(B , a) := {prog(B , a, ω) | ∃s′ ∈ T(s, a) : ω ∈ O(s, a, s′)}
▶ RB(B) := mins∈B R(s)
▶ belief state fully observed: Ω := SB, O(B , a,B′) := {B′}
▶ policy for IB ≡ policy for I

Fully observable nondeterministic planning
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Planning in the Belief Space

Direct approaches:
▶ CMBP [Cimatti and Roveri, 2000]: conformant planning (no sensing), regression-based
▶ AO*: contingent planning [Bonet and Geffner, 2000]
▶ belief states are huge→ symbolic representations using BDDs
▶ other representations: DNF, CNF, Prime Implicates [To et al., 2017]

Known literals [Palacios and Geffner, 2009]:
▶ conformant planning
▶ store only Kℓ for relevant known literals in current B
▶ avoids storing B
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Section 12

One Agent, Probabilities
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Tiger Example

Problem:
▶ two doors, one with tiger, one with gold
▶ ontic actions: open left/right door (+10 or -100)
▶ sensing action: listen roar , yields good/bad clue .9/.1
▶ initial belief: tiger left/right .5/.5
▶ timestep costs 1

Intuitively: listen enough to have strong belief where tiger is
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Tiger Policy

listen

listen

L

listen

R

open-right
L

listen
R

listen
L

open-left
R

. . .
L

. . .
R

. . .
L

. . .
R
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POMDPs: Formal Setting

Partially Observable Markov Decision Problem:
▶ sets S (states), A (actions), Ω (observations)
▶ transition function: T : S × A → ∆(S)

▶ reward function: R : S → R
▶ observation function: O : S × A × S → ∆(Ω)

▶ initial belief: B0 ∈ ∆(S)

Solution/policy:
▶ again depends on whole history: mapping π : ω ∈ Ω∗ → A
▶ value: expectation of cumulated reward
▶ note: undecidable at indefinite horizon
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Belief Based are Again Here

Recall: B0 is left/right .5/.5, listen gives clue .9/.1, reward +10/-100

.5/.5

.9/.1

L

.1/.9

R

∼ .98/.01
L

.5/.5
R

.5/.5
L

.01/.98
R

. . .
L

. . .
R

. . .
L

. . .
R

Maintained by Bayes rule:

B(s′)← η
(∑

s

B(s)T(s′ | s, a)O(ω | s, a, s′)
)
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Regression Approach

Recall: B0 is left/right .5/.5, listen gives clue .9/.1, reward +10/-100

One action remaining:
▶ open left gives −100B(l) + 10B(r) − 1
▶ open right gives 10B(l) − 100B(r) − 1
▶ listen gives 0B(l) + 0B(r) − 1

⇒ α-vectors:


v1(open-left) = (−100, 10,−1) ,

v1(open-right) = (10,−100,−1) ,

v1(listen) = (0, 0,−1)


Execution: maintain B = (B(l),B(r), 1) and choose argmaxa

(
B · v1(a)

)
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Regression Approach, 2 Actions Left

Open left, open right: still v2(open-left) = (−100, 10,−1), v2(open-right) = (10,−100,−1)

Listen; may yield observation L or R:

▶ open right on observation L and open left on R

B(l) ×
(
.9v1(open-right) + .1v1(open-left)

)
+ B(r)

(
.1v1(open-right) + .9v1(open-left)

)
= B(l)× (.9 × (10,−100,−1) + .1 × (−100, 10,−1)) +B(r)× (.1 × (10,−100,−1) + .9 × (−100, 10,−1))

⇒ v2
1 (listen) = aB(l) + bB(r) + c

▶ listen left on observation L and open right on R⇒ v2
2 (listen) = dB(l) + eB(r) + f

▶ . . .

Execution: again, maintain B = (B(l),B(r), 1) and choose argmaxa

(
argmaxi

(
B · v2

i (a)
) )
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2 (listen) = dB(l) + eB(r) + f

▶ . . .

Execution: again, maintain B = (B(l),B(r), 1) and choose argmaxa

(
argmaxi

(
B · v2

i (a)
) )
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Regression Approach, 2 Actions Left
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Wrap-up: Regression

Planning time; compute α-vectors:
▶ set v0(_) := {R}
▶ for t = 1, 2, . . . : set v t(a) := {ω1 : v1, . . . , ωk : vk | v1, . . . , vk ∈ v t−1}

▶ until ε-convergence/stopping criterion

Execution time, given α-vectors ∀a, v(a):
▶ set B := B0

▶ perform a := argmaxa B · v(a)
▶ observe ω
▶ update B using a, ω and Bayes rule
▶ iterate
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Section 13

Knowledge-Based Policies
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Knowledge-Based Policies

Intuition:
▶ recall: α-vectors vi,j(open-left), vi,j(open-right), vi,j(listen)

▶ (B(l),B(r), 1) · v(open-left) > (B(l),B(r), 1) · open-right, (B(l),B(r), 1) · listen
→ compact representation of set of belief states

Let’s generalize to a Knowledge-Based Policy [Z. et al., 2020]:

while ¬K(goal) do

if K¬mine(1, 1) then click(1, 1) else ε fi;

if K¬mine(1, 2) then click(1, 2) else ε fi;

. . .

if K¬mine(4, 3) then click(4, 3) else ε fi
od
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KBPs: Succinctness

Intuition: several histories lead to same sufficient knowledge

? ? ?

? 1 ?

? 2 ?

? ? ?

1, 1

1, 2
0

1, 3
0

2, 10
2, 30 3, 11 4, 1; 4, 20

4, 31 4, 21

4, 122, 31

3, 30 4, 2; 4, 30

4, 11 4, 20

4, 31
1, 31

2, 11

3, 10 3, 3; 4, 1; 4, 20

3, 31 4, 2; 4, 31

4, 1; 4, 32

1, 2
1

1, 31 2, 30 3, 10 3, 3; 4, 1; 4, 21

3, 32 4, 2; 4, 30

4, 1; 4, 31

K(¬mine(3, 1)) ∧ K(¬mine(3, 3))
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Complexity Issues

Executing a KBP:
▶ maintain knowledge
▶ decide branching conditions
▶ this is (single-agent) epistemic logic!

Technical questions:
▶ Proved: KBP always as succinct as reactive policy; possibly exponentially more
▶ KBP explainable
▶ no free lunch: execution is ΘP

2 -complete
▶ computing plans mostly open
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Other Approaches to Planning

Many other approaches for POMDPs/contingent:

▶ dedicated algorithms
▶ forward, backward, heuristic, complete. . .
▶ machine learning. . .
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Section 14

Several Agents, Probabilities
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Decentralized Planning Tasks

Setting:
▶ multi-agent, collaborative
▶ offline planning, centralized
▶ online execution, decentralized, no explicit communication

Example:

A B

G :-))

g :-)

jam?

radio but no cell phone
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Decentralized POMDPs

Decentralized POMDP:
▶ sets of agents I, states S, actions A , observations Ω

▶ transition function T : S × A I → ∆(S)

▶ reward function R : S → R
▶ observation function O : S × A I × S → ∆(ΩI)

▶ initial common belief state B0 ∈ ∆(S)

Joint policy:
▶ policy π for each agent
▶ policy of A = function from observation history of A
▶ value = expected reward of joint policy
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Example Policy

move-to-G

listen-radio

move-to-g move-to-G

J

¬J

J ¬J

wait

listen-radio

move-to-g move-to-G

J ¬J
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Belief Space for Decentralized POMDPs

Natural generalization of single-agent case:
▶ maintain belief over state: B ∈ ∆(S)

▶ not sufficient!
▶ should distinguish:

▶ there is a traffic jam and B knows this
▶ there is a traffic jam and B does not know

Each agent must maintain multi-agent knowledge!
▶ up to any depth
▶ this is reasoning in DEL
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Maintaining Multi-Agent Knowledge in Practice

Implicit anyway:

move-to-G

listen-radio

move-to-g move-to-G

J

¬J

J ¬J

KA (jam) ∧ KA (¬KB(jam))
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Making Knowledge Explicit

Maintain knowledge about state + other agents’ “program counters”

KA (1)

KA (jam ∧ 2 ∧ ¬KB(jam))

KA (jam ∧ 3 ∧ KB(jam)) KA (jam ∧ 4 ∧ ¬KB(jam))

J

¬J

J ¬J

1 wait

2 listen-radio

3 move-to-g 4 move-to-G

J ¬J

Notes:
▶ centralized planning is crucial
▶ knowledge about B ’s program counters may be imprecise, like KA (1 ∨ 3)
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Multi-Agent KBPs

Multi-Agent KBP [Saffidine et al., 2018] for A :

while ⊤ do

if KA (¬jam) ∨
(
¬KA (jam) ∧ ¬KA (¬jam)

)
then move-to-G

else if KA (jam) ∧ ¬KA (KB(jam)) ∧ ¬KA (¬KB(jam))) then listen-radio

else if KA (jam) ∧ KA (KB(jam)) then move-to-g

else if KA (jam) ∧ KA (¬KB(jam)) then move-to-G
od

and similar for B

As succinct and possibly exponentially more than reactive policies
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Section 15

References
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Part 5
Temporal, dynamic and flexible planning
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Section 16

Basics of Temporal Planning
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Classical Planning

Sequence of actions from an initial state to a final state

▶ Initial State: pirate position
▶ Action: left, right, down, top
▶ Goal: reach the treasure

Sequence: right→ right→ top→ top
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Temporal planning

Added potential expressiveness:

▶ durations of the actions
▶ preconditions / effects should be true at the beginning, at the end, or during the actions
▶ temporal relationships between actions
▶ parallelism / concurrency
▶ synchronization / interruption
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Temporal planning: a brief history

Some history

STRIPS (FIKES et al., 1970, Artificial Intelligence):

▶ First state-based search planner
▶ Implicit representation of time through succession of states
▶ Use relative time labels specifying after what an action can be executed

GraphPlan (Blum et al., 1995, IJCAI):

▶ Builds a state graph + transitions = all possible actions
▶ Allows parallelism and adds mutex
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Temporal planning: a brief history

First-intention “temporal” classical planners:

▶ First produce a task plan and then assign timestamps to the actions starting points
▶ Implicit representation of time
▶ Greedily repairs the plan in case of flaws
▶ Solves only temporally simple problems

MetricFF (Hoffmann et al., 2003, AIR) unofficially wins the IPC-2008 time channel

YAHSP (V. Vidal et al., 2011 & 2014, IPC) wins IPC-2011 and 2014

Tiago de Lima , Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 133 / 193



Basics of Temporal Planning Dealing with Time and Uncertainty in Planning Dynamic planning and execution References

Temporal planning: towards expicit time

Deviser (Vere et al., 1983, IEEE):

▶ First planner to make time information explicit
▶ Parallel planner with time and duration constraints
▶ Deterministic durations
▶ Ad-hoc representation = not based on any known theoretical model
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Temporal planning: towards expicit time

O-Plan (Currie et al., 1991, AI):

▶ First planner to use time point concepts and metric constraints between time points
▶ Extends the literal formulation of DEVISER

Temporal Constraint Networks (Dechter et al., 1991, AI):

▶ First theoretical model of time constraints (TCSP)
▶ Based on time graph representation (STN, DTN)
▶ First filtering algorithms and time verification (AC, PC, ...)
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Section 17

Dealing with Time and Uncertainty in Planning
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A CSP-based Dedicated Time Management

Simple Temporal Network (STN, Dechter et al., 1991, AI)
▶ Nodes = time-points and edges = durations (intervals)
▶ is consistent if there is an assignment of values to instants satisfying all time

constraints.
▶ consistency is checked through polynomial-time propagation algorithms (O(n3)): Path

consistency or Floyd-Warshall

v0

v1 v3

v2
[10, 15]

[10, 20]

[20, 30]

[0, 5] distance graph

v0

v1 v3

v2
15

-10

20-10

30

−20

5 0
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A CSP-based Dedicated Time Management

Disjunctive Temporal Network (DTN, Studer et al., 1998, DKE)
▶ Nodes = time-points and edges = sets of duration intervals
▶ checking consistency is NP-hard

v0

v1 v3

v2
[10, 15][20, 30]

[10, 20]

[15, 18][20, 30]

[0, 5]
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How to manage uncertain durations in Temporal Networks

Simple Temporal Network with Uncertainty (STNU, Vidal et al., 1999)
▶ Nodes = time-points and edges = controllable and uncontrollable duration (interval)

v0

v1 v3

v2
[10, 15]

[10, 20]

[20, 30]

[0, 5]
controllable time-point

uncontrollable time-point

requirement (controllable) constraint
contingent (uncontrollable) constraint
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Consistency redefined as Controllability

An STNU is controllable if an assignment of the controllable time-points exists such that all
the requirement constraints are satisfied, whatever values taken by the contingent durations.

Three situations depending on when and how effective durations are observed:
▶ Weak controllability (WC) assumes contingents are observed just before execution.
▶ Dynamic controllability (DC) assumes contingents are observed during execution
▶ Strong controllability (SC) assumes contingents are never known/observed.

Complexity:
▶ WC is co-NP-complete
▶ DC is polynomial
▶ SC is polynomial
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Going further: adding conditional branches
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Adding explicit time: more history

IxTeT (Laborie et al., 1995, IEEE):

▶ First temporal planner incorporating plan generation and a temporal constraint (and
resource) solver

▶ Use STNs for consistency

IxTeT-eXec (Lemai et al., 2004, ICAPS):
▶ Regularly updates the plan during execution
▶ Reactive plan repair in the event of failure
▶ Incremental replanning when new targets are set
▶ Consider DTNs and STNUs with dynamic controllability
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Adding explicit time: more history

State search approach + temporal reasoning

PDDL2.1 (Fox and Long, 2003, JAIR):

▶ Extension of PDDL (Planning Domain Description Language) to PDDL2.1 to include
temporal aspects

CRIKEY (Hashley et al., 2004, ECAI):
▶ Able to reason with coordinated actions
▶ Divides sustainable actions into start and end actions
▶ Uses STNs
▶ CRIKEY3 (Coles et al., 2008, AAAI): temporal coordination problems such as deadlines

TLP-GP (Maris et al., 2008, Time) & LPGP (Long et al., 2003, ICAPS):
▶ GraphPlan-based with SAT or DTN solver
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Adding explicit time: more history

Other approaches

Prottle (Little et al., 2005, AAAI):
▶ Extends PDDL2.1 to consider probabilistic effects
▶ Uses AND/OR graphs for state search

Tempastic (Younes et al., 2004, ICAPS):

▶ Limited to deterministic problems because STNs are used
▶ Policy generation, debugging and repair for continuous planning with concurrency
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Adding explicit time: more history

Beaudry et al., 2010, ICAPS:

▶ Bayesian approach extending the forward approach
▶ Represents uncertainty continuously and randomly (numerical value)
▶ Manages concurrency under time uncertainty

ITSAT (Rankooh et al., 2015, JAIR):
▶ A satisfiability-based planner using a SAT solver

FAPE (Bit-Monnot et al., 2019, CoRR):

▶ Considers hierarchical and time-based planning

Bernardini et al., 2017, Autonomous Robots:

▶ Temporal planning + probabilistic reasoning for autonomous vehicles on surveillance
missions.

Tiago de Lima , Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 145 / 193



Basics of Temporal Planning Dealing with Time and Uncertainty in Planning Dynamic planning and execution References

Section 18

Dynamic planning and execution
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Planning, Scheduling, Resource Allocation

Task Planning
▶ choose and order the actions that will enable the agent to achieve a given goal

Scheduling
▶ place in time a set of known operations to be performed by the agent

Ressource allocation
▶ assign a resource to each operation required for its execution (e.g., machine, operator,

tool, etc.)
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General framework of planning/scheduling without uncertainty
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Off-line/Online reasoning

Off-line reasoning: predictive planning/scheduling
▶ Generally static
▶ Never questioned by the execution manager

Online reasoning: simultaneous with execution
▶ Dynamic by nature
▶ Reactive to observations
▶ Meets real-time needs

Tiago de Lima , Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 149 / 193



Basics of Temporal Planning Dealing with Time and Uncertainty in Planning Dynamic planning and execution References

Plan execution in the ideal world
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Execution under uncertainty ?

The planned schedule is not always adapted to the current situation

▶ Adapt online through replanning/rescheduling?
▶ Making the predictive plan/schedule more robust?
▶ Compromise between those two options?
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Flexibility, Stability, Robustness

Flexible plan/schedule = alternatives are left open, with online arbitration

▶ Time flexibility
▶ Order flexibility
▶ Flexibility on assignments
▶ Flexibility on actions/action sequences

Stable plan/schedule = minimize the discrepancy between the predicted plan and the
actually executed one

Robust plan/schedule = minimize at execution time the loss of “quality” from the optimal
predicted plan
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Possible sources of disruption/uncertainties

Goals

▶ new needs (e.g., redo a failed task, new order, etc.)

Events:

▶ unforeseen (e.g., machine breakdown) or with unknown date of occurrence
▶ observability: partially / not observable

Actions:

▶ variable/uncertain durations
▶ undesirable effects / disregarded preconditions: to move, the battery must not be empty!
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Possible sources of disruption/uncertainties

Uncertainties may be on:
▶ time / resources / state of the world

Uncertain events may be:
▶ synchronous (end of a task of uncertain duration, events expected at an uncertain date)
▶ asynchronous (might occur at any time)

Plan/schedule generation can be:
▶ monotonous: additions, but no change in the current plan
▶ non-monotonic: (emergency or opportunistic) revisions of the current plan
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Models of uncertainty

Simple and basic:

▶ sets of possible values

Probabilities:

▶ Bayesian networks
▶ Markov Decision Processes

Possibilities:

▶ fuzzy sets
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Planning and execution: reactive, proactive or progressive

Different studies exist to differentiate the different ways to interleave planning and execution:
predictive or proactive vs reactive and sometimes continuous or progressive (Van de Vonder,
E.Demeulemeester and W.Herroelen, 2007) (M.Davari and E.Demeulemeester, 2019) (Bidot
et al., 2009). We have chosen to focus on the last one = summary of tutorials given at
AAAI’02 and ICAPS’03.

Reactive approach:

▶ Plan predicted offline, but revised online = asynchronous events - non-monotonic

Progressive approach: Prediction/Execution on a sliding horizon:

▶ Short-term online planning, resuming as the exec removes uncertainties = monotonous

Proactive approach:

▶ Plan built offline, incorporating knowledge of uncertainties = synchronous events
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Planning and execution: reactive approach
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Planning and execution: reactive approach

▶ Need to make decisions very quickly = generally suboptimal solutions
▶ Low memory requirements

Tiago de Lima , Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 158 / 193



Basics of Temporal Planning Dealing with Time and Uncertainty in Planning Dynamic planning and execution References

Planning and execution: progressive approach
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Planning and execution: progressive approach

▶ More time to decide = can be optimal
▶ Must not be too frequent
▶ Low memory requirements
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Proactive approaches : 3 subfamilies

Complete methods:

▶ computation of a predictive rigid plan/ordo covering the largest number of cases
▶ stability goal + proba or fuzzy modeling

Flexible methods:

▶ added flexibility on times, orders, and/or assignments
▶ plans/schedules containing indetermination

Conditional methods:

▶ added flexibility on possible actions/action sequences
▶ plans/schedules containing conditional branches
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Proactive approaches : 3 subfamilies
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Proactive approaches : 3 subfamilies

Proactive: time flexibility

▶ Quick decisions + at pre-determined times
▶ Low memory requirements
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Proactive approaches : 3 subfamilies

Proactive: conditional branches

▶ Quick decisions + at pre-determined times
▶ Optimal
▶ High memory requirements
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Section 19

References
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Basics of multi-agent planning
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A MAP system

The agents:
▶ Physical distinctive entities acting on the world
▶ Homogeneous or heterogeneous (sensors/actuators, actions, knowledge model,

reasoning capabilities)
▶ May have different levels of authority

Overall supervision system:
▶ Centralized or decentralized/distributed
▶ Mixed: e.g., centralized planning but distributed execution monitoring

Communication:
▶ Global or partial (neighbouring reachability)
▶ Instantaneous or with delays
▶ Reliable or delivery failures
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Collaboration, cooperation, coordination?

Different ways of taking part in distributed problem solving (Sioutis et al.,
2006)(Roschelle et al., 1995, CSCL)

Collaboration:
▶ a mutual engagement of participants to solve the problem together = interactions during

a necessarily distributed planning process

Cooperation:
▶ a common task divided among participants, where each agent is responsible for a

portion of the problem = goals are distributed ("task" allocation) then local planning

Coordination:
▶ a mutual commitment to synchronize the tasks at some points = a global common plan

has been generated, or on the contrary agents have their own private plans
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Centralized planning

▶ A common goal to satisfy
▶ A global plan
▶ Existence of a specific single agent with planning capability (others are executing

agents)
▶ Classical planning systems can be used

Drawbacks:
▶ Not scalable: exponential blow-up in the action space (Jonsson et al., 2011, AAAI)
▶ No privacy among the agents (Nissim et al., 2012, AAMAS)
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Centralized planning
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Decentralized planning

It might refer to different paradigms:

▶ Cooperative agents with common goals ("tasks"), which are distributed among them
▶ by a central agent
▶ through negotiation

+ coordination at some points

▶ Collaborative agents where each
▶ has its own goal(s) and builds its own plan but negotiate with others to improve their plan

and/or help improve other agents’ plans
▶ takes part in the achievement of the common goal(s) by iteratively proposing (possibly

mutual) actions

+ coordination at some points

▶ Non-Collaborative agents that selfishly aim to achieve their goals at others’ expense
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Homogeneous decentralized architectures
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Heterogeneous decentralized architectures
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Section 21

Task allocation: a quick survey
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The task allocation problem

Aim
▶ Finding the best assignment of tasks among agents

Motivation
▶ (homogeneous) efficiency: closest agent / parallelism / needed cooperation
▶ (heterogeneous) tasks fit agent capabilities

Tiago de Lima , Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 182 / 193



Basics of multi-agent planning Task allocation: a quick survey Shared Control of Interdependent Plans

A quick survey

5 main methods (Skaltis et al., 2021, ICUAS)

Auction-based methods:
▶ use negotiation protocol to bid on tasks based on local perception
▶ centralized (Contract Net Protocol) or distributed (Consensus-Based Bundle Algorithm)

Game-theoretical methods:
▶ agents are players and have some strategy
▶ aim to reach a global solution that is the best outcome for all the agents (Nash Equilibria)

Optimized-based methods:
▶ aims to maximize the profit or minimize the cost of a global function
▶ use deterministic, stochastic, or metaheuristic methods

Tiago de Lima , Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 183 / 193



Basics of multi-agent planning Task allocation: a quick survey Shared Control of Interdependent Plans

A quick survey (continued)

5 main methods (Skaltis et al., 2021, ICUAS)

Learning based methods:
▶ provides learning capability to agents and trains them
▶ trains agents to confront potential disturbances depending on past decisions
▶ enables agents to react to future disturbances

Hybrid based methods:
▶ combines some of the previous methods
▶ provides more robust and complete solutions
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Getting the whole picture

Task Allocation

Planning

Validation

Execution

C Dor

C Dor

C Dor

D

¬ OK

OK

Tiago de Lima , Frédéric Maris, Ajdin Sumic, Thierry Vidal, Bruno Zanutini AUTOMATED TASK PLANNING ECAI 2024 185 / 193



Basics of multi-agent planning Task allocation: a quick survey Shared Control of Interdependent Plans

Section 22

Shared Control of Interdependent Plans
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Coordination of Temporal Plans
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Illustrative Example
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Illustrative Example
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Flexibility sharing
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Recent / on-going work on this topic

Multiple Interdependent STNUs (A.Sumic and T.Vidal, 2024)

▶ Some activity durations (contracts) are controlled by some agent but observed by other
agents that depend on them.

▶ Global controllability of a STNU = local controllabilities
▶ In case of local non-controllability due to such external contracts, better to repair

through negotiation than to replan.
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Revisiting / extending the whole picture
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