MAFTEC Days 2023

Predicate-based explanation of Reinforcement Learning

Léo Saulières (3 ${ }^{\text {rd }}$ year PhD student)

Martin C. Cooper - Florence Bannay

Reinforcement Learning

 HXP

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d HXP

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

HXP

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s, a) in the length- k history h HXP

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s, a) in the length- k history h
The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a^{\prime} \in A(s) \backslash\{a\}$ HXP

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s, a) in the length- k history h
The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a^{\prime} \in A(s) \backslash\{a\}$

Utility: probability to reach a final state at horizon k which respects d Action importance score lies in range [-1;1]

HXP

S State

S predicate d holds in state

S predicate d does not hold in state
\longrightarrow Action

- - - - Environment's transition HXP

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s, a) in the length-k history h
The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a^{\prime} \in A(s) \backslash\{a\}$

Utility: probability to reach a final state at horizon k which respects d Action importance score lies in range [-1;1]

Problem: Computationnaly expensive method (\#W[1]-hard)

HXP

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s, a) in the length-k history h
The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a^{\prime} \in A(s) \backslash\{a\}$

Utility: probability to reach a final state at horizon k which respects d Action importance score lies in range [-1;1]

Problem: Computationnaly expensive method (\#W[1]-hard)
Solution: Generate a large range of scenarios, but not the unlikely ones n-last approximate HXP: most probable transition at the n last time-step(s)
$\mathrm{n}=2$
Last time-steps

S State

S predicate d holds in state

predicate d does not hold in state

Action

Environment's transition

HXP

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s, a) in the length-k history h
The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a^{\prime} \in A(s) \backslash\{a\}$

Utility: probability to reach a final state at horizon k which respects d Action importance score lies in range [-1;1]

Problem: Computationnaly expensive method (\#W[1]-hard)
Solution: Generate a large range of scenarios, but not the unlikely ones m-transition approximate HXP: most probable transition at each time-step

HXP
$m=2$
Each time-step

S State

S predicate d holds in state

S predicate d does not hold in state

HXP

Problem: Large history requires an important number of deterministic transitions to provide in reasonable time action importance scores.

This leads to a decrease of the importance scores quality.

HXP

Problem: Large history requires an important number of deterministic transitions to provide in reasonable time action importance scores.

This leads to a decrease of the importance scores quality.

Solution: Backward HXP Backward HXP

Data:

- History i.e. state-action sequence $H=\left(s_{0}, a_{0}, s_{1}, \ldots, a_{k-1}, s_{k}\right)$
- Predicate d
- Length of studied sub-sequence / Backward HXP

Data:

- History i.e. state-action sequence $H=\left(s_{0}, a_{0}, s_{1}, \ldots, a_{k-1}, s_{k}\right)$
- Predicate d
- Length of studied sub-sequence /

Idea: Search for the most important action a_{i} among the / last actions of $H_{(k-m, k)}$
Get the associated state s_{i}
Redefine the predicate to study based on s_{i}
Search for the most important action of $H_{(i-m, i)}$
Iterate this process through the entire history

Backward HXP

Data:

- History i.e. state-action sequence $H=\left(s_{0}, a_{0}, s_{1}, \ldots, a_{k-1}, s_{k}\right)$
- Predicate d
- Length of studied sub-sequence /

Idea: Search for the most important action a_{i} among the / last actions of $H_{(k-m, k)}$
Get the associated state s_{i}
Redefine the predicate to study based on s_{i}
Search for the most important action of $H_{(i-m, i)}$
Iterate this process through the entire history
The re-defined predicate is a general description of a set of states

Result: Set of studied predicates and important actions

Backward HXP

Example: the end of Bob's day

Bob's state: (hunger, happy, tired, fridge, fuel)
Last history state: (ᄀhunger, happy, tired, $\neg f r i d g e, ~ \neg f u e l)$
Data:

- H: history corresponding to the end of Bob's day
- d: ‘Bob is not hungry’
- l: 4

Which actions were important to ensure that d was achieved, given the agent's policy π ?

Backward HXP

Example: the end of Bob's day

Most important action: 'eat'
New predicate based on s_{4}, d : 'Bob is hungry and has a full fridge'

Backward HXP

Example: the end of Bob's day

Most important action: ‘shop’

Result:

- Actions: ‘shop’, ‘eat’
- Predicates : 'Bob is hungry and has a full fridge', 'Bob is not hungry'

Bob isn't hungry because he went shopping (to fill his fridge) and then ate

Backward HXP

```
Algorithm 2: Backward HXP algorithm
    Input : \(H\) : history, \(l\) : maximal sub-sequence length, \(\pi\) : agent's policy, \(d\) :
                predicate, \(p\) : transition function, \(\delta\) : probability threshold
    Output: A: action list, \(D\) : predicate list
    \(A \leftarrow[] ;\)
    \(D \leftarrow[] ;\)
    \(i_{\text {max }} \leftarrow l e n(H)\);
    while \(i_{\text {min }} \neq 0\) do
        \(i_{\text {min }} \leftarrow \max \left(0, i_{\text {max }}-l\right)\);
        \(a, s, z, i d x \leftarrow \operatorname{select}\left(H_{\left(i_{\min }, i_{\max }\right)}, \pi, d, p\right) ; \quad / /\) select a state-action couple
        \(d \leftarrow \operatorname{all} \operatorname{PAXp}\left(\mathbb{F}, \kappa, s, \delta, \pi, p, d, i_{\max }-i_{\min }\right) ; \quad / /\) define a new predicate
        A.append (a);
        D.append(d);
        \(i_{\max } \leftarrow i d x ;\)
    end
    return \(A, D\)
```

State-action couple selection: Most important action a and associated state s

Backward HXP

State-action couple selection: Most important action a and associated state s
Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate d and s

Backward HXP

State-action couple selection: Most important action a and associated state s
Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate d and s $P A X p$ is a formal method to explain classifiers in terms of feature selection

Backward HXP

State-action couple selection: Most important action a and associated state s
Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate d and s $P A X p$ is a formal method to explain classifiers in terms of feature selection

Classifier: Is x at least as useful as $s ? \quad \kappa_{s}(\mathbf{x})=u_{d}(\mathbf{x}) \geq u_{d}(s)$

Backward HXP

State-action couple selection: Most important action a and associated state s
Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate d and s $P A X p$ is a formal method to explain classifiers in terms of feature selection

Classifier: Is x at least as useful as $s ? \quad \kappa_{s}(\mathbf{x})=u_{d}(\mathbf{x}) \geq u_{d}(s)$

Weak PAXp: A subset of fixed features for which the probability of predicting a class c is at least δ (with $\delta \in[0,1]$)

Backward HXP

Example: Bob's end day

Most important action: 'eat'
Associated state s_{4} : (hunger, \neg happy, \neg tired, fridge, $\left.\neg f u e l\right)$
$u\left(s_{4}\right)=1, \delta=0.8$
Weak PAXp: (hunger, fridge, \neg tired) \rightarrow new predicate
At least 80\% of states described by (hunger, fridge, ᄀtired) have a utility of 1

Backward HXP

State-action couple selection: Most important action a and associated state s
Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate d and s $P A X p$ is a formal method to explain classifiers in terms of feature selection

Classifier: Is x at least as useful as $s ? \quad \kappa_{s}(\mathbf{x})=u_{d}(\mathbf{x}) \geq u_{d}(s)$

Weak PAXp: A subset of fixed features for which the probability of predicting a class c is at least δ (with $\delta \in[0,1]$) PAXp: A Weak PAXp which is subset minimal

Backward HXP

Example: Bob's end day

Most important action: 'eat'
Associated state s_{4} : (hunger, \neg happy, \neg tired, fridge, $\left.\neg f u e l\right)$
$\mathrm{u}\left(\mathrm{S}_{4}\right)=1, \delta=0.8$
PAXp: (hunger, fridge) \rightarrow new predicate
At least 80% of states described by (hunger, fridge) have a utility of 1

Backward HXP

State-action couple selection: Most important action a and associated state s
Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate d and s $P A X p$ is a formal method to explain classifiers in terms of feature selection

Classifier: Is x at least as useful as $s ? \quad \kappa_{s}(\mathbf{x})=u_{d}(\mathbf{x}) \geq u_{d}(s)$

Weak PAXp: A subset of fixed features for which the probability of predicting a class c is at least δ (with $\delta \in[0,1]$)
PAXp: A Weak PAXp which is subset minimal
Problem: Finding one PAXp is computationnaly expensive

Backward HXP

State-action couple selection: Most important action a and associated state s
Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate d and s
PAXp is a formal method to explain classifiers in terms of feature selection
Classifier: Is x at least as useful as $s ? \quad \kappa_{s}(\mathbf{x})=u_{d}(\mathbf{x}) \geq u_{d}(s)$

Weak PAXp: A subset of fixed features for which the probability of predicting a class c is at least δ (with $\delta \in[0,1]$)
PAXp: A Weak PAXp which is subset minimal
Problem: Finding one PAXp is computationnaly expensive
Solution: Generate the new predicate with only one Locally-minimal PAXp, a class of Weak PAXp which is easier to compute

Backward HXP

```
Algorithm 2: findLmPAXp.
    Input : Feature \(\{1, \ldots, m\}\); feature space \(\mathbb{F}\), classifier \(\kappa\), instance \((\mathbf{v}, c)\),
                        threshold \(\delta\)
    Output: Locally-minimal PAXp \(\mathcal{S}\)
    \(\mathcal{S} \leftarrow\{1, \ldots, m\} ;\)
    for \(i \in\{1, \ldots, m\}\) do
        if WeakPAXp \((\mathcal{S} \backslash\{i\} ; \mathbb{F}, \kappa, \mathbf{v}, c, \delta)\) then
                \(\mathcal{S} \leftarrow \mathcal{S} \backslash\{i\} ;\)
        end
    end
    return \(\mathcal{S}\)
```


Frozen Lake

Transition function ($\mathbf{\$}$)

$\boldsymbol{1}$ リー
State

- Position
- Previous position
- Position of a closest hole
- Distance starting/current position
- Number of holes

Reward function

- +1 in Goal position
- +0 otherwise

Algorithm Tabular Q-learning

Predicates goal, holes, region

Frozen Lake

History

Predicate: goal

Frozen Lake

$$
\mathrm{B}-\mathrm{HXP}(\mathrm{I}=4, \delta=0.8)
$$

Scores: $[-0.0,0.0,-0.001,-0.0 \mid$
0.006, -0.009, 0.102, 0.087
-0.001, 0.04, 0.012, 0.114]

Predicates:

- Position, Previous position, Close hole position
- Distance starting/current position
- Goal

Runtime: 2.45s
History

Dynamic Obstacles

Transition function	Obstacles moves
Actions	- Move forward
	- Rotate 90° left
	Rotate 90° right
State	7×7 view
Reward function	- $1-0.9 * \mathrm{t}$ if success
	- -1

Algorithm Deep Q Network (DQN)

Predicates goal, near obstacles, position

Dynamic Obstacles

History

Predicate: goal

Dynamic Obstacles

B-HXP $(I=4, \delta=0.9)$
Scores: [-0.009, $0.006 \mid$
0.006, 0.012, -0.004, 0.009 |
$0.139,0.095,-0.029,0.079$ |
$0.273,0.48,0.42,0.0]$
Runtime: 370s

Predicates:

Dynamic Obstacles

$B-H X P(I=4, \delta=0.9)$
Predicates:
Scores: [-0.009, 0.006 |
0.006, 0.012, -0.004, 0.009 |
0.139, 0.095, -0.029, 0.079
$0.273,0.48,0.42,0.0]$
Runtime: 370s

Dynamic Obstacles

B-HXP $(I=4, \delta=0.9)$
Scores: [-0.009, 0.006 |
0.006, 0.012, -0.004, 0.009 |
$0.139,0.095,-0.029,0.079$ |
$0.273,0.48,0.42,0.0]$
Runtime: 370s

Predicates:

Dynamic Obstacles

B-HXP $(I=4, \delta=0.9)$
Scores: [-0.009, 0.006 |
0.006, 0.012, -0.004, 0.009 |
0.139, 0.095, -0.029, 0.079
$0.273,0.48,0.42,0.0]$
Runtime: 370s

Predicates:

Connect4

Connect4

History

Predicate: win

Connect4

B-HXP $(I=4, \delta=0.9)$
Scores: [0.0|
0.0004, 0.0, 0.0, $0.0 \mid$
$0.0002,0.0,0.0,0.0 \mid$
0.3036, 0.367, 0.092, 0.08]

Runtime: 112s

Predicates:

Connect4

B-HXP $(I=4, \delta=0.9)$

Scores:	$[0.0 \mid$
	$0.0004,0.0,0.0,0.0 \mid$
	$0.0002,0.0,0.0,0.0 \mid$
	$0.3036,0.367,0.092,0.08]$

Runtime: 112s
Predicates:

Connect4

$B-H X P(I=4, \delta=0.9)$

Scores:	$[0.0 \mid$
	$0.0004,0.0,0.0,0.0 \mid$
	$0.0002,0.0,0.0,0.0 \mid$
	$0.3036,0.367,0.092,0.08]$

Runtime: 112s

Predicates:

Connect4

$B-H X P(I=4, \delta=0.9)$

Scores:	$[0.0 \mid$
	$0.0004,0.0,0.0,0.0 \mid$
	$0.0002,0.0,0.0,0.0 \mid$
	$0.3036,0.367,0.092,0.08]$

Runtime: 112s

Predicates:

Conclusion

HXP:

- Analyse past agent's interactions with the environment:
- Predicate-based approach
- Action importance evaluation
- Approximate HXP to reduce computation time

Conclusion

Backward HXP:

- Analyse past agent's interactions with the environment:
- Predicate-based approach
- Action importance evaluation
- Plain HXP
- Approximate computation of PAXp
- Provide to the user important actions and predicates

Conclusion

Backward HXP:

- Analyse past agent's interactions with the environment:
- Predicate-based approach
- Action importance evaluation
- Plain HXP
- Approximate computation of PAXp
- Provide to the user important actions and predicates

Limits:

- Transition function must be known
- Approximate PAXp
- Complexity: importance score and search space for PAXp computation

Future works:

- Feature ordering heuristics to produce insightful predicates
- Additional experiments

