
Base-based model checking for multi-agent only believing

Tiago de Lima1 Emiliano Lorini2 François Schwarzentruber3

1CRIL, Univ Artois and CNRS, France

2IRIT, CNRS, Toulouse University, France

3ENS Rennes, France

MAFTEC 11
Tarbes, France, 19 January 2024

Overview

1. Introduction

2. Language and Semantics

3. Model Checking

4. Implementation

5. Conclusion

2

Only believing

Agent i at least believes that φ iff φ is true in all situations that i considers possible.

Agent i at most believes that φ iff φ is false in all situations that i does not consider possible.

Agent i only believes that φ iff i at least and at most believes that φ.

Semantics is involved and rely on universal models (which are huge).1

That makes it infeasible in practice.

1See [Aucher and Belle, 2015], [Belle and Lakemeyer, 2010] and [Halpern and Lakemeyer, 2001]
3

Base based epistemic logic

Lorini2 proposed an epistemic logic using belief bases (instead of Kripke models).

It has two kinds of epistemic operators:
▶ explicit belief: present in the belief base
▶ implicit belief: inferred from explicit beliefs

Advantages:
▶ specifications are easier
▶ universal models can be described succinctly

In this paper: we use this idea to implement a model checker for multi-agent only believing.

2[Lorini 2020]
4

Language

Assume:
▶ Atomic propositions: Atm = {p, q, . . .} (countably infinite)
▶ Agents: Agt = {1, . . . , n} (finite)

Language (L):

αF p | ¬α | α ∧ α | △iα (L0)

φF α | ¬φ | φ ∧ φ | □iφ | □
∁
i φ

Abbreviation: □O
i φ

def
= □iφ ∧ □

∁
i ¬φ

Readings:
▶ △iα: agent i has the explicit belief that α
▶ □iφ: agent i at least implicitly believes that φ

▶ □∁i φ: agent i at most implicitly believes that ¬φ
▶ □O

i φ: agent i implicitly only believes that φ

5

Language

Assume:
▶ Atomic propositions: Atm = {p, q, . . .} (countably infinite)
▶ Agents: Agt = {1, . . . , n} (finite)

Language (L):

αF p | ¬α | α ∧ α | △iα (L0)

φF α | ¬φ | φ ∧ φ | □iφ | □
∁
i φ

Abbreviation: □O
i φ

def
= □iφ ∧ □

∁
i ¬φ

Readings:
▶ △iα: agent i has the explicit belief that α
▶ □iφ: agent i at least implicitly believes that φ

▶ □∁i φ: agent i at most implicitly believes that ¬φ
▶ □O

i φ: agent i implicitly only believes that φ

5

Semantics of explicit belief

State: S = ((Bi)i∈Agt ,V), where:
▶ Bi ⊆ L0 (i’s belief base)
▶ V ⊆ Atm (actual environment)

The set of all states is noted S.

Satisfaction relation for L0:

S |= p iff p ∈ V

S |= ¬α iff S ̸|= α

S |= α1 ∧ α2 iff S |= α1 and S |= α2

S |= △iα iff α ∈ Bi

6

Semantics of explicit belief

State: S = ((Bi)i∈Agt ,V), where:
▶ Bi ⊆ L0 (i’s belief base)
▶ V ⊆ Atm (actual environment)

The set of all states is noted S.

Satisfaction relation for L0:

S |= p iff p ∈ V

S |= ¬α iff S ̸|= α

S |= α1 ∧ α2 iff S |= α1 and S |= α2

S |= △iα iff α ∈ Bi

6

Model

Epistemic alternative:
SRiS′ iff S′ |= α, for all α ∈ Bi

S′ is an epistemic alternative for agent i at S iff S′ satisfies all explicit beliefs of i at S.

Model: (S,Cxt), where:
▶ S ∈ S (actual state)
▶ Cxt ⊆ S (context)

Remark
S is not necessarily in Cxt , because we model belief (not knowledge).

To model knowledge, we would have to suppose that S ∈ Cxt .

7

Satisfaction relation

Satisfaction relation for L:

(S,Cxt) |= α iff S |= α

(S,Cxt) |= □iφ iff for all S′ ∈ Cxt , if SRiS′ then (S′,Cxt) |= φ

(S,Cxt) |= □∁i φ iff for all S′ ∈ Cxt , if SR∁i S′ then (S′,Cxt) |= φ

where R∁i = (S × S) \ Ri .

8

Principles

Lorini3 showed that this is “equivalent” to epistemic logic.

Valid principles:

△iφ→ □iφ (I)

(□iφ ∧ □i(φ→ ψ))→ □iψ (K)

From φ infer □iφ (N)

From φ and φ→ ψ infer ψ (MP)

Additional principles can be obtained:

□iφ→ φ if S ∈ Cxt and Ri is reflexive (Belief correctness)

¬□iφ→ □i¬□iφ if S ∈ Cxt and SRiS′ iff Bi = B′i (Introspection)

3[Lorini 2020]
9

Universal model

Vocabulary profile: Γ = (Γi)i∈Agt , where each Γi ⊆ L0.

It plays a role analogous to that of awareness4.

Γ-universal model: contains all states at which agent i’s explicit beliefs are built from Γi .

The model (S,Cxt) is Γ-universal if S ∈ Cxt = SΓ, with:

SΓ = {((B′i)i∈Agt ,V ′) ∈ S | B′i ⊆ Γi , for all i ∈ Agt}

If SΓ = S, then (S,SΓ) is a model with maximum ignorance, i.e., it contains only the
information provided by S.

4[Fagin and Halpern, 1987]
10

Model checking problem

Model checking problem:

input: ▶ a finite vocabulary profile Γ
▶ a finite state S0 ∈ SΓ

▶ a formula φ0 ∈ L

output: ▶ 1, if (S0,SΓ) |= φ0
▶ 0, otherwise

11

Translation to QBF

Additional variables: Xk = {xα,k | α ∈ L0}, for each k ∈ N.

xα,k corresponds to α at modal depth k .

Translation: tr(φ0) = tr0(φ0) with:

trk (p) = xp,k

trk (¬φ) = ¬ trk (φ)

trk (φ ∧ ψ) = trk (φ) ∧ trk (ψ)

trk (△iα) = x△iα,k

trk (□iφ) = ∀Xk+1(Ri,k → trk+1(φ))

trk (□
∁
i φ) = ∀Xk+1(¬Ri,k → trk+1(φ))

where:
Ri,k =

∧
α∈Γi

x△iα,k → trk+1(α)

12

Theorems

Theorem
Let φ0 ∈ L and S0 = ((Bi)i∈Agt ,V). The following two statements are equivalent:
▶ (S0,SΓ) |= φ0

▶ ∃X0(D0 ∧ tr0(φ0)) is QBF-true.

where:

D0 =
∧

i∈Agt

∧
α∈Bi

x△iα,0 ∧
∧

α∈Γi\Bi

¬x△iα,0

 ∧∧
p∈V

xp,0 ∧
∧
p<V

¬xp,0

Theorem
Model checking L-formulas is PSPACE-complete.

Proof.
Membership: via the translation to QBF (theorem above).
Hardness: via a translation from QBF (already in [Lorini 2019]). □

13

Implementation

Available at: https://src.koda.cnrs.fr/tiago.de.lima/lda/

Encodes the QBF into a binary decision diagram (BDD).

Made in Haskell, using HasCacBDD5.

Experiment:
▶ Selection committee problem: Does (S0,SΓ) |= □

O
1 ψ1 ∧

∧
i∈{2,3} □

O
i ψ2?

▶ Selection committee variant problem: Does (S′0,SΓ) |= □
O
2 ψ2 ∧ □1□2ψ1 ∧ ¬□1□

O
2 ψ2?

Meanings:
▶ ψ1: the actual ballot by agents 1, 2 and 3.
▶ ψ2: for whom agent i voted and 1 did not vote for c2 or c3.

5[Gattinger, 2023]
14

https://src.koda.cnrs.fr/tiago.de.lima/lda/

Performance in a MacBook Air with 1.6 GHz Dual-Core Intel Core i5, 16 GB RAM, macOS
Ventura 13.3.1.

Selection committee example
|Agt | 3 4 5 6 7 8 9 10
|Atm| 9 16 25 36 49 64 81 100
ratoms 100 164 244 340 452 580 724 884
Execution time (sec.) 0.076 0.015 0.026 0.047 0.066 0.101 0.157 0.248

Variant with higher-order beliefs
|Agt | 3 4 5 6 7 8 9 10
|Atm| 9 16 25 36 49 64 81 100
ratoms 133 210 305 418 549 698 865 1050
Execution time (sec.) 0.081 0.063 0.334 3.066 17.588 90.809 KO KO

ratoms (relevant atoms):
▶ one xα for each α ∈ Γ and each α ∈ sub(φ0)

▶ one xp for each atomic proposition in Γ and in φ0

▶ one x△iα for each α ∈ Γ

Search space = #states ≈ 2|Atm| × (2ratoms)|Agt |

15

Conclusion

First to automate model checking for multi-agent only believing (or knowing).

A few results on computation time showing its feasibility.

Results can be improved (very few optimisations are done).

Possible application to epistemic planning.
(The compactness of this semantics can ease the specification.)

16

Some references I

Aucher, G. and Belle, V. (2015).
Multi-agent only knowing on planet kripke.
In: Yang, Q. and Wooldridge, M. G. (ed.) Proc. of IJCAI 2015, pp. 2713–2719.

Belle, V. and Lakemeyer, G. (2010)
Multi-agent only-knowing revisited.
In: Lin, F., Sattler, U. and Truszczynski, M. (eds.) Proc. of KR 2010.

Fagin, R. and Halpern, J.Y. (1987).
Belief, awareness, and limited reasoning.
Artificial Intelligence, 34(1):39–76.

Gargov, G. and Passy, S. (1990).
A note on Boolean modal logic.
In: Petkov, P.P. (ed.) Mathematical Logic, pp. 299–309.

17

Some references II

Gattinger, M. (2023).
HasCacBDD – Haskell bindings for CacBDD, a Binary Decision Diagram (BDD) package
with dynamic cache management.
https://github.com/m4lvin/HasCacBDD. Version 0.1.0.4.

Halpern, J. and Lakemeyer, G. (2001).
Multi-agent only knowing.
Journal of Logic and Computation, 11(1):41–70.

Lorini, E.
Exploiting belief bases for building rich epistemic structures.
In: Moss, L. S. (ed.) Proc. of TARK’19, pp. 332–353

Lorini, E.
Rethinking epistemic logic with belief bases.
Artificial Intelligence, 282.

18

https://github.com/m4lvin/HasCacBDD

Appendix

19

Example: Selection committee

Agents in Agt are members of a selection committee for an academic position.

They have to choose which candidates among Cand = {c1, . . . , cm} to admit to an interview.

Each committee member must vote for exactly one candidate:

α1
def
=
∧

i∈Agt

∨
c∈Cand

vote(i,c)

α2
def
=
∧

i∈Agt

∧
c,c′∈Cand,c,c′

(
vote(i,c)→ ¬vote(i,c′)

)

It is forbidden to vote for a co-author:

α3
def
=
∧

i∈Agt

∧
c∈ca(i)

¬vote(i,c)

where ca : Agt −→ 2Cand associates agents to their co-authors among the candidates.

20

A candidate c is admitted to the interview iff c received at least one vote:

adm(c) def
=
∨

i∈Agt

vote(i,c)

We suppose:
▶ The number of voters and candidates is the same, and it is greater than 2

(|Agt | = |Cand| > 2).
▶ There is exactly one candidate co-author for each voter (ca(i) = {ci}, for all i ∈ Agt).

Moreover, each agent knows:
▶ her own vote
▶ the result of the selection
▶ the rules of the voting procedure

21

That is, we have:
▶ S0 =

(
(Bi)i∈Agt ,V

)
such that, for every 1 ≤ i < n:

Bi ={vote(i,ci+1),¬adm(c1), adm(c2), . . . , adm(cn), α1, α2, α3}

and

Bn ={vote(n,cn−1),¬adm(c1), adm(c2), . . . , adm(cn), α1, α2, α3}

V ={vote(1,c2), . . . , vote(n − 1,cn), vote(n,cn−1)}

Each agent is aware of all these possibilities, i.e., for every i ∈ Agt :

Γi = Bi ∪ ¬Bi

where ¬Bi = {¬α | α ∈ Bi}.

22

Let |Agt | = 3. We have:

(S0,SΓ) |= △1(vote(1,c2) ∧ ¬vote(1,c3) ∧ adm(2) ∧ α1 ∧ α2 ∧ α3)

(S0,SΓ) |= □1(vote(1,c2) ∧ ¬vote(1,c3) ∧ adm(2) ∧ α1 ∧ α2 ∧ α3)

(S0,SΓ) |= □1(¬vote(3,c3))

(S0,SΓ) |= □1(vote(2,c3))

Similarly:

(S0,SΓ) |= □1(vote(3,c2))

23

Agent 1 only knows for whom each agent voted, i.e.:

(S0,SΓ) |= □
O
1 ψ1

where:

ψ1
def
= vote(1,c2) ∧ ¬vote(1,c1) ∧ ¬vote(1,c3)

∧ vote(2,c3) ∧ ¬vote(2,c1) ∧ ¬vote(2,c2)

∧ vote(3,c2) ∧ ¬vote(3,c1) ∧ ¬vote(3,c3),

24

But that is not the case for the other agents.

In fact, agent 2 and agent 3 only know for whom they voted and for whom they did not vote,
and that agent 1 voted either for c2 or for c3:

(S0,SΓ) |= □
O
2 ψ2 ∧ □

O
3 ψ2

ψ2
def
= ¬vote(1,c1) ∧ (vote(1,c2) ̸↔ vote(1,c3))

∧ vote(2,c3) ∧ ¬vote(2,c1) ∧ ¬vote(2,c2)

∧ vote(3,c2) ∧ ¬vote(3,c1) ∧ ¬vote(3,c3).

25

Selection committee variant

Now, committee member 1 explicitly knows that committee member 2 explicitly knows the
rules of the game as well as the results of the selection. i.e., S′0 = ((B′i)i∈Agt ,V ′) such that,

B′1 =B1 ∪ {△2¬adm(c1),△2adm(c2), . . . ,△2adm(cn),△2α1,△2α2,△2α3}

and, for every 1 < i ≤ n:

B′i = Bi ,

V ′ = V ,

where Bi and V are defined as above.

Interestingly, when |Agt | = |Cand| = 3, the following holds:

(S′0,B) |= □O
2 ψ2 ∧ □1□2ψ2 ∧ ¬□1□

O
2 ψ2

26

	Introduction
	Language and Semantics
	Model Checking
	Implementation
	Conclusion
	Appendix
	Example

