

MAFTEC Days 2023

Predicate-based explanation of Reinforcement Learning

Léo Saulières (3rd year PhD student)

Martin C. Cooper – Florence Bannay

Reinforcement Learning

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Utility: probability to reach a final state at horizon k which respects dAction importance score lies in range [-1;1] าเราเ

HXP

Action

S

- --

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Utility: probability to reach a final state at horizon k which respects dAction importance score lies in range [-1;1]

Problem: Computationnaly expensive method (#W[1]-hard)

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Utility: probability to reach a final state at horizon k which respects dAction importance score lies in range [-1;1]

Problem: Computationnaly expensive method (#W[1]-hard)

Solution: Generate a large range of scenarios, but not the unlikely ones *n*-last approximate HXP: most probable transition at the *n* last time-step(s)

İRIT

HXP

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Utility: probability to reach a final state at horizon k which respects dAction importance score lies in range [-1;1]

Problem: Computationnaly expensive method (#W[1]-hard)

Solution: Generate a large range of scenarios, but not the unlikely ones *m*-transition approximate HXP: *m* most probable transition at each time-step

าเราเ

S

S

S

State

Action

HXP

Problem: Large history requires an important number of deterministic transitions to provide in reasonable time action importance scores.

This leads to a decrease of the importance scores quality.

Problem: Large history requires an important number of deterministic transitions to provide in reasonable time action importance scores.

This leads to a decrease of the importance scores quality.

Solution: Backward HXP

Data:

- History i.e. state-action sequence $H = (s_0, a_0, s_1, ..., a_{k-1}, s_k)$
- Predicate *d*
- Length of studied sub-sequence /

Data:

- History i.e. state-action sequence $H = (s_0, a_0, s_1, ..., a_{k-1}, s_k)$
- Predicate *d*
- Length of studied sub-sequence /

Idea: Search for the most important action a_i among the *I* last actions of $H_{(k-m,k)}$

Get the associated state s_i

Redefine the predicate to study based on s_i

Search for the most important action of $H_{(i-m,i)}$

Iterate this process through the entire history

Data:

- History i.e. state-action sequence $H = (s_0, a_0, s_1, ..., a_{k-1}, s_k)$
- Predicate *d*
- Length of studied sub-sequence /

Idea: Search for the most important action a_i among the *I* last actions of $H_{(k-m,k)}$

Get the associated state s_i

Redefine the predicate to study based on s_i

Search for the most important action of $H_{(i-m,i)}$

Iterate this process through the entire history

The re-defined predicate is a general description of a set of states

Result: Set of studied predicates and important actions

Example: the end of Bob's day

Bob's state: (hunger, happy, tired, fridge, fuel)

Last history state: (¬hunger, happy, tired, ¬fridge, ¬fuel)

Data:

- H: history corresponding to the end of Bob's day
- *d*: 'Bob is not hungry'
- /: 4

Which actions were important to ensure that *d* was achieved, given the agent's policy π ?

Example: the end of Bob's day

Most important action: 'eat'

New predicate based on s4, d: 'Bob is hungry and has a full fridge'

Example: the end of Bob's day

Most important action: 'shop'

Result:

- Actions: 'shop', 'eat'
- Predicates : 'Bob is hungry and has a full fridge', 'Bob is not hungry'

Bob isn't hungry because he went shopping (to fill his fridge) and then ate

Algorithm 2: Backward HXP algorithm

Input : *H*: history, *l*: maximal sub-sequence length, π : agent's policy, *d*: predicate, p: transition function, δ : probability threshold **Output:** A: action list, D: predicate list $A \leftarrow [];$ $D \leftarrow [];$ $i_{max} \leftarrow len(H);$ while $i_{min} \neq 0$ do $i_{min} \leftarrow max(0, i_{max} - l);$ $a, s, z, idx \leftarrow select(H_{(i_{min}, i_{max})}, \pi, d, p); // select a state-action couple$ $d \leftarrow \text{all}_{PAXp}(\mathbb{F}, \kappa, s, \delta, \pi, p, d, i_{max} - i_{min});$ // define a new predicate A.append(a);D.append(d); $i_{max} \leftarrow idx;$ end return A, D

State-action couple selection: Most important action *a* and associated state *s*

Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate *d* and *s*

Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate *d* and *s*

PAXp is a formal method to explain classifiers in terms of feature selection

Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate *d* and s

PAXp is a formal method to explain classifiers in terms of feature selection

<u>Classifier</u>: Is x at least as useful as s? $\kappa_s(\mathbf{x}) = u_d(\mathbf{x}) \ge u_d(s)$

Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate *d* and s

PAXp is a formal method to explain classifiers in terms of feature selection

<u>Classifier</u>: Is x at least as useful as s? $\kappa_s(\mathbf{x}) = u_d(\mathbf{x}) \ge u_d(s)$

<u>Weak PAXp</u>: A subset of fixed features for which the probability of predicting a class c is at least δ (with $\delta \in [0,1]$)

Example: Bob's end day

Most important action: 'eat'

<u>Associated state s4</u>: (hunger, ¬happy, ¬tired, fridge, ¬fuel)

 $u(s_4) = 1, \ \delta = 0.8$

Weak PAXp: (hunger, fridge, \neg *tired)* \rightarrow new predicate

At least 80% of states described by *(hunger, fridge, ¬tired)* have a utility of 1

Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate *d* and s

PAXp is a formal method to explain classifiers in terms of feature selection

<u>Classifier</u>: Is x at least as useful as s? $\kappa_s(\mathbf{x}) = u_d(\mathbf{x}) \ge u_d(s)$

<u>Weak PAXp</u>: A subset of fixed features for which the probability of predicting a class c is at least δ (with $\delta \in [0,1]$)

PAXp: A Weak PAXp which is subset minimal

Example: Bob's end day

Most important action: 'eat'

<u>Associated state s4</u>: (hunger, ¬happy, ¬tired, fridge, ¬fuel)

 $u(s_4) = 1, \ \delta = 0.8$

PAXp: (hunger, fridge) \rightarrow new predicate

At least 80% of states described by (hunger, fridge) have a utility of 1

Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate d and s

PAXp is a formal method to explain classifiers in terms of feature selection

<u>Classifier:</u> Is x at least as useful as s? $\kappa_s(\mathbf{x}) = u_d(\mathbf{x}) \ge u_d(s)$

<u>Weak PAXp</u>: A subset of fixed features for which the probability of predicting a class c is at least δ (with $\delta \in [0,1]$)

PAXp: A Weak PAXp which is subset minimal

Problem: Finding one *PAXp* is computationnaly expensive

Predicate definition: Disjunction of all probabilistic Abductive eXplanations (PAXp) based on predicate *d* and s

PAXp is a formal method to explain classifiers in terms of feature selection

<u>Classifier:</u> Is x at least as useful as s? $\kappa_s(\mathbf{x}) = u_d(\mathbf{x}) \ge u_d(s)$

<u>Weak PAXp</u>: A subset of fixed features for which the probability of predicting a class c is at least δ (with $\delta \in [0,1]$)

PAXp: A Weak PAXp which is subset minimal

Problem: Finding one *PAXp* is computationnaly expensive

Solution: Generate the new predicate with only one *Locally-minimal PAXp*, a class of *Weak PAXp* which is easier to compute

Algorithm 2: findLmPAXp.

```
Input : Feature \{1, ..., m\}; feature space \mathbb{F}, classifier \kappa, instance (\mathbf{v}, c),
threshold \delta
Output: Locally-minimal PAXp S
S \leftarrow \{1, ..., m\};
for i \in \{1, ..., m\} do
\mid  if WeakPAXp(S \setminus \{i\}; \mathbb{F}, \kappa, \mathbf{v}, c, \delta) then
\mid  S \leftarrow S \setminus \{i\};
\mid  end
end
return S
```


Frozen Lake

Transition function (1) 0.6 $0.2 \xrightarrow{1} 0.2$

Actions

↓ ← −

State

- Position
- Previous position
- Position of a closest hole
- Distance starting/current position
- Number of holes

Reward function

- +1 in Goal position
- +0 otherwise

Algorithm Tabular Q-learning

Predicates goal, holes, region

Frozen Lake

Predicate: goal

Frozen Lake

History

B-HXP (I = 4, δ = 0.8)

Scores: [-0.0, **0.0**, -0.001, -0.0 | 0.006, -0.009, **0.102**, 0.087 | -0.001, 0.04, 0.012, **0.114**]

Predicates:

- Position, Previous position, Close hole position
- Distance starting/current position

· Goal

Runtime: 2.45s

Transition function	Obstacles moves
Actions	 Move forward Rotate 90° left Rotate 90° right
State	7x7 view
Reward function	 1-0.9 * t if success -1 if collision

Algorithm Deep Q Network (DQN)

Predicates goal, near obstacles, position

Predicate: goal

B-HXP (I = 4, δ = 0.9)

Scores: [-0.009, 0.006 | 0.006, **0.012**, -0.004, 0.009 | **0.139**, 0.095, -0.029, 0.079 | 0.273, **0.48**, 0.42, 0.0]

Runtime: 370s

B-HXP (I = 4, δ = 0.9)

Scores: [-0.009, 0.006 | 0.006, **0.012**, -0.004, 0.009 | **0.139**, 0.095, -0.029, 0.079 | 0.273, **0.48**, 0.42, 0.0]

Runtime: 370s

B-HXP (I = 4, δ = 0.9)

Scores: [-0.009, 0.006 | 0.006, **0.012**, -0.004, 0.009 | **0.139**, 0.095, -0.029, 0.079 | 0.273, **0.48**, 0.42, 0.0]

Runtime: 370s

B-HXP (I = 4, δ = 0.9)

Scores: [-0.009, 0.006 | 0.006, 0.012, -0.004, 0.009 | 0.139, 0.095, -0.029, 0.079 | 0.273, 0.48, 0.42, 0.0]

Runtime: 370s

Transition function Player 2's policy

Actions Column number

State Whole board

Reward function

- +1 if win
- -1 if lose
- +0.5 if draw
- +0 otherwise

Algorithm Deep Q Network (DQN)

Predicates win, lose, 3 in a row, avoid 3 in a row, control mid-column

History

Predicate: win

B-HXP (I = 4, δ = 0.9)

Scores: [0.0 | 0.0004, 0.0, 0.0, 0.0 | 0.0002, 0.0, 0.0, 0.0 | 0.3036, 0.367, 0.092, 0.08]

Runtime: 112s

B-HXP (I = 4, δ = 0.9)

Scores: [0.0 | 0.0004, 0.0, 0.0, 0.0 | 0.0002, 0.0, 0.0, 0.0 | 0.3036, 0.367, 0.092, 0.08]

Runtime: 112s

B-HXP (I = 4, δ = 0.9)

Scores: [0.0 | 0.0004, 0.0, 0.0, 0.0 | 0.0002, 0.0, 0.0, 0.0 | 0.3036, 0.367, 0.092, 0.08]

Runtime: 112s

B-HXP (I = 4, δ = 0.9)

- Scores: [0.0 | 0.0004, 0.0, 0.0, 0.0 | 0.0002, 0.0, 0.0, 0.0 | 0.3036, 0.367, 0.092, 0.08]
- Runtime: 112s

Conclusion

HXP:

- Analyse past agent's interactions with the environment:
 - Predicate-based approach
 - Action importance evaluation
- Approximate HXP to reduce computation time

Conclusion

Backward HXP:

- Analyse past agent's interactions with the environment:
 - Predicate-based approach
 - Action importance evaluation
- Plain HXP
- Approximate computation of PAXp
- Provide to the user important actions and predicates

Conclusion

Backward HXP:

- Analyse past agent's interactions with the environment:
 - Predicate-based approach
 - Action importance evaluation
- Plain HXP
- Approximate computation of PAXp
- Provide to the user important actions and predicates

Limits:

- Transition function must be known
- Approximate PAXp
- <u>Complexity:</u> importance score and search space for PAXp computation

Future works:

- Feature ordering heuristics to produce insightful predicates
- Additional experiments