

Multi-agent Temporal Planning under Uncertainty: current challenges of temporal consistency checking problems

Ajdin Sumic – Thierry Vidal – Hedi M. Karray

Laboratoire Genie de Production, Tarbes

homogeneous

heterogeneous

STN (Simple Temporal Network with Uncertainty) **is consistent** if there exist an assignment of the time-point that satisfies all the constraints

Simple Temporal Network with Uncertainty(STNU) [Vidal et al., 1999, Journal of Experimental & Theoretical Artificial Intelligence]

nodes = Time-points; Arcs = duration : controllable et uncontrollable

- Strong Controllability (SC) : Polynomiale
- Dynamic Controllability (DC) : Polynomiale
- Weak Controllability(WC) : coNP-complet ?

$$SC \Rightarrow DC \Rightarrow WC$$

Weak Controllability (WC): An STNU is weakly controllable if before execution there exist at least one successful strategy whatever the duration of the contingents

Dynamic Controllability (DC): An STNU is dynamically controllable if whatever the past decision took during execution, there exist at least one successful strategy for the remaining contingents duration

Strong Controllability (SC): An STNU is strongly controllable if before execution there exist a single fixed strategy that guarantees success regardless of the contingents duration

Strong Controllability \implies Dynamic Controllability \implies Weak Controllability

Current works & Challenges

Observations Needs Repair of Temporal Network with uncertainty algorithm that check & repair

Definition

Repair: find a reduction of the contingent of a non-X-Controllable STNU such that it becomes X-Controllable.

Optimal Repair: find a minimal reduction of the contingent of a non-X-Controllable STNU such that it becomes X-Controllable.

$$\underset{\mathcal{X}' \in \mathcal{R}_{\mathcal{X}}}{\operatorname{argmin}} \left(\sum_{\substack{i \ -- \rightarrow \ j \in \mathcal{C}}} \left((l' - l) + (u - u') \right) \right)$$

check & repair

Fairness: find an optimal repair of a non-X-Controllable STNU such that it maximize the number of contingent that are equally reduced

Fairness 1: equally reduce the flexibility by its percentage:

$$\frac{(l'-l)+(u-u')}{u-l}$$

Fairness 2: equally reduce the size (time-unit):

$$(l'-l) + (u-u')$$

Work

Submission CPAIOR :

- SMT approach for DTNU repair for WC & SC
- LP approach for STNU repair in WC & SC

Submission ICAPS :

- LP approach for STNU repair for WC & DC by extending the repair problem to negative cycles
- A new LP approach for SC repair for STNU:
 - > Use the tractability of the paper [Vidal et al., 1999]
 - Can check, repair, and give an execution strategy in better time complexity than the Floyd-Warshall algorithm in realistic graph

WC

Submission CPAIOR :

- propagation algorithm more practical than existing algorithms for realistic STNU
- Complexity still exponential but related to the density of the graph
- Can return the cycle that are not consistent
- Incremental but not a perfect one
- Can be parallelized

10% of contingent3 childs per divergent node

20% of contingent3 childs per divergent node

30% of contingent3 childs per divergent node

A new global model that represents Inter-independant STNUs, with

- a set of contracts = shared activities/events which duration/time is controlled by an agent and observed by others
- in each STNU, we add a reference to such a contract and the type (contingent/controllable)

Contracting STNU

Definition 8. (*cSTNU*) A Contracting STNU (*cSTNU*) is an STNU where links representing contracts are labeled. A *cSTNU* is a tuple $S = \langle V, R, W, E, C, O \rangle$ such that:

- V is a set of time points, partitioned into controllable (V_c) and uncontrollable V_u
- *R* and *W* are sets of contracts, such that $R \cap W = \emptyset$
- *E* is a set of requirement links of the form $v_i \xrightarrow{[l,u]} v_j$;
- *C* is a set of labeled contingent links of the form $v_i \xrightarrow{p} v_j$ where $p \in R$.
- *O* is a set of owned contract links of the form either $v_i \xrightarrow{p} v_j$ or $v_i \xrightarrow{p} v_j$, one for each contract $p \in W$.

In addition, we require that $\forall v_j \in V_u$, there exists a unique labeled contingent link of the form $v_i \xrightarrow{p} v_j$ in $C \cup O$.

Multiple Interdependent Simple Temporal Network under Uncertainty

Definition 9. (*MISTNU*) A MISTNU is a tuple $\mathcal{G} = \langle A, \Sigma, B \rangle$ such that:

- A is a set of agents $\{a_1, a_2, ..., a_n\}$;
- Σ is a set of cSTNUs $S_a = \langle V_a, R_a, W_a, E_a, C_a, O_a \rangle$, one for every $a \in A$, such that
 - $\forall a \in A, v_z \in V_a$, where v_z is the reference time point;
 - for every pair of agents $a, b \in A$, $W_a \cap W_b = \emptyset$
- *B* is a map from contracts to bounds $B : \bigcup_{a \in A} (R_a \cup W_a) \to \mathbb{R}^2$. For the sake of this paper, we write l and u for $\langle l_p, u_p \rangle = B(p)$.

Controllability

Local Controllability = each cSTNU transformed into an STNU is X-Controllable (X = W/D/C)

Global Controllability = the MISTNU is X-Controllable

- Equivalence ? Semantics ? Link with execution strategy
- Controllability depends on agent's policy
- ➢ etc

Repair

MISTNU Repair: find an optimal reduction of the contracts (B) or a fair reduction such that Local/Global Controllability is satisfied

Aim:

- Models ECAI 2024
- Centralized solution with SMT to discuss ?
- Decentralized solution with negotiation: preliminary Time & complete approach AAMAS

Interoperability

Ontology:

Formalize Temporal notions

Aim:

- Ontology to FOIS
- Decentralized system with Ontology to AAMAS

Perspectives

Enough for the next decade

MISTNU model has a 4th type of Controllability

A mixed controllability checking algorithm is possible by extending B in the MISTNU model

Consider different controllability for each agent

Consider **cooperative & non-cooperative** agents

The **bigger view:** extend all of this to other TNU

Thank you !

